
An Algebra for List-Oriented Applications

Latha S. Colby�

Department of Computer Science

Indiana University

Bloomington, IN, 47405

colby@cs.indiana.edu

February 23, 1992

Abstract

Most data models and query languages, provide mechanisms for dealing with sets

of objects. Many applications nowadays, however, are list-oriented, i.e., deal with

collections or aggregates of objects in which their order is important. A formal model

and an algebra for representing and manipulating list-oriented data are presented in

this paper. We also give the criteria that were used in the design of the algebra and

show how the algebra satis�es these criteria.

�The author was supported by a grant from the Indiana Corporation for Science and Technology.

1 Introduction

The relational data model [5] provides a simple yet powerful means of representing and

querying data. However, the need for representing data with more complex structure and

semantic information has resulted in a variety of complex data models. Models, like the

nested relational model [12, 19], are simple extensions of the relational model, that allow a

more natural representation of complex objects. Semantic and object-oriented models, such

as, ER [4], SDM [9], FDM [18], and O2 [3], on the other hand, were designed independent

of the relational model and are equipped with various data modeling features that enable a

variety of data applications to be modeled. However, none of these models is best suited for

all applications. In particular, most of these models are inadequate for the following types

of applications:

1. applications that are text-oriented, e.g., o�ce documents, dictionaries, bibliographies

and abstracts;

2. applications involving historical sequences of records, such as �nancial records and

medical records;

3. experimental data that involve sequences or lists of data points.

There are two main reasons why most data models are not suitable for such applications.

Firstly, the types of applications listed above all deal with sequences or lists of objects.

Most models, however, are set-oriented. Models like the relational and the nested-relational

models provide only sets as a grouping construct. Semantic data models often provide lists

as a modeling construct. However, their query languages are not specialized enough to deal

with list-oriented applications. Secondly, many of these applications require variable schema

representation. For instance, a bibliography can have entries of many di�erent formats. Tra-

ditional database models which require all instances of an entity (such as, all tuples in a

relation) to correspond to the same schema, are unsuitable. Semantic models can often deal

with variable schema by means of a construct called generalization. However, this construct

most often comes bundled with other data modeling constructs such as, classi�cation, spe-

cialization hierarchies and methods, with the result that these models are too complex for

simple list-oriented applications.

A model that is designed for the types of applications mentioned earlier must be able to

handle lists and variable schemas. Such a model would require a specialized query language

1

that provides list-oriented operations. Although sequencing is a feature of many database

implementations, this feature is hidden from the modeling perspective. It is not our goal

to abandon this important aspect of data independence. Rather the goal is to provide a

modeling level construction for sequential information. The next section brie
y reviews some

of the data models and query languages that have been proposed for these applications. In

Section 3, we give the description of a data model, the list-structure model, that is especially

suited for the kinds of applications mentioned above. An algebra for the list-structure model

is described in Section 4. In Section 5, we discuss some of the properties of the operators of

the algebra and in Section 6, we discuss possible extensions to the model and the algebra.

2 Related work

Some of the early attempts at designing models for text-based applications were made in the

area of o�ce automation. A model for multimedia documents was proposed by Rabitti in

[17]. The model is based on the idea of using context-free grammars to represent document

structures. A schema de�ned in this model consists of a grammar and a set of restrictions.

An instance of a schema is a tree (a derivation tree de�ned by the grammar) that satis�es

the set of restrictions, if any. Operations for manipulating and retrieving documents are

provided. Retrievals are speci�ed by means of query �lters. A query �lter de�nes a portion

of an instance tree and all trees that match the �lter are retrieved.

Gonnet and Tompa [6] proposed a similar model based on grammars and a data-manipulation

language. The language is oriented towards \text-dominated databases" and has the
avor

of a programming language.

In [8], Gyssens, Paredaens and Van Gucht de�ne an algebra and a calculus for a similar

grammar-based model. While the languages are fairly simple and well de�ned, the operators

of the languages are very primitive. Queries tend to become long and complicated when

expressed in terms of such primitive operators.

A query language for manipulating text structures was proposed in [14] by Macleod. The

model on which the language is based allows the hierarchical representation of text (using a

grammar-based representation) as well as non-hierarchical linkages between objects (using

references). The model and the language are speci�cally designed for text applications and

2

are not entirely suitable for other types of list-oriented applications. Moreover, the language

does not provide enough
exibility to deal with arbitrary schema restructurings.

An extended nested relational model was proposed in [16], by Pistor and Traunmueller

for dealing with both sets and lists. They extend the SQL language by providing some

list-oriented operators and the equivalent of some nested relational algebra operators. The

language and the data model that the language is based on are well suited for simple list-

oriented applications, but not for complex applications involving variable schema.

An algebra for structured o�ce documents is described in [7] by G�uting, Zicari and Choy.

The algebra, which is an extension of the relational algebra, is well-de�ned and has several

features for dealing with sequences of objects. However, the data model upon which the

algebra is de�ned uses a simplistic approach by combining aggregation and sequencing. It

also does not provide variable schema representation.

3 A Model for List-Oriented Applications

3.1 Informal Description of the Model

In this section, we �rst outline the modeling features that are required in a data model that

supports list-oriented applications like those that were mentioned in Section 1. We then

give an informal description of the list-structure data model and show how the modeling

requirements are satis�ed by this model.

The data objects needed to represent the information in list-oriented applications are mainly

of three types: (i) atomic, (ii) composite or aggregate, and (iii) collection. An atomic object

is a simple data element, such as, an integer or a character. A composite object is one that

is made up of several components. A collection of objects (of the same type) can be of one

of the following categories { a sequence1, an ordered set, an unordered set, or a bag. The

elements in a sequence are all ordered and there can be duplicates among these elements.

An unordered set (usually called a set) is a collection of distinct objects in which the order

of the elements is irrelevant. In an ordered set the order of the elements is relevant. An

ordered set can also be viewed as a sequence that has no duplicates. A bag is an unordered

1We use the term list to denote an ordered collection of objects that are either all of the same type or of

di�erent types; and the term sequence to denote an ordered collection of objects of the same type.

3

collection of elements in which duplicates are allowed (a set with duplicates).

In the case of most set-oriented applications, the order of the components of composite ob-

jects is irrelevant. However, for many list-oriented applications the order of the components is

important. Hence, the data model that supports such applications should treat a composite

object as being composed of a list of components rather than as a set of components.

Also, in many of these applications, a part of a schema (a sub-schema) may be repeated in

several places in the schema description. For instance, a paragraph can occur in a chapter

or in the preface of the book. In such cases, it would be better if the schema de�nition

at a certain level referenced the sub-schema, rather than having the sub-schema de�nition

repeated several times. This is, in fact, necessary in the case of recursive schema de�nitions.

It must also be possible to associate di�erent sub-schemas with a schema de�nition, thus

allowing for variable schema representation.

The data model that we are about to describe is designed to meet the above requirements.

However, for the sake of simplicity (particularly in the query language description), the

model described here does not allow for sets (either unordered or ordered) or bags. We show

in Section 6 how the model and the query language can be extended to deal with such types

of collections, as well.

Given the above requirements for a data model, it seems natural to choose a hierarchical

representation for the instances of the model. It would also be natural to describe the

schemas for such hierarchical instances in terms of a set of productions, similar to the kinds

of productions one would use to de�ne a context free grammar. In the list-structure model

a schema consists of a start symbol and a set of productions. A value corresponding to a

scheme (known as a structure over the scheme) is a tree that corresponds to the productions

in the schema and whose root node is the start symbol of the scheme2. Figure 1 is an example

of a bibliography list-structure scheme and Figures 2 and 3 are examples of structures over

that scheme.

For the sake of simplicity, we allow only certain kinds of productions in the schemes. A

leaf production is one that is used to describe atomic objects. The right-hand side of such

a production is either a primitive type name or a constant. In the book-collection scheme,

2The model deals with objects in which both the hierarchical structure of the objects and the order of

the di�erent components or elements of the objects is relevant { hence the name list-structure model.

4

hh
BOOKS,

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

BOOKS �! BOOK� MI �! Char

BOOK �! YEAR AUTHORS TITLE L-NAME �! String

BOOK �! YEAR AUTHORS VOL TITLE VOL �! TITLE NO.

YEAR �! Integer VOL �! NO.

AUTHORS �! A� NO. �! Integer

A �! F-NAME MI L-NAME NO. �! Char

A �! F-NAME L-NAME TITLE �! WORD�

F-NAME �! String WORD �! String

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ii

Figure 1: A book-collection list-structure scheme.

WORD �! String is an example of a leaf production. An aggregate production is used to

specify composite objects, e.g., BOOK �! YEAR AUTHORS TITLE. A list production is used to

specify objects that contain a list of similar objects, e.g., BOOKS �! BOOK�. Variable schema

can be easily represented since two or more productions can have the same left-hand side but

di�erent right-hand sides. Although our example does not contain a recursive de�nition, one

can see how recursive schema de�nitions can be easily represented. Also, since we are using

productions to describe a schema, a sub-schema de�nition does not have to be repeated every

time it is used in a schema declaration. For instance, in the example schema, TITLE appears

in the productions that describe the BOOK part of the schema, as well as in the productions

that describe the VOL part. However, one does not have to repeat the description (i.e., the

productions that describe TITLE) for every occurrence of TITLE in the right-hand side of a

production. Thus, all of the requirements that were outlined earlier, (except the requirement

that the model must allow for sets and bags), are satis�ed by the list-structure model.

The list-structure model is essentially the same as those of [6] and [8]. The main di�erence is

in the kinds of productions that are allowed. For instance, both [6] and [8] allow productions

that can have a combination of constants and variables on the right hand side, and [8] does

not allow list productions. These variations do not a�ect the type of information that can

be represented in these models. As we shall see, our choice of production types allows for

simplicity in the de�nitions of the operators of the query language.

The list-structure model can also be viewed as a variation of the Format model [11]. The ob-

jects that can be represented in this model also have hierarchical structures that correspond

5

to types that are built from three type constructors { aggregate, set and union { and a set of

base types. The union type construct allows several di�erent types to be associated with one

type which is in some sense equivalent to allowing di�erent productions in the list-structure

model to have the same left hand side. The main di�erence between the Format model and

the list-structure model, then is that the grouping construct in the former is a set-construct

and a list-construct in the latter.

BOOKS

BOOK
BOOK

YEAR AUTHORS

A

L-NAMEMIF-NAME

TITLE

The C Programming Language

WORD WORD WORD WORD

AUTHORS TITLE

WORD WORD

Fundamental Algorithms

Brian W Kernighan Dennis M Ritchie

Donald E Knuth

1978

1973

A

L-NAMEMIF-NAME

A

L-NAMEMIF-NAME

YEAR

Figure 2: A structure over the book-collection scheme.

6

BOOKS

BOOK BOOK BOOK

YEAR

AUTHORS

VOL

TITLE

YEAR

AUTHORS

VOL

TITLE

YEAR

AUTHORS

TITLE

Computers Typesetting Computer Algorithms

NO.TITLE

WORD

WORD WORD WORD

WORD

A

F-NAME MI

&

Donald E Knuth

The TeXbook

A

Computers Typesetting

WORD WORD WORD

&

F-NAME MI

Donald E Knuth

F-NAME

WORD WORD

B

1986
1986 1978

Sara Baase

NO.A
A

L-NAME

L-NAME

L-NAME

Figure 3: An alternate structure over the book-collection scheme.

7

3.2 Formal De�nitions of the Model

Let V be the universal set of all variables. Let � be the set of basic types, such as, Integer,

Real, etc., and for each type � 2 �, letDom(�) denote the set of all the elements or constants

in the domain of that type. Also, let T be the set of all the constants, i.e., T =
[
�2�

Dom(�).

The sets V;� and T are pairwise distinct.

De�nition 3.1 A production p is of the form A �! �, where A 2 V, and � is of one of the

following forms:

(i) � = B1:::Bk, k � 1, where each Bi 2 V, and the Bi's are distinct.

(ii) � = B�, where B 2 V.

(iii) � = c, where c 2 T .

(iv) � = � , where � 2 �. 2

If p is a production, then head(p) refers to the variable on the left hand side of the `�!'

in p and tail(p) refers to the right hand side. For example, if p = A �! B1:::Bk, then

head(p) = A and tail(p) = B1:::Bk. We use the symbol `2' to denote the occurrence of a

variable or constant or type in the tail of a production. For instance, `B occurs in tail(p)'

can be written as B 2 tail(p). If tail(p) is of the form B�, we say B 2 tail(p), and not

B� 2 tail(p). We use words or letters in upper case to denote variables.

De�nition 3.2 A list-structure scheme G, consists of a variable S, called the start symbol

of G, and a �nite set of productions P , where S = head(p) for some p 2 P if P is non-empty.

We denote such a scheme by the ordered pair [[S; P]]. var(G) denotes the set consisting of S

and all the variables that occur in the set of productions P . 2

A production p is called

(i) an aggregate production if tail(p) = B1:::Bk,

(ii) a list production if tail(p) = B�, and

(iii) a leaf production if tail(p) = b, where b 2 T or b 2 �.

In the scheme s, shown in Figure 4, the production S �! A B is an example of an aggregate

production, B �! D� is a list production and A �! a1 is a leaf production.

8

hh
S,
8>>>>>>>>><
>>>>>>>>>:

S �! A B; S �! A B C; A �! a1;

A �! a2; B �! D�; C �! A S;

C �! c1; C �! c2; D �! d1;

D �! d2; D �! E; D �! E F;

E �! e1; E �! e2; F �! f1; F �! f2;

9>>>>>>>>>=
>>>>>>>>>;
ii

Figure 4: The list-structure scheme s.

A production p is non-terminating in P if it is not a leaf production or a list production and

at least one of the variables in its tail, say A, is such that (a) there is no production in P

(other than p) whose head is A, or (b) every production whose head is A is non-terminating

in P � fpg. If the scheme s contained the productions A �! B C G and G �! H, then

both of these productions would be non-terminating (in the set of all the productions of the

scheme).

A variable A is reachable from a variable B in a set of productions P , if (a) A = B, or (b)

there is a path from B to A in P , i.e., if there is a sequence of productions p1; :::; pn in P such

that head(p1) = B, A 2 tail(pn), and head(pi+1) 2 tail(pi) 8i; 1 � i < n. A production p in

P is reachable from a variable B if head(p) is reachable from B. If the scheme s contained

the production H �! h1, it would be a production that is not reachable from the start

symbol S.

A production p is redundant in P , if it is a leaf production of the form A �! b, where b is a

constant, and P also contains the production A �! � , where � is a type and b 2 Dom(�).

A production p, of a scheme G = [[S; P]], is a useless production if it can never occur in a

structure over the scheme, i.e., if it is non-terminating in P , or if it is not reachable from

the start symbol S. A scheme G is said to be normalized if it has no useless or redundant

productions. The function normalize de�ned below, takes a scheme as input and produces a

normalized scheme. Note that for a normalized scheme G, normalize(G) = G. The schemes

in both Figure 4 and Figure 1 are normalized schemes.

Let G = [[S; P]]. The function normalize(G) �rst removes from P all non-terminating pro-

ductions and then all productions that are not reachable from the start symbol. It then

removes all redundant productions.

9

De�nition 3.3 Let G = [[S; P]] be a scheme. Then,

normalize(G) = G0, where G0 = [[S; P 0]] is determined as follows.

P 0 = P 00 � fp j (p 2 P 00) ^ (tail(p) 2 T)

^(9q 2 P 00 j (head(p) = head(q))^

(tail(q) 2 �) ^ (tail(p) 2 Dom(tail(q))))g; where;

P 00 = P 000 � fp j (p 2 P 000) ^ (reachable(head(p); S; P 000) = false)g

where; P 000 = P � fp j (p 2 P) ^ (non{terminating(p; P) = true)g

If G = [[S; P]] is a list-structure scheme and p is a production in P , then

non{terminating(p; P) = true; if (tail(p) = B1:::Bm)^

(9B 2 tail(p) j (8q 2 P � fpg (B 6= head(q))

_ (non{terminating(q; P � fpg) = true)));

= false; otherwise

If P is a set of productions and A and B are variables, then

reachable(A;B;P) = true; if (A = B)

_(9p 2 P j (A 2 tail(p)) ^ (B = head(p)))

_(9p 2 P j (B = head(p)) ^ ((9Bi 2 tail(p))

j (reachable(A;Bi; P � fpg) = true)))

= false; otherwise 2

Having de�ned list-structure schemes we are now ready to de�ne structures. A structure

over a list-structure scheme is a tree (a derivation tree in the usual grammar sense) and is

represented by a pair, where the �rst element denotes the root of the tree and the second its

subtrees.

De�nition 3.4 t is a �nite structure over a scheme G = [[S; P]], if

1. t = [], the empty structure over G,

2. t = [S; l], where S, the start symbol of G, is the root of the structure and l is a list of

subtrees, such that

(a) l = (t1; :::; tk); k � 1, and for some p 2 P , head(p) = S and tail(p) = B1:::Bk,

and each ti is a non-empty structure over Gi, where Gi = normalize([[Bi; P]]), or

10

(b) l = (t1; :::; tm), m � 0, and for some p 2 P , head(p) = S and tail(p) = B�, and

each ti is a non-empty structure over G0, where G0 = normalize([[B;P]]), or

3. t = [S; b], where S is the root of the structure and b is a constant, and for some p 2 P ,

head(p) = S and (i) tail(p) = b or (ii) tail(p) = � , where � 2 � and b 2 Dom(�).
2

S

A B

D Da1

d1 d2

1The structure x

S

A B C

DD

E E F

A S

A B

D D D

EE FE

f

a1

e1 e2 1

a2

a2

e2 e2 f2 e1
The structure x2

Figure 5: Example structures over the scheme s.

We will often refer to structures as trees. Figure 5 shows examples of structures over the

scheme s, in Figure 4. If t is a structure over G, and t = [A; l], then root(t) = A, and

subtrees(t) = l. If subtrees(t) = b, where b 2 T , or if subtrees(t) = (), then children(t) =

subtrees(t). Otherwise, children(t) = (root(t1); :::; root(tk)) where (t1; :::; tk) = subtrees(t).

If children(t) = (B1; :::; Bk), where the Bi's are distinct, then t[Bi] denotes the subtree of

t with root Bi. We also refer to the Bi's, in this case, as attributes of t. size(subtrees(t))

denotes the number of subtrees of t.

De�nition 3.5 A list-structure instance r is a pair ht;Gi, where t is a structure over the

scheme G. struct(r) refers to t, the �rst component of r, and scheme(r) refers to G, the

second component. 2

We will sometimes refer to the structure part of an instance as its value. For any scheme G,

the set of all the structures that can be de�ned over G is the same as that of normalize(G).

The proof is by induction on the number of productions in G and is very similar to the one

given in [10] and is hence omitted here. In the rest of this paper we will assume that all

structures are de�ned over normalized schemes.

11

4 An Algebra for the List-Structure Model

In this section we describe an algebra for the list-structure model. While the main purpose of

any query language is to retrieve and manipulate databases, there are often speci�c objectives

or criteria that in
uence the design of the language. For example, for some applications it

might be essential that the language be Turing expressive. For other applications, Turing

expressiveness might not be as important an objective as the ability to express a given class

of queries succinctly in the language. In Section 4.1, we describe the set of criteria that were

used in the overall design of the algebra for the list-structure model. Section 4.2 contains

a brief, informal description of the algebra, while Section 4.3 contains the detailed formal

description. In Section 5 we explain how the algebra meets the design criteria.

4.1 Criteria for a List-Structure Query Language

(i) The language should be well-suited for list-oriented applications.

A model that is designed to suit a speci�c class of applications is useful only when its

associated query language is also well-suited for those applications. Hence, the language

must provide list-oriented functions, such as searching and updating based on pattern

match and list-position, and ordering and sorting elements in a list.

(ii) The operators must be simple enough to understand and implement but powerful enough

to enable queries to be expressed succinctly.

The motivation for this should be fairly obvious. A language is more useful when the

syntax and semantics of its components are simple enough to be easily understandable

and implementable. On the other hand, if the operators of the language are too primitive,

expressions representing even the simplest queries can become long and complicated.

(iii) The number of basic operators required to express most reasonable queries must be kept to

a minimum.

A language consisting of a small set of basic operators is again easier to work with and

to implement. However, the set of operators must be fairly expressive to be able to

handle most queries. There is no agreement about what \fairly expressive" means and

some researchers view Turing expressiveness as the standard for expressiveness. In the

12

design of this algebra greater emphasis was placed on the simplicity and ease of use of

the language than on Turing expressiveness. The operators chosen for the algebra are

those that are needed in typical queries or that can (in conjunction with other operators)

be used to express operators that are not often used. For instance, we do not provide

binary operators like union, di�erence, intersection, and join since they can be expressed

in terms of other operators.

(iv) The language must satisfy the closure property. In other words, the type of the objects

returned by the operators must be the same as the type of the operands.

The fact that our language is an algebra implies that it satis�es the closure property. All

`objects' that are manipulated by the algebraic operators are list-structure instances. Each

operator takes one or two instances and returns an object which is again a list-structure

instance. This closure property makes it easier to compose queries since one is always

dealing with objects of a single type. It also increases the scope for query optimization

since the order of the operators can be changed (whenever possible).

(v) Except for operators that are designed speci�cally to change the scheme of an instance

depending upon its value, all other operators, when applied to an instance, must return an

instance whose scheme is independent of the value of the input instance.

If the scheme of the result of any operation depends only on the scheme of the input

instance, then users can compose queries consisting of several operators without having

to examine the scheme of the result of each individual operator (assuming that the scheme

of the input instance is known to the user). For example, suppose that ht;Gi is an instance

and that G contains the production, say p, where p = A �! BCD. Now let us suppose

that we want to delete the D-subtree from all the trees in t that correspond to the

production p and whose B-subtree has the value b1. Should the scheme of the result,

ht0;G0i, contain p? Now, t0 may or may not have trees that correspond to p. We could

decide if p should belong in G0 after examining t0. But suppose that we have a query

composed of two operators, where the �rst one is the Delete that we described above and

the second is an Insert that inserts a tree as a subtree in each tree that corresponds to

the production A �! BCD. If G0 didn't contain p, the second operation would be illegal.

Thus one would have to examine the scheme of the result of the �rst operation before

applying the second. On the other hand, if we decided to let G0 always contain p, the

13

second operation would be legal although it may not �nd any trees that correspond to p

in its input instance.

4.2 Informal Description of the Algebra

The algebra has a set of thirteen value-changing operators and a value-preserving operator.

The value-changing operators manipulate the value part, i.e., the structure, of instances. The

corresponding schemes of the instances may or may not be a�ected. The value-preserving

operator changes the scheme of an instance without a�ecting the value part of an instance.

The following is a listing of the operators.

Value-Changing Value-Preserving

Retrieve Delete Replace UnGroup Apply Change-Scheme

Find Substitute Reorder Number

Insert Rename Group Sort

Any query language must have a means of searching for data according to some given condi-

tion. In most languages the searching mechanism is built into operators that perform some

other action after the searching (such as, retrieving the results of the search, as in a selection

operator). In the list-structure model, since the concept of ordering is important, one can

expect queries that involve selecting, as well as inserting and deleting elements, depending

upon positions, patterns, and values of the elements. In other words, one can expect to have

to search for elements satisfying a given condition, not only before retrieving those elements,

but also before inserting or deleting. It would, hence, be convenient to have a separate

operator that looks, within an instance, for trees that satisfy a given condition and marks

those trees. The Find operator is used for searching and marking trees in an instance. Trees

that satisfy the search condition are marked by the introduction of a new node as the child

of the root. The Retrieve operator extracts trees that have a given root node. The result is

a tree whose subtrees are the trees that have been extracted.

Inserting and deleting elements in a tree are performed by the Insert and Delete operators.

These operators have some limited searching mechanism built into them, since one must be

able to specify the location where an element is to be inserted or the value of the elements

that are to be deleted. However, one might have to use the Find operator �rst for more

14

complicated searches. The Substitute operator can often be used to perform the action of

an Insert followed by a Delete.

The Rename operator is used for renaming nodes in a tree. It is often used to restrict the

application of other operators to trees that correspond only to a given production. It can

also be used to make the elements of a list production correspond to an aggregate production

and vice-versa. The Replace operator is used to add or remove internal nodes from a tree.

It is often used to remove internal nodes introduced by other operators, such as, Find. The

Reorder operator is used to rearrange trees that correspond to aggregate productions.

The operator Group is used to group elements of trees that correspond to list productions.

This is very similar to the Nest operation in the nested relational algebra. The UnGroup

operator does the opposite of the Group operator and is similar in function to the Unnest

operator of the nested algebra.

Although the Find operator can be used to locate elements in a given position, it is sometimes

necessary to be able to number the elements in a list, explicitly. The Number operator

numbers the subtrees of a list production (assuming that the subtrees all correspond to

aggregate productions) by adding an attribute to each subtree such that the value of the

attribute is the position of the subtree in the list. The Sort operator orders the elements of

a given list production. This operator is important for the kinds of applications supported

by this model, since the concept of ordering is crucial to these applications.

The Apply operator is used to perform actions on a local level. Any of the operators listed

so far (or any sequence of these) can be supplied as an argument to the Apply operator,

which will then `apply' this operator (or sequence) to trees that satisfy a given aggregate

production. The result of the application on each tree is stored as an additional attribute

within the same tree. This is similar to the extend (�) operator of [7].

The operators listed so far are the value-changing operators. Change{Scheme is a value-

preserving operator that is used to modify the scheme of an instance without a�ecting the

structure by adding new productions or deleting extraneous ones. For instance, if p1 is a

production in a scheme G and t is a structure over G, then if there are no trees in t that

correspond to p1, one can delete p1 from the set of productions in G without a�ecting t.

The value-preserving operator is not generally needed for querying, but serves as a data-

manipulation function that is used for schema modi�cation.

15

The list-structure algebra is a query language and not a data manipulation language in the

sense that if an operation Q is performed on an instance i, then the result of the operation

is a new instance i0 such that i0 = Q(i). In other words, the original instance i is not a�ected

as a result of the operation which means that updates cannot be made to the instances.

However, the language has been designed in such a way that it can be easily extended and

used as a data manipulation language as well. For instance, it should be possible to have a

system in which there is a query mode and an update mode (similar to the concept of modes

in the context of the GOOD model [2]). In the query mode the result of an operation Q on

an instance i will be a di�erent instance i0, whereas in the update mode, i will be replaced

by the result of Q(i).

Some of the operators of the algebra, like Insert, and Change{Scheme are not likely to be

used very often for querying purposes but they were still provided in the language so that

they may be used for updates. Many of the operators of the language, however, can be

expected to be used for both querying and updating. For example, the query \Display the

TITLE and AUTHORS of all the books in the instance d1, shown in Figure 2." would involve

the use of the Delete operator to project out the TITLE and AUTHORS attributes of the books.

The same operator can also be used to perform the update \Remove all books published before

1970 from d1". We would, of course, need to add additional data manipulation operators,

such as Create{Scheme and Create{Instance to make the language a full-
edged data-

manipulation language.

4.3 Description of the Algebra

This section provides a complete description of the algebra including the formal de�nitions

for the operators. In all of the de�nitions we will use the following notation. If ht;Gi is a

list-structure instance then (t1; :::; tk) are the subtrees of t, unless indicated otherwise. If

subtrees(t) 62 T , then each ti is a structure over Gi, where Gi = normalize([[root(ti); P]]).

Similarly, if ht1;G1i is an instance, then the t1i's denote the subtrees of t1 and the G1i's

denote the corresponding schemes. Also, if G is a scheme then S and P denote the start

symbol and the set of productions of G.

The symbols �; �; �; and �, denote list comparisons. For instance, l1 � l2 should be read

as `l1 is a sublist of l2'. For example, if l1 = (a1; :::; am) and l2 = (b1; :::; bn), then l1 � l2

16

if l2 has the sequence bk; :::; bk+m�1 such that 8ai, ai = bk+i�1. The symbols <; v; =, and

w also denote list comparisons. However, these operations check if the elements of one list

are contained in another in the same order. So, if l1 = (a1; :::; am) and l2 = (b1; :::; bn), then

l1 v l2 if (8ai (ai 2 l2)) and (8ai; aj (ai = bp) ^ (aj = bq) ^ (i < j)) (p < q)).

We �rst de�ne some functions that will be used in the de�nitions. These are not part of the

algebra and are used only to make the de�nitions of the operators succinct and readable.

In order to make these functions easily distinguishable from the operators of the algebra,

we will denote the names of the operators beginning with upper case letters, and function

names beginning with lower case letters. We also de�ne some data structures that are used

for pattern matching. Most de�nitions are written in the form shown below and we assume

that condition i is tested only if conditions 1 through i� 1 fail.

f(x) = y1; if condition 1;

= y2; if condition 2;
...

= yn; otherwise:

� The function concat takes zero or more lists as arguments and returns a single list which

is the concatenation of the lists. For instance, concat(l1; l2; l3), where l1 = (a; b; c), l2 = ()

and l3 = (c; d) is (a; b; c; c; d), concat() = () and concat((); l1) = l1. �

� The function append takes an element and a list as arguments and appends the element

to (the left of) the list, e.g., append(t; l), where t = a and l = (b; c; d) is (a; b; c; d). �

� has{leaf takes as input a non-empty structure and returns true or false depending upon

whether the child of the tree is a constant or not.

has{leaf(t) = true; if (subtrees(t) = b) ^ (b 2 T);

= false; otherwise: �

� The function substitute takes two variables and a production as arguments and replaces

all occurrences of the �rst variable in the production by the second variable. For example,

substitute(A;B;A�! AC) will return B �! BC. �

17

� The function satisfies determines if a structure corresponds to a production. If t is a

structure and p is a production, then satisfies(t; p) is de�ned as follows.

satisfies(t; p) = true; if (t 6= []) ^ (root(t) = head(p))^

(((has{leaf(t) = false)^

((tail(p) = B1:::Bk) ^ (children(t) = (B1; :::; Bk)))

_((tail(p) = B�) ^ (8Bi 2 children(t) (Bi = B))))

_((subtrees(t) = b) ^ (tail(p) = b))

_((subtrees(t) = b) ^ (tail(p) = �) ^ (b 2 Dom(�))))

= false; otherwise:

In the structure, x1, shown in Figure 5, satisfies(x1; p) is true for p = S �! A B, while

satisfies(x1; p) is false for all other productions. In some cases, a structure can correspond

to more than one production. If the scheme in Figure 4 contained the production B �! C�

in addition to all the other productions, then the tree [B; ()] would correspond to both

B �! D� and B �! C�. Section 6.3 contains some ideas on how the model may be

modi�ed to ensure that a structure always corresponds to a unique production. �

We now de�ne a struct-list over a variable and functions, str{list and compatible. A struct-

list over a variable A essentially denotes a structure tree over A without the interior node

labels. The function str{list returns the struct-list corresponding to a given structure. The

function compatible determines whether two variables can have the same struct-list or not.

De�nition 4.1 A struct-list over a variable A of scheme G is de�ned as follows. � is a

struct-list over A, if

1. � is a constant b and for some p 2 P , head(p) = A and either tail(p) = b or tail(p) = � ,

where � 2 �, and b 2 Dom(�), or

2. � = (�1; :::; �k), k � 1, and for some p 2 P , head(p) = A, tail(p) = B1:::Bk and each

�i is a struct-list over Bi, or

3. � = (�1; :::; �m), m � 0, and for some p 2 P , head(p) = A, tail(p) = B� and each �i is

a struct-list over B. 2

� The function str{list takes as input a non-empty structure and returns the struct-list

corresponding to that structure. For example, str{list(x1) = (a1; (d1; d2)) (x1 is shown in

Figure 5).

18

str{list(t) = subtrees(t); if has{leaf(t);

= (t01; :::; t
0

k); otherwise; where t
0

i = str{list(ti) and (t1; :::; tk) = subtrees(t):

�

� Two variables A and B are said to be compatible if it is possible to have the same struct-list

over both variables. The function compatible takes two variables and a set of productions

as input and returns true or false depending on whether the variables are compatible in the

set of productions or not.

compatible(A;B;P) = true; if 9p1; p2 2 P j (head(p1) = A) ^ (head(p2) = B)

^((tail(p1) = tail(p2))

_((tail(p1) 2 T) ^ (tail(p2) 2 �) ^ (tail(p1) 2 Dom(tail(p2))))

_((tail(p2) 2 T) ^ (tail(p1) 2 �) ^ (tail(p2) 2 Dom(tail(p1))))

_((tail(p1) = B1:::Bm) ^ (tail(p2) = C1:::Cm)

^(compatible(Bi; Ci; P � fp1; p2g);8i; 1 � i � m))

_((tail(p1) = C�) ^ (tail(p2) = D�)))

= false; otherwise: �

Note that A and B are compatible if they are the heads of two list productions, regardless

of whether the variables in the tails are compatible or not. This is because the empty list ()

can be a structure over both productions. The concept of a struct-list enables comparisons

between structures that do not take the labeling of the interior nodes into account. It would

also be useful to be able to ignore the entire structure altogether and examine only the leaf

nodes of a structure.

� The function leaves takes a non-empty structure as input and returns the list of all the

constants in the leaf nodes of the structure. For example, leaves(x1) = (a1; d1; d2).

leaves(t) = (subtrees(t)); if has{leaf(t)

= concat(t01; :::; t
0

k); otherwise; where t
0

i = leaves(ti): �

In comparisons involving the leaves of a structure any list of constants can be used in the

comparison operation (see De�nition 4.4). Note that unlike in the case of a struct-list we do

not have the concept of a leaf-list since determining if a list is a leaf-list over a variable can

be a time consuming operation.

19

Finally, we describe structure patterns and value patterns. These are used in operations that

involve pattern matching. We also de�ne two functions, match and matchlist that determine

when these patterns match a structure and a list of structures, respectively.

De�nition 4.2 Let G = [[S; P]] be a scheme. Then, � is a structure pattern over a variable

A of scheme G, if it is of one of the following forms.

1. � = [A; �], and for some p 2 P , head(p) = A.

2. � = [A;�], and for some p 2 P , head(p) = A, and tail(p) 2 T or tail(p) 2 �.

3. � = [A; b], and for some p 2 P , head(p) = A, and tail(p) = b or tail(p) = � , where

� 2 � and b 2 Dom(�).

4. � = [A; (�1; :::; �m)]; m � 1, and for some p 2 P , head(p) = A, tail(p) = B1:::Bk, and

(a) each �i is either a �, or a �3, or a structure pattern over some Bj 2 tail(p), and

(b) for any two consecutive �i, �i+1, they cannot both be �'s, and

(c) if �i = [Bp; lp]; �j = [Bq; lq], then i < j) p < q, i = j � 1) p = q � 1, and

(d) �1 = �, or �, or [B1; l1], and

(e) �m = �, or �, or [Bk; lk].

5. � = [A; (�1; :::; �m)]; m � 0, and for some p 2 P , head(p) = A, tail(p) = B�, and

(a) each �i is either a �, or a �, or a structure pattern over B, and

(b) for any two consecutive �i, �i+1, they cannot both be �'s.

� is a value pattern over a variable A if [A;�] is a structure pattern over A. 2

� The function match determines when a structure matches a given structure pattern. For

example,match(x2; �), (x2 is shown in Figure 5), returns true when � is any of the following

structure patterns.

1. [S; �] 2. [S; (�)] 3. [S; (�; [B; �]; �)] 4. [S; ([A; a1]; [B; �]; [C; ([A;�]; [S; �])])]

5. [S; (�;�; [C; �])] 6. [S; (�; [B; ([D; ([E; e1]; �)]; �)]; �)]

3The symbols � and � denote wildcards. The symbol � matches with none or any number of subtrees of

a structure, while � matches with exactly one subtree.

20

Let t be a structure over some G = [[S; P]] and let � = [A; l] be a structure pattern over some

variable A of G. Then,

match(t; �) = true; if ((t = []) ^ (A = S)) _ ((root(t) = A) ^ (l = �))

= true; if (root(t) = A) ^ (has{leaf(t)) ^ ((l = �) _ (subtrees(t) = l))

= true; if (root(t) = A) ^ (l 6= �) ^ (l 62 T) ^ (has{leaf(t) = false)

^(matchlist(subtrees(t); l) = true)

= false; otherwise:

Let G = [[S; P]] be a scheme and l1 = (t1; :::; tk) be a sublist of some list s, where for some

A 2 var(G), [A; s] is a structure over normalize([[A;P]]). Let l2 = (�1; :::; �m) be a sublist

of some list � where � is a value pattern over A.

matchlist(l1; l2) = true; if (l1 = l2) _ (l2 = (�))

= true; if (l1 6= ()) ^ (l2 6= ()) ^ (�1 6= �)

^((�1 = �) _ (match(t1; �1) = true))

^(matchlist(l01; l
0

2) = true);

where; l01 = (t2; :::; tk) and l02 = (�2; :::; �m)

= true; if (l1 6= ()) ^ (l2 6= ()) ^ (�1 = �)

^((�2 = �) _ (match(ti; �2) = true))

^(matchlist(l00i ; l
0

3) = true); for some ti 2 l1

where; 8j < i; ((�2 6= �) ^ (match(tj; �2) = false))

_(matchlist(l00j ; l
0

3) = false);

l00p = (tp+1; :::; tk); 1 � p � i; and l03 = (�3; :::; �m)

= false; otherwise �

We now give the complete description of the operators of the algebra. For each operator,

we �rst give an informal description of its operation and its input parameters. We then give

descriptive examples and �nally its formal de�nition.

4.3.1 Retrieve

Given variables A and B as parameters, Retrieve extracts from the input instance, trees

that have A as the root. The result is a tree with B as the root and the list of trees extracted

21

as its list of subtrees. The trees are extracted in depth-�rst left-to-right order.

Example 4.1 Consider the query \Retrieve the titles of all the books in d1" where d1 denotes

the instance whose structure is shown in Figure 2.

This query can be expressed as, Retrieve(TITLE,ANSWER)d1. The resulting structure has

ANSWER as the root node with the trees subtended by all the TITLE nodes in d1 as its subtrees,

as shown in Figure 6.

TITLE

The C Programming Language

WORD WORD WORD WORD

TITLE

WORD WORD

Fundamental Algorithms

ANSWER

Figure 6: The result of a Retrieve operation on the instance d1.

The same query when applied to the instance d2 shown in Figure 3 will give the result shown

in Figure 7. The result in this case contains not only the subtrees corresponding to the

TITLE nodes of the BOOK trees, but also those that correspond to the TITLE nodes of the

VOL subtrees. If we wanted to restrict the result to contain only the book-titles or only

the volume-titles, we can either rename or delete the TITLE nodes of the VOL trees before

performing the Retrieve operation.

TITLE TITLE TITLE

Computers Typesetting Computer Algorithms

TITLE

WORD

WORD WORD WORD

WORD

&

The TeXbook

Computers Typesetting

WORD WORD WORD

&

WORD WORD

ANSWER

Figure 7: The result of a Retrieve operation on the instance d2.

22

De�nition 4.3 Let ht;Gi be a list-structure instance, where G = [[S; P]], and let A and B

be variables such that A 2 var(G). Then,

Retrieve(A;B)ht;Gi = ht0;G 0i, where,

t0 = t; if (t = [])

= [B; ()]; if ((root(t) 6= A) ^ ((subtrees(t) = ()) _ (has{leaf(t))))

= [B; concat(l1; :::; lk)]; if (root(t) 6= A)

where; subtrees(t) = (t1; :::; tk); and

li = subtrees(struct(Retrieve(A;B)hti;Gii)); if (reachable(A; root(ti); P))

= (); otherwise

= [B; (t)]; otherwise;

G0 = normalize([[B;P [fB �! A�g]]): 2

4.3.2 Find

The Find operator is used for identifying trees or lists of subtrees, in an instance, that

satisfy certain conditions. We will �rst de�ne a condition and the meaning of evaluating a

condition, before describing the Find operator.

De�nition 4.4 c is a simple condition on a variable A of scheme G if for some p 2 P ,

head(p) = A and

(a) c = �, i.e., the empty condition, or

(b) c = (� �), and

1. � 2 f=; 6=;�;�;�;�g4 and � is a list (b1; :::; bn), n � 0, where each bi 2 T , or

2. � 2 f3; 63g and � is a structure pattern over some B 2 var(G), where for some

p 2 P , head(p) = A and B 2 tail(p), or

3. � 2 f�=; 6�=g and � is a struct-list over A, or

4. � 2 f�; 6�g and � is a value pattern over A, or

5. � 2 f<;�; >;�g and � is some constant b, where for some p 2 P , head(p) = A and

either (i) tail(p) = d, where d and b are of the same domain, or (ii) tail(p) = � ,

where � is a type and b 2 Dom(�).

4The comparison operators, �, �, etc., denote list comparisons, such as, sublist, and not the usual set

comparisons.

23

(c) c = (B�C), B 6= C, and for some p 2 P , head(p) = A, and B;C 2 tail(p), and

1. � 2 f=; 6=;�;�;�;�g, or

2. � 2 f�=; 6�=g and compatible(B;C; P), or

3. � 2 f�; 6�g and for some q1; q2 2 P , head(q1) = B, head(q2) = C, and (i)

tail(q1) = tail(q2), or (ii) tail(q1) 2 T , tail(q2) 2 � and tail(q1) 2 Dom(tail(q2)),

or vice-versa, or

4. � 2 f<;�; >;�g and for some q1; q2 2 P , head(q1) = B, head(q2) = C, and (i)

tail(q1) = tail(q2) = � , where � 2 �, or (ii) tail(q1) = b1 and tail(q2) = b2, b1 and

b2 are constants of the same domain, or (iii) tail(q1) 2 T and tail(q2) 2 �, and

tail(q1) 2 Dom(tail(q2)), or vice-versa.

c is a condition on variable A of scheme G, if

1. c is a simple condition on A.

2. c is of the form [Bjcj], where for some p 2 P , head(p) = A and Bj 2 tail(p) and cj is

a condition on Bj .

3. c is of the form 8[Bjcj], where for some p 2 P , head(p) = A and tail(p) = B�

j and cj

is a condition on Bj .

4. c = c1 ^ c2, or c = c1 _ c2, or c = :c1, where c1 and c2 are conditions on A.
2

We now give the meaning of evaluating a condition on a structure. If c is a condition on a

variable A of scheme G, and ht;Gi is a list-structure instance, (t 6= []), then

c(t) = true, if one of the following is true.

1. c is �.

2. c is (� �), and

1. � 2 f=; 6=;�;�;�;�g and leaves(t)�� = true.

2. � is 3, has{leaf(t) = false and match(ti; �) = true for some ti 2 subtrees(t).

3. � is 63 and has{leaf(t) = true or match(ti; �) = false for all ti 2 subtrees(t).

4. � is �= and str{list(t) = �.

5. � is 6�= and str{list(t) 6= �.

6. � is � and match(t; [root(t); �]) = true.

24

7. � is 6� and match(t; [root(t); �]) = false.

8. � 2 f<;�; >;�g, has{leaf(t) = true, and subtrees(t)�� = true.

3. c = (B�C), (B 2 children(t)), (C 2 children(t)), and

1. � 2 f=; 6=;�;�;�;�g and (leaves(t[B]) � leaves(t[C])) = true.

2. � is �=, and str{list(t[B]) = str{list(t[C]).

3. � is 6�=, and str{list(t[B]) 6= str{list(t[C]).

4. � is �, and subtrees(t[B]) = subtrees(t[C]).

5. � is 6�, and subtrees(t[B]) 6= subtrees(t[C]).

6. � 2 f<;�; >;�g, has{leaf(t[B]) = true, has{leaf(t[C]) = true, and

(subtrees(t[B]) � subtrees(t[C])) = true.

4. c is [Bjcj], has{leaf(t) = false and for some ti 2 subtrees(t); root(ti) = Bj and

cj(ti) = true.

5. c is 8[Bjcj], has{leaf(t) = false and for each ti 2 subtrees(t); root(ti) = Bj and

cj(ti) = true.

6. c = c1 ^ c2 and both c1(t) and c2(t) are true, or c = c1 _ c2 and either c1(t) or c2(t) is

true, or c = :c1 and c1(t) is not true.

We now describe the Find operator. Find has three parameters { a variable A, which is in

the schema of the instance, a search parameter c, and a variable B. Find selects trees that

have A as the root node and that satisfy the condition speci�ed by the search parameter.

The variable B (usually chosen so that it is not one of the variables of the scheme) is used

to mark the selected nodes. The search parameter, c, can be one of four di�erent forms and

Find has di�erent actions corresponding to each of the four cases.

1. c can be a condition on A. In this case Find searches for trees in the instance whose root

nodes are A's and that satisfy the condition c. In each tree ti that satis�es the search

condition, B is introduced as its (only) child and as the parent of its subtrees.

Example 4.2 Find all the books in d1 that were published in 1973.

The expression Find(BOOK, [YEAR (� 1973)], B)d1 will locate all the BOOK nodes that

have a YEAR node as a child, whose value (leaf-node) is 1973. Each BOOK tree that satis�es

25

this condition will be marked by the introduction of a B node as its child. We can then

perform a Retrieve(B,C) on the result of the previous expression to select out the marked

books. We list below other ways of expressing the Find part of the same query.

Find(BOOK, [YEAR (= (1973))], B)d1

Find(BOOK, (� ([YEAR, 1973],*)), B)d1

Find(BOOK, (3 [YEAR, 1973]), B)d1

Figure 8 shows the structure of the result of the above query.

BOOKS

BOOKBOOK

YEAR AUTHORS

A

L-NAMEMIF-NAME

TITLE

The C Programming Language

WORD WORD WORD WORD

AUTHORS TITLE

WORD WORD

Fundamental Algorithms

Brian W Kernighan Dennis M Ritchie Donald E Knuth

1978

1973

A

L-NAMEMIF-NAME

A

L-NAMEMIF-NAME

YEAR

B

Figure 8: The result of applying a Find operation.

2. c can be of the form (c1; <) or (c1; >), where c1 is a condition on A. Find looks for

trees whose children are all A's and for each such tree it marks either the left-most or

the right-most subtree that satis�es the condition c1, depending on whether the second

element in c is `<', or `>'.

26

Example 4.3 For each book in d1, �nd the last author.

Find(A, (�, >), B)d1.

As before, this must be followed by a Retrieve operation.

3. c can be a positive integer i, in which case Find looks for trees whose children are all A's

and marks the ith subtree by introducing B as its child and as the parent of its subtrees.

Example 4.4 Find all the books authored by two or more persons.

Find(BOOK, [AUTHORS (3 [A,([C,*])])], B)(Find(A, 2, C)d1)

The above expression will �rst look for trees that have all A nodes as children and then

mark the second subtree (if there are at least two subtrees) of such trees by introducing

C as the subtree's child. Next, trees that have BOOK as the root node and whose AUTHORS

attribute has an A subtree whose child is C, are marked by B. This must then be followed

by a Retrieve to extract the marked trees. The following is an alternate way of expressing

(the Find part) of the same query.

Find(BOOK, [AUTHORS (� ([A,*],[A,*],*))], B)d1.

4. c can be a value pattern of the form (�1; :::; �m), where each �i is a structure pattern on

A. Find searches the instance for trees whose children are all A's. In each such tree it

then searches, in left to right order, for lists of subtrees that match the pattern c. Each

such list is replaced by a tree whose root node is A and whose list of subtrees is the list

being replaced, but with the A nodes in the list renamed to B. This case is useful when

subtrees corresponding to some patterns have to be identi�ed in order to be deleted or

modi�ed, as illustrated by the following example.

Example 4.5 Let us suppose that we want to replace every occurrence of `Data Base' in

the titles of books and volumes in the instance d3, whose structure is shown in Figure 9(a),

with `Database'. We will need to identify this pattern in the TITLE trees in the instance.

The following expression, however, will not serve our purpose since it will mark those

TITLE trees that contain the pattern in their values, but not mark the pattern itself.

Find(TITLE, (� (*, [WORD, Data], [WORD, Base], *)), B)d3.

27

The expression shown below, on the other hand, will look for two consecutive WORD trees

that have `Data' and `Base' as their respective values, and will then mark both trees by

changing their root nodes to B, and replacing the two subtrees by a single tree that has

WORD as the root and the two trees as its subtrees.

Find(WORD, ([WORD, Data], [WORD, Base]), B)d3.

Figure 9(b) shows the structure of the result of the above query.

BOOKS

BOOK

AUTHORS TITLE

WORD WORD

A

L-NAMEF-NAME

YEAR

1981

Gio Wiederhold

Base DesignData

WORD

BOOKS

BOOK

AUTHORS TITLE

WORD

A

L-NAMEF-NAME

YEAR

Data

B B

Gio Wiederhold

Base

Design

WORD1981

(a) (b)

Figure 9: The result of a Find operation on patterns.

We now give the formal de�nition for the Find operator corresponding to each of the four

di�erent cases.

De�nition 4.5 Let ht;Gi be a list-structure instance. Let A and B be variables such that

A 2 var(G), then

Find(A; c;B)ht;Gi = ht0;G0i; where, t0 and G0 are as follows.

28

Case 1: c is a condition on A.

t0 = t; if (t = []) _ (((root(t) 6= A) _ (c(t) = false))

^((subtrees(t) = ()) _ (has{leaf(t))))5

= [root(t); ([B; subtrees(t)])]; if (root(t) = A) ^ (has{leaf(t))

^(c(t) = true)

= [root(t); ([B; (t01; :::; t
0

k)])]; if (root(t) = A) ^ (c(t) = true)

= [root(t); (t01; :::; t
0

k)]; otherwise;

where; t0i = struct(Find(A; c;B)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise:

Case 2: c is of the form (c1; <) or (c1; >), where c1 is a condition on A and for some production

p in P , tail(p) = A�.

t0 = t if (t = []) _ (subtrees(t) = ()) _ (has{leaf(t))

= [root(t); (t01; :::; t
0

k)]; if (9ti 2 subtrees(t) j root(ti) 6= A)

= [root(t); (t001; :::; t
00

k)]; otherwise; where;

t00i = t0i; if (c1(ti) = false)

_((c = (c1; <)) ^ (9tj j (j < i) ^ (c1(tj) = true)))

_((c = (c1; >)) ^ (9tj j (j > i) ^ (c1(tj) = true)))

= [root(ti); ([B; subtrees(t0i)])]; otherwise

where; t0i = struct(Find(A; c;B)hti;Gii); if

(9p 2 P j (tail(p) = A�) ^ (reachable(head(p); root(ti); P)))

= ti; otherwise:

5In the de�nitions of all the operators, in a disjunctive condition of the form (t = [])_� � �, we assume that

the test for the empty structure is done �rst, and if the test succeeds the rest of the clauses are not tested.

29

Case 3: c is an integer, c > 0, and for some p in P , tail(p) = A�.

t0 = t if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (9ti 2 subtrees(t) j root(ti) 6= A) _ (c > k)

= [root(t); (t01; :::; t
0

c�1; t
00

c ; t
0

c+1; :::; t
0

k)]; otherwise;

where; t00c = [root(tc); ([B; subtrees(t0c)])]

where; t0i = struct(Find(A; c;B)hti;Gii); if

(9p 2 P j (tail(p) = A�) ^ (reachable(head(p); root(ti); P)))

= ti; otherwise:

Case 4: c is of the form (�1; :::; �m), m � 1, where each �i is a structure pattern on A, and

for some p 2 P , tail(p) = A�.

t0 = t if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (9ti 2 subtrees(t) j root(ti) 6= A) _ (k < m);

= [root(t); l]; otherwise; where;

l = append(t00; l01); if matchlist((t1; :::; tm); c) = true; where

t00 = [A; (t001; :::; t
00

m)]; where

t00i = [B; subtrees(t0i)];

l01 = subtrees(struct(Find(A; c;B)h[root(t); (tm+1; :::; tk)];Gi))

= append(t01; l
0

2); if matchlist((t1; :::; tm); c) = false; where

l02 = subtrees(struct(Find(A; c;B)h[root(t); (t2; :::; tk)];Gi))

where; t0i = struct(Find(A; c;B)hti;Gii); if

(9p 2 P j (tail(p) = A�) ^ (reachable(head(p); root(ti); P)))

= ti; otherwise

We have given the de�nitions for the structure part of the result of the Find operator, i.e.,

the de�nition for t0, where Find(A; c;B)ht;Gi = ht0;G0i. We now give the de�nition for the

scheme part of the result, i.e., G0, for all four cases.

G0 = normalize([[S; P [P 0 [P 00]]); where;

P 0 = fA �! Bg; for Cases 1; 2; and 3

= fA �! B�g; for Case 4; and

P 00 = fp j (head(p) = B) ^ (9p1 2 P j (tail(p) = tail(p1)) ^ (head(p1) = A))g: 2

30

We give a few more examples to illustrate the use of the Find operator. In each example we

give only the part of the expression corresponding to the Find part, i.e., the marking part

of the query.

Example 4.6 Find all the books that do not have the word `Database' in the book-title.

Find(BOOK, [TITLE 8[WORD (6= (Database))]], NON{DB)d1

Example 4.7 Find all the books that do not have the word `Database' in either the book-title

or the volume-title.

Find(BOOK, [TITLE 8[WORD (6= (Database))]]

^ ((63 [VOL,([TITLE,*],*)])

_ [VOL, [TITLE 8[WORD (6= (Database))]]]), NON{DB)d1

Example 4.8 Find all the books written by two or more authors, where one of the authors

is `Dennis C. Ritchie'.

Find(BOOK, [AUTHORS (� (-,-,*))

^ [A (= (Dennis C Ritchie))]], B)d1

Example 4.9 Find all the books written by two or more authors, where the second author

is `Dennis C. Ritchie'. We list several possible ways of expressing the Find part of this

query.

1. Find(BOOK, [AUTHORS, (�

(-, [A,([F{NAME, Dennis],[MI,C],[L{NAME,Ritchie])],*))], B)d1.

2. Find(BOOK, [AUTHORS [A, [C, (= (Dennis C Ritchie))]]], B)

(Find(A, 2, C)d1).

3. Find(BOOK, [AUTHORS (� (-,[A,([C,*])],*))], B)

(Find(A, (= (Dennis C Ritchie)), C)d1).

31

4.3.3 Insert

The Insert operator takes two instances as input and inserts the second in the �rst. The

structure of the second instance is added, as a subtree, to trees in the �rst instance that

either correspond to aggregate productions, thereby adding a new attribute, or to trees that

correspond to list productions. Insert has two parameters { a variable A and an insert

pattern over A { which determine where the tree is inserted. The variable A speci�es the

trees in the �rst instance in which the second instance is to be inserted, while the insert

pattern speci�es the position amongst the subtrees where it is to be inserted. An insert

pattern is de�ned as follows:

De�nition 4.6 Let G = [[S; P]] be a scheme and let A 2 var(G) be such that for some

production p 2 P , head(p) = A and tail(p) = B� or tail(p) = B1:::Bk. Also, let P be such

that for any two productions p and q in P , if head(p) = head(q) =A, and tail(p) = B� and

tail(q) = B1:::Bm, then B 6= Bi, for each Bi 2 tail(q). Then, � is an insert pattern on A if

for some p 2 P , head(p) = A, p is either an aggregate or a list production and

1. � = (�;�), or � = (�; �) and for every pair of productions p1; p2 in P , if head(p1) =

head(p2) = A, then both p1 and p2 are aggregate productions, or they are both list

productions, or either p1 or p2, or both, are leaf productions, or

2. � = (�1; �2), and

(a) �1 = � and �2 is a structure pattern over some variable B 2 tail(p), or

(b) �2 = � and �1 is a structure pattern over some variable B 2 tail(p), or

(c) �1 and �2 are structure patterns over some B where tail(p) = B�, or

(d) �1 is a structure pattern over some variable Bi and �2 is a structure pattern over

some variable Bi+1, where Bi and Bi+1 occur consecutively in tail(p).

If � is an insert pattern on A and for some p 2 P , head(p) = A and � and p satisfy one of

the conditions above then we say that � corresponds to p. 2

Let G1 = [[S1; P1]] and G2 = [[S2; P2]] be two schemes and let ht1;G1i and ht2;G2i be two

list-structure instances. Let A be a variable in var(G1) such that A is the head of some

non-leaf production in P1 and let � be an insert pattern over A. Also, if � corresponds to

a list production p, then S2 2 tail(p) and if � corresponds to an aggregate production p,

then S2 62 tail(p). Then, Insert(A;�)(ht1;G1i; ht2;G2i) inserts the structure t2 in t1. The

positions in t1 where t2 is inserted are determined by the insert pattern as follows.

32

1. If � = (�;�) or � = (�; �), then P1 contains at least one aggregate production with A as

the root or exactly one list production with A as the root (but not both)6. For every tree

in t1, whose root is A and whose subtree is not a leaf, t2 is inserted as the left-most subtree

or as the right-most subtree depending on whether � is (�; �) or (�;�), respectively.

Example 4.10 Let P be the set of productions in the book-collection-scheme (Figure 1).

Let d4 represent the book instance whose structure, shown in Figure 10, corresponds to

the scheme normalize([[BOOK;P]]) and let us suppose that we want to insert d4 in the

instance d1.

Insert(BOOKS, (-,*))(d1,d4).

As a result of the above operation, d4 will be inserted as the left-most subtree of the BOOKS

tree in d1.

BOOK

AUTHORS TITLE

WORDA

L-NAMEF-NAME

Niklaus Wirth

Programming in Modula-2

WORD WORD

Figure 10: A BOOK instance.

2. If � = (�1; �2), then for every tree in t1 that has A as the root, t2 is inserted between

every pair of adjacent subtrees si, si+1 that match the insert pattern. If �1 = �, it looks

for a match with �2 alone and t2 is inserted before it. If �2 = �, it is inserted after the

subtree that matches �1. If � corresponds to a list production then several subtrees (or

pairs of subtrees) could satisfy the insert pattern. Again, by de�nition, � can correspond

to exactly one list production or to several aggregate productions (but not both).

Example 4.11 Let p{info represent the following list-structure instance.

h[PUBLISHER, Addison{Wesley], [[PUBLISHER, fPUBLISHER �! Stringg]]i.

6The Find operator and the Rename and Replace operators, which are described in Section 4.3.6 and

4.3.7 can be used to make the scheme of an instance satisfy this requirement.

33

Insert the above publisher information for the book, in instance d1, whose book-title is

`Fundamental Algorithms' and insert this information to the right of the YEAR node.

Insert(B, ([YEAR, *],*))

((Find(BOOK, [TITLE, (= (Fundamental Algorithms))], B)d1), p{info)

Figure 11 shows the result of the above query. In Section 4.3.7, we will show how the

extra nodes introduced by the Find operator, such as the B node in this example, can be

removed by means of the Replace operator.

BOOKS

BOOKBOOK

YEAR AUTHORS

A

L-NAMEMIF-NAME

TITLE

The C Programming Language

WORD WORD WORD WORD

AUTHORS TITLE

WORD WORD

Fundamental Algorithms

Brian W Kernighan Dennis M Ritchie

Donald E Knuth

1978

1973

A

L-NAMEMIF-NAME

A

L-NAMEMIF-NAME

YEAR PUBLISHER

Addison-Wesley

B

Figure 11: The result of an Insert operation.

De�nition 4.7 Insert(A;�)(ht1;G1i; ht2;G2i) = ht0;G0i, where t0 and G0 are de�ned as

follows:

34

Case 1: � corresponds to an aggregate production p where head(p) = A.

t0 = t1; if (t1 = []) _ (t2 = []) _ (has{leaf(t1)) _ (subtrees(t1) = ())

= [root(t1); (t
0

11; :::; t
0

1k; t2)]; if (root(t1) = A) ^ (� = (�;�))

= [root(t1); (t2; t011; :::; t
0

1k)]; if (root(t1) = A) ^ (� = (�; �))

= [root(t1); (t011; :::; t
0

1m�1; t2; t
0

1m; :::; t
0

1k)]; if (root(t1) = A)

^(� = (�; �2)) ^ (match(t1m; �2) = true)

= [root(t1); (t
0

11; :::; t
0

1m; t2; t
0

1m+1; :::; t
0

1k)]; if (root(t1) = A)

^(((� = (�1; �)) ^ (match(t1m; �1) = true))

_((� = (�1; �2)) ^ (match(t1m; �1) = true) ^ (match(t1m+1; �2) = true)))

= [root(t1); (t011; :::; t
0

1k)]; otherwise;

where, subtrees(t1) = (t11; :::; t1k), and

t01i = struct(Insert(A;�)(ht1i;G1ii; ht2;G2i)); if (reachable(A; root(t1i); P))

= t1i; otherwise:

G0 = normalize([[S1; P1 [P2 [P3]]); where

P1 and P2 are the sets of productions of G1 and G2; respectively; and

P3 = fp1 j (head(p1) = A) ^ (tail(p1) = B1:::BmS2Bm+1:::Bk)^

((9p 2 P1) ^ (head(p) = A) ^ (tail(p) = B1:::BmBm+1:::Bk)^

(� corresponds to p))g;

if ((�1 6= �) ^ (�1 6= �) ^ (root(�1) = Bm; m > 0))7

_((�2 6= �) ^ (�2 6= �) ^ (root(�2) = Bm+1; m � 0))

= fp1 j (head(p1) = A) ^ (tail(p1) = S2B1:::Bm)

^((9p 2 P1) ^ (head(p) = A) ^ (tail(p) = B1:::Bm))g; if (� = (�; �))

= fp1 j (head(p1) = A) ^ (tail(p1) = B1:::BmS2)

^((9p 2 P1) ^ (head(p) = A) ^ (tail(p) = B1:::Bm))g; if (� = (�;�))

7For a structure pattern �1 = [B1; l1], root(�1) = B1.

35

Case 2: � corresponds to a list production p, where head(p) = A.

t0 = t1; if (t1 = []) _ (has{leaf(t1)) _ (t2 = [])_

((subtrees(t1) = ()) ^ ((root(t1) 6= A) _ ((� 6= (�;�)) ^ (� 6= (�; �)))))

= [root(t1); (t2; t011; :::; t
0

1k)]; if (root(t1) = A) ^ (� = (�; �))

= [root(t1); (t011; :::; t
0

1k; t2)]; if (root(t1) = A) ^ (� = (�;�))

= [root(t1); concat(l01; :::; l
0

k)]; if (root(t1) = A)^

(8t1i 2 subtrees(t1)(((�1 6= �) ^ (root(t1i) = root(�1)))

_((�2 6= �) ^ (root(t1i) = root(�2)))))

where; l0i = (t2; t01i); if (� = (�; �2)) ^ (match(t1i; �2) = true)

= (t01i; t2); if (� = (�1; �2)) ^ (match(t1i; �1) = true)

^(match(t1(i+1); �2) = true); (1 � i < k)

= (t01i); if (� = (�1; �2)) for i = k

= (t01i; t2); if (� = (�1; �)) ^ (match(t1i; �1) = true)

= (t01i); otherwise

= [root(t1); (t
0

11; :::; t
0

1k)]; otherwise;

where subtrees(t1) = (t11; :::; t1k); and;

t01i = struct(Insert(A;�)(ht1i;G1ii; ht2;G2i)); if (reachable(A; root(t1i); P))

= t1i; otherwise:

G0 = normalize([[S1; P1 [P2]]): 2

4.3.4 Delete

The Delete operator �nds trees that have a given variable as the root, and deletes from each

such tree, subtrees, determined by a `delete pattern'. Subtrees can be deleted either from

trees that correspond to an aggregate production or to a list production. Deleting subtrees

from aggregate trees is similar to the projection operator in the relational algebra.

De�nition 4.8 Let G = [[S; P]] be a scheme and let A 2 var(G) be such that for some

production p 2 P , head(p) = A and tail(p) = B� or tail(p) = B1:::Bk. Then � is a delete

pattern over A if for some p 2 P , head(p) = A, and

1. tail(p) = B1:::Bk, k > 1, and

(a) � = (� �1) or � = (6� �1), where �1 is a structure pattern over some Bi 2 tail(p),

36

or

(b) � = (62 (C1; :::; Cm)), where (i) for some Ci 2 (C1; :::; Cm), Ci 2 tail(p), and

(ii) there is a variable B 2 tail(p) such that B 62 (C1; :::; Cm), and (iii) for each

Ci 2 (C1; :::; Cm), there is some aggregate production q such that Ci 2 tail(q) and

head(q) = A and there is a variable D 2 tail(q) such that D 62 (C1; :::; Cm), or

2. tail(p) = B�, � = (�1; �2; �3), �2 = (�21; :::; �2m), m � 1, where each �2i is either a `�'

or a structure pattern over B, at least one of the �02is is not a � and �1 and �3 are

either `�' or structure patterns over B.

If � and p satisfy one of the above two conditions we say that � corresponds to p. 2

Let ht;Gi be a list-structure instance. Let A be a variable in var(G) and � a delete pattern

over A. Then Delete(A;�)ht;Gi removes trees within t as described below.

1. � corresponds to an aggregate production.

(a) If � = (� �1), then Delete(A;�)ht;Gi removes, from each tree in t that has A as the

root, the subtree that matches �1. If � = (6� �1), the subtree whose root is the same as

root(�1) and that does not match �1 is deleted. The tree from which a subtree is deleted

must have at least two subtrees.

Example 4.12 Remove the VOL attribute from all books in d1.

Delete(BOOK, (� [VOL,*]))d1.

(b) If � = (62 (C1; :::; Cm)), then from each tree that has A as the root and at least one

of the Ci's as a child, all subtrees whose root nodes are not in the list (C1; :::; Cm) are

deleted.

Example 4.13 Delete all of the attributes except AUTHORS and TITLE from the BOOK trees

in d1.

Delete(BOOK, (62 (AUTHORS, TITLE)))d1.

37

2. � corresponds to a list production.

If � = (�1; �2; �3), then from each tree in t that has A as the root, Delete(A;�)ht;Gi

removes lists of subtrees where each list matches �2 and whose left sibling matches �1, (if

�1 6= �), and whose right sibling matches �3, (if �3 6= �).

Example 4.14 Delete the word `Fundamental' in the title `Fundamental

Algorithms', in d1.

Delete(TITLE, (*,([WORD,Fundamental]),[WORD, Algorithms]))d1.

De�nition 4.9 Delete(A;�)ht;Gi = ht0;G0i, where, t0 and G0 are de�ned as follows:

Case 1: � corresponds to an aggregate production. � is of the form (� �1) where � 2 f�; 6�g

or � is of the form (62 (C1; :::; Cm)).

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); l]; if (root(t) = A) ^ (size(subtrees(t))� 2)

^(8ti; tj 2 subtrees(t) (ti 6= tj)) where;

l = (t01; :::t
0

m�1; t
0

m+1; :::; t
0

k);

if ((� = (� �1)) ^ (match(tm; �1) = true))

_((� = (6� �1)) ^ (root(tm) = root(�m)) ^ (match(tm; �1) = false))

= concat(l1; :::; lk); if (� = (62 (C1; :::; Cm))

^(9ti 2 subtrees(t) j (root(ti) 2 (C1; :::; Cm)))

where; li = (); if (root(ti) 62 (C1; :::; Cm))

= (t0i); otherwise;

= (t01; :::; t
0

k); otherwise;

= [root(t); (t01; :::; t
0

k)]; otherwise

where; t0i = struct(Delete(A;�)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise:

38

Case 2: � corresponds to a list production p where head(p) = A and � = (�1; �2; �3). Let

length(�2) = m.

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p) = false);

= [root(t); l]; otherwise; where

l = append(t01; l1) if (�1 6= �)^

(match(t1; �1) = true) ^ (matchlist((t2; :::; tm+1); �2) = true)

^((match(tm+2; �3) = true) _ (�3 = �))

= l1 if (�1 = �) ^ (matchlist((t1; :::; tm); �2) = true)^

((match(tm+1; �3) = true) _ (�3 = �))

= append(t01; l2); otherwise;

where; l1 = subtrees(struct(Delete(A;�)h[root(t); (ts; :::; tk)];Gi));

where; s = m+ 2; if �1 6= �; s = m+ 1; if �1 = �; and

l2 = subtrees(struct(Delete(A;�)h[root(t); (t2; :::; tk)];Gi));

where; t0i = struct(Delete(A;�)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise

We now give the de�nition for G0 (for both cases).

G0 = normalize([[S; P 0]]); where;

P 0 = P; if (� corresponds to p) ^ (head(p) = A) ^ (tail(p) = B�);

= P [P1 � P2; otherwise; where;

P1 = fp1 j (head(p1) = A) ^ (9p 2 P) ^ (head(p) = A)

^(� corresponds to p)

^ ((((� = (� �1)) _ (� = (6� �1))) ^ (tail(p) = B1:::Bm:::Bk)

^(root(�1) = Bm) ^ (tail(p1) = B1:::Bm�1Bm+1:::Bk))

_((� = (62 (C1; :::; Cm))) ^ (tail(p1) v tail(p))^

(8C 2 tail(p) ((C 2 (C1; :::; Cm)) (C 2 tail(p1)))

^(C 62 (C1; :::; Cm)) (C 62 tail(p1)))))))g;

P2 = f g; if (� = (� �1)) _ (� = (6� �1));

= fp j (p 2 P) ^ (head(p) = A) ^ (� corresponds to p)g;

if (� = (62 (C1; :::; Cm))): 2

39

4.3.5 Substitute

The Substitute operator,8 allows trees in an instance to be replaced by another tree. Al-

though this can, in most cases, be done in terms of Finds, Inserts and Deletes, it is useful

to have an operator that allows changes to be made to an instance in a single step.

Let ht1;G1i and ht2;G2i be two instances. Let � be a structure pattern over someB 2 var(G1)

and let root(t2) = B. Let � be either � or a variable A 2 var(G1) such that for some p 2 P1,

head(p) = A and B 2 tail(p). Then, Substitute(�; �)(ht1;G1i; ht2;G2i) looks for trees in t1

that match with � and replaces them with t2. Further, if � is a variable A, then each tree

being replaced must be a subtree of a tree with A as the root.

Example 4.15 Replace all occurrences of `Data Base' in the TITLE trees in the instance

d3 (Figure 9(a)) with `Database'.

Substitute(TITLE,[WORD,([B,*],[B,*])])

((Find(WORD, ([WORD,Data], [WORD,Base]), B)d3),

h[WORD,Database],[[WORD, fWORD �! Stringg]]i).

In this example, since WORD subtrees occur only in TITLE trees, we could have expressed

the same query by replacing the variable TITLE (the �rst argument of Substitute) by a *.

Also, in this example a list of subtrees is being replaced by a single WORD tree. If the query

involved replacing a list of subtrees with another list of subtrees the expression would be

slightly more complex involving the Replace operator.

Example 4.16 Change the book-title `Fundamental Algorithms', in the instance d1, to the

string `The Art of Computer Programming'.

Let G2 represent the scheme [[TITLE, fTITLE �! Stringg]]

Substitute(BOOK, [TITLE,([WORD,Fundamental],[WORD,Algorithms])])(d1,

h[TITLE,`The Art Of Computer Programming'9], G2i).

8not to be confused with the function substitute

9The quotes are given only to indicate to the reader that the value of the TITLE node is a string.

40

De�nition 4.10 Substitute(�; �)(ht1;G1i; ht2;G2i) = ht0;G0i, where

t0 = []; if (t1 = []) ^ (t2 = [])

= t1; if (t2 = []) ^ (((� = �) ^ (match(t1; �) = false)) _ (� 6= �))

= t1; if (t1 = []) ^ (((S1 6= S2) ^ (� = �)) _ (� 6= �))

= t2; if (� = �) ^ (match(t1; �) = true)

= t1; if (((match(t1; �) = false) ^ (� = �)) _ (� 6= �))

^((has{leaf(t1)) _ (subtrees(t1) = ()))

= [root(t1); (t0011; :::; t
00

1k)]; otherwise;

where; t001i = t01i; if (� = �) _ ((� 6= �)^

((match(t1i; �) = false) _ (root(t1) 6= �)))

= t2; otherwise

where; t01i = struct(Substitute(�; �)(ht1i;G1ii; ht2;G2i));

if ((� 6= �) ^ (reachable(�; root(t1i); P)))

_((� = �) ^ (reachable(B; root(t1i); P)))

= t1i; otherwise
G0 = normalize([[S1; P1 [P2]]) 2

4.3.6 Rename

This operator renames non-leaf nodes in an instance. There are several di�erent cases for

this operator. In the most general case, all occurrences of a given node are renamed. In the

other cases the renaming of nodes is restricted to nodes that occur in trees that correspond

to a given production. While the Rename operator is useful by itself, i.e., for the main

purpose of changing the names of nodes, Rename often serves a more useful function of

restricting the application of operators to trees that correspond to only some productions.

For example, suppose that an instance has the productions A �! BC and A �! BCD and

that we want to retrieve all the B trees from trees that correspond to the �rst production.

We can use the Rename operator to change the B nodes of trees that correspond to the

second production to, say E, perform the Retrieve operation and then rename the E nodes

back to B.

Rename has three parameters and has di�erent actions corresponding to the types of the

parameters as described below. Let ht;Gi be a list-structure instance and let X, Y and p be

the three parameters. Then Rename(X;Y; p)ht;Gi renames nodes in t as follows:

41

1. X = A and Y = B where A and B are variables, A 2 var(G), and

(a) p= �, and there are no productions in P that contain both A and B in the right hand

side. Rename replaces every A node in t by B; or

(b) p = C �! A� and p 2 P . In each tree that corresponds to p, the children of the tree

are renamed to B; or

(c) p = C �! A1:::Ak, p 2 P , A 2 tail(p), and B 62 tail(p). In each tree that corresponds

to p, the child with label A is renamed to B; or

(d) p = C �! �, for some q 2 P , head(q) = C and A 2 tail(q), and both A and B do

not occur in the tail of any production whose head is C. In every tree that has C as

the root, any child nodes that have A as the label are renamed to B. This case is a

generalization of the previous two cases.

Example 4.17 Rename the variable A to AUTHOR in the instance d1.

Rename(A,AUTHOR,*)d1.

The above example corresponds to Case 1(a), the most general case of Rename where

all occurrences of a variable are renamed. The remaining Rename cases allow renaming

to be restricted to nodes of trees corresponding to speci�c productions. Cases 1(b) and

1(c) are useful when the same variable occurs in the tail of several productions and the

variable is to be renamed only in trees corresponding to one of these productions. Case

1(d) is useful when the renaming is to be restricted to trees that have a speci�c root node.

The following examples illustrate this.

Example 4.18 Rename the TITLE nodes corresponding to all the VOL subtrees in d2 to

VOL-TITLE.

Rename(TITLE, VOL-TITLE, VOL �! TITLE NO.)d2

Example 4.19 Replace all occurrences of `Data Base' in the titles of the BOOK trees in

d3 with `Database'.

This query is a variation of the query in Example 4.15, where the replacement is to take

place only in those TITLE trees that are subtrees of BOOK trees. We can rename the TITLE

42

nodes of the VOL trees to VOL-TITLE, as in the previous example, and then rename the

WORD nodes in VOL-TITLE trees to V-WORD as follows.

Rename(WORD, V-WORD, VOL-TITLE �! WORD�).

We could then apply the expression in Example 4.15 and then Rename VOL-TITLE and

V-WORD nodes back to their original names.

The next two Rename cases are useful when trees corresponding to a list production are

to be renamed to correspond to an aggregate production and vice-versa.

2. X = B, Y = (B1; :::; Bm), the Bi's are distinct, and p 2 P where p = A �! B�. Rename

looks for trees that correspond to p and that have exactly m children. The children of

each such tree are renamed according to Y .

3. X = (B1; :::; Bm), Y = B, and p 2 P where p = A �! B1:::Bm. Rename �nds trees that

correspond to p and in each tree renames all of its children to B.

Example 4.20 Rename the �rst and second A nodes in trees, in d1, that correspond to the

production AUTHOR �! A�, and that have exactly two A subtrees to AUTHOR1 and AUTHOR2,

respectively.

Rename(A,(AUTHOR1, AUTHOR2),AUTHORS �! A�)d1.

Trees that have less than or more than two A subtrees are unchanged by the above oper-

ation. Figure 12 shows the result of this operation.

De�nition 4.11 Rename(X;Y; p)ht;Gi = ht0;G0i, where t0 and G0 are de�ned as follows.

Case 1: X = A and Y = B.

Case 1(a): p = �.

t0 = t; if (t = []) _ ((root(t) 6= A) ^ ((has{leaf(t)) _ (subtrees(t) = ())))

= [B; subtrees(t)]; if (root(t) = A) ^ (has{leaf(t))

= [root(t); (t01; :::; t
0

k)]; if (root(t) 6= A)

= [B; (t01; :::; t
0

k)]; otherwise;

43

BOOKS

BOOK
BOOK

YEAR AUTHORS

L-NAMEMIF-NAME

TITLE

The C Programming Language

WORD WORD WORD WORD

AUTHORS TITLE

WORD WORD

Fundamental Algorithms

Brian W Kernighan Dennis M Ritchie

Donald E Knuth

1978

1973

L-NAMEMIF-NAME

A

L-NAMEMIF-NAME

YEAR

AUTHOR1 AUTHOR2

Figure 12: The result of a Rename operation.

where; t0i = struct(Rename(A;B; p)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise:

G0 = normalize([[S0; P 0]]);

where; P 0 = fq j (9p1 2 P) ^ (q = substitute(A;B; p1))g

S0 = S; if S 6= A

= B; if S = A

Cases 1(b), 1(c) and 1(d): p = C �! A�, p = C �! A1:::Ak, or p = C �! �.

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (root(t) 6= C) _ ((p 6= C �! �) ^ (satisfies(t; p) = false));

= [root(t); (t001; :::; t
00

k)]; otherwise;

where; t00i = [B; subtrees(t0i)]; if (root(ti) = A)

= t0i; otherwise

44

where; t0i = struct(Rename(A;B; p)hti;Gii); if (reachable(C; root(ti); P))

= ti; otherwise:

G0 = normalize([[S; P 0]]); where; P 0 = P � P1 [P2 [P3; where;

P1 = fp1 j (p1 2 P) ^ (((p 6= C �! �) ^ (p1 = p))

_((p = C �! �) ^ (head(p1) = C) ^ (A 2 tail(p1))))g

P2 = fp1 j (9q 2 P) ^ (((p 6= C �! �) ^ (p = q))

_((p = C �! �) ^ (head(q) = C))) ^ (head(p1) = C)

^(tail(p1) = tail(substitute(A;B; q)))g

P3 = fp1 j (9q 2 P) ^ (head(q) = A) ^ (head(p1) = B)

^(tail(p1) = tail(q)

if ((A 6= C) _ ((A = C) ^ (((p = C �! �) ^ (C 62 tail(q)))

_((p 6= C �! �) ^ (q 6= p)))))

= tail(substitute(A;B; q)); otherwise:) g

Case 2: X = B, Y = (B1; :::; Bm) and p = A �! B�.

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p) = false) _ (k 6= m)

= [root(t); (s01; :::; s
0

m)]; otherwise; where; s
0

i = [Bi; subtrees(t0i)]

where; t0i = struct(Rename(X;Y; p)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise:

G0 = normalize([[S; P [fA �! B1:::Bmg [P 0 [P 00]]);

where; P 0 = fp1 j (9q 2 P) ^ (tail(p1) = tail(q))

^(head(p1) 2 (B1; :::; Bm)) ^ (head(q) = B)g

and P 00 = fp1 j (head(p1) 2 (B1; :::; Bm))

^(tail(p1) = (B1; :::; Bm))g; if A = B

= f g; otherwise:

Case 3: X = (B1; :::; Bm), Y = B and p = A �! B1:::Bm.

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p) = false);

= [root(t); (s01; :::; s
0

m)]; otherwise; where; s
0

i = [B; subtrees(t0i)]

45

where; t0i = struct(Rename(X;Y; p)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise

G0 = normalize([[S; P [fA �! B�g � fpg [P1]])

where; P1 = fp1 j (9q 2 P) ^ (head(q) 2 (B1; :::; Bm)) ^ (head(p1) = B)

^(tail(p1) = tail(q); if (q 6= p)

= B�; otherwise)g: 2

4.3.7 Replace

The Replace operator is used for changing the structure of instances by adding or deleting

interior nodes. However, theReplace operator, likeRename is more often used in conjunction

with other operators than by itself. For example, in queries that involve the Find operation,

Replace is used in getting rid of the interior nodes introduced by the Find operation. Also,

like the Rename operator, Replace can be used to restrict the application of operators to

trees that correspond to speci�c productions. The operators Rename and Replace change

the structure of instances without a�ecting the `information content' of the instances. They

can hence be considered restructuring operators. Other types of restructuring operators were

considered, in [11] and [1], in the context of the Format model.

Replace has two parameters and has di�erent actions depending upon the types of these

parameters. The �rst parameter p1 is a production and the second parameter p2 is either a

production or is of the form C �! �. If ht;Gi is an instance and p1 and p2 are of one of the

di�erent forms given below, then Replace(p1; p2)ht;Gi will look for trees in t that correspond

to p1 and change them as described below.

1. This Replace case is used to introduce interior nodes in an instance. Both p1 and p2 are

productions, p1 2 P , head(p2) 62 tail(p1), and

(a) p1 = A �! B�, and p2 = C �! B or p2 = C �! B�.

i. If p2 = C �! B, then for each tree s in t that corresponds to p1, each of its

subtrees si is replaced by a tree whose root is C and whose (only) subtree is si.

ii. If p2 = C �! B�, then for each tree s that corresponds to p1, its list of subtrees

is replaced by a single tree whose root node is C and whose subtrees are the

subtrees of s.

46

(b) p1 = A �! �, where � is a constant or a type, and p2 = C �! �. The subtree of

each tree s that corresponds to p1 is replaced by a tree whose root node is C and

whose only subtree is the subtree of s.

(c) p1 = A �! C1:::Ck, p2 = Cl �! Cm:::Cn, (Cm; :::; Cn) � (C1; :::; Ck), and Cl 62

tail(p1). For each tree s that corresponds to p1, the part of its list of subtrees

corresponding to nodes Cm; :::; Cn is replaced by a tree whose root node is Cl and

whose subtrees are the subtrees being replaced.

Example 4.21 Change the MI attribute of A trees, in d1, to have two attributes, so that

the �rst attribute is the initial and the second a `.'.

Insert(M,([MI,*],*))(Replace(A �! F{NAME MI L{NAME, M �! MI)d1,

h[DOT, .],[[DOT, fDOT �! .g]]i).

This example corresponds to Case 1(c). The MI part of A trees are changed so that each

MI tree is replaced by a tree labeled M, that has two subtrees, labeled MI and DOT, where

the �rst subtree is the original MI tree and the second has a `.' as its value. Figure 13

shows the result of this query.

2. This replace case, removes interior nodes and is particularly useful in getting rid of interior

nodes introduced by other operators such as Find. p1 2 P , and p2 is either a production in

P or of the form C �! � where for some p 2 P , head(p) = C. Also, head(p2) 2 tail(p1),

and p1 and p2 must be of one of the following forms.

(a) p1; p2 2 P and

i. p1 = A �! C� and p2 = C �! B�, or

ii. p1 = A �! C� and p2 = C �! B, or

iii. p1 = A �! C and p2 = C �! B�, or

iv. p1 = A �! C, p2 = C �! b, where b is a constant or a type.

Each tree s, in t, that corresponds to p1 and whose subtrees all correspond to p2, is

replaced by a tree with root node A and whose subtrees are (for cases i and ii, the

concatenation of) the subtrees of the subtrees of s.

For cases i and ii if C = B then for each tree s in t that satis�es p1, those subtrees

that correspond to p2 are replaced by their lists of subtrees. In other words, it is not

necessary that all the subtrees of s correspond to p2.

47

BOOKS

BOOK
BOOK

YEAR AUTHORS

A

L-NAME

MI

F-NAME

TITLE

The C Programming Language

WORD WORD WORD WORD

AUTHORS TITLE

WORD WORD

Fundamental Algorithms

Brian

W

Kernighan Dennis

M

Ritchie

Donald

E

Knuth

1978

1973

A

L-NAME

MI

F-NAME

A

L-NAME

MI

F-NAME

YEAR

M

DOT

.

M

DOT

.

M

DOT

.

Figure 13: The result of a query involving the application of a Replace operation.

(b) p1; p2 2 P , p1 = A �! C1:::Cm, p2 = Cl �! D1:::Dn, Cl 2 tail(p1), and (8Di 2

tail(p2), Cj 2 tail(p1), (j 6= l)) (Di 6= Cj)). For each tree s that corresponds to p1,

if the subtree of s with root node Cl corresponds to p2, then that subtree is replaced

by its list of subtrees.

(c) p1 is a production in P of the form A �! C, and p2 = C �! �. This case is a

generalization of Cases 2(a) and (b) when p1 is of the form A �! C. The subtree of

each tree that corresponds to p1 is replaced by its (the subtree's) subtrees. This case

is useful for getting rid of the extra interior nodes introduced by the Find command.

Although this can be done in terms of the previous Replace cases, it is convenient to

be able to get rid of the interior nodes with a single operation when there are several

productions that have C as the head.

48

Example 4.22 Change the YEAR attribute of the book `The C Programming Language'

to 1974.

Replace(BOOK �! B, B �! *)

(Substitute(B,[YEAR,*])

(Find(BOOK, [TITLE (= (The C Programming Language))], B)d1,

h[YEAR,1974],[[YEAR, fYEAR �! Integerg]]i)).

The purpose of the Replace operation in this example was to eliminate the B nodes

that were introduced as a result of the Find operation. Since, there are two di�erent

productions, (i.e., B �! YEAR AUTHORS TITLE and B �! YEAR AUTHORS VOL TITLE),

that B trees could correspond to, the more general form of Replace, i.e., Case 2(c) was

used.

De�nition 4.12 Replace(p1; p2)ht;Gi = ht0;G0i, where, t0 and G0 are de�ned as follows:

Case 1: head(p2) 62 tail(p1)

Case 1(a) and 1(b):

t0 = t; if (t = []) _ ((has{leaf(t)) _ (subtrees(t) = ())) ^ (satisfies(t; p1) = false)

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false);

= [root(t); ([C; subtrees(t)])]; if (satisfies(t; p1)) ^ (has{leaf(t))

= [root(t); (s01; :::; s
0

k)]; if (satisfies(t; p1)) ^ (p2 = C �! B);

where s0i = [C; (t0i)]

= [root(t); ([C; (t01; :::; t
0

k)])]; otherwise;

where; t0i = struct(Replace(p1; p2)hti;Gii); if (reachable(head(p1); root(ti); P))

= ti; otherwise:

G0 = normalize([[S; P � fp1g [fp2g [P 0]]); where;

P 0 = fA �! C�g; if p2 = C �! B;

= fA �! Cg; otherwise:

49

Case 1(c):

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false);

= [root(t); (t001; :::; t
00

k�n+m)]; otherwise; where

t00i = t0i; if i < m

= t0i+n�m; if i > m

= [Cl; (t0m; :::; t
0

n)]; otherwise;

where; t0i = struct(Replace(p1; p2)hti;Gii); if (reachable(head(p1); root(ti); P))

= ti; otherwise:

G0 = normalize([[S; P � fp1g [fp2; A �! C1:::Cm�1ClCn+1:::Ckg]])

Case 2: head(p2) 2 tail(p1)

Case 2(a):

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false) _

((satisfies(t; p1)) ^ (head(p2) 62 tail(p2))

^(9ti 2 subtrees(t) j (satisfies(ti; p2) = false)))

= [root(t); subtrees(t1)]; if (tail(p2) 2 T) _ (tail(p2) 2 �)

= [root(t); concat(l1; :::; lk)]; otherwise; where;

li = (t0i); if (satisfies(ti; p2) = false)

= subtrees(t0i); otherwise:

where; t0i = struct(Replace(p1; p2)hti;Gii); if (reachable(head(p1); root(ti); P))

= ti; otherwise:

50

Case 2(b):

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false) _ (satisfies(tl; p2) = false)

= [root(t); (s01; :::; s
0

m+n�1)]; otherwise; where

s0i = t0i; if (i < l)

= t0l;i�l+1; if (i � l) ^ (i � l + n� 1)

= t0i�n+1; if (i > l + n� 1)

where; t0i = struct(Replace(p1; p2)hti;Gii); if (reachable(head(p1); root(ti); P))

= ti; otherwise:

G0 for both Cases 2(a) and 2(b) is determined as follows:

G0 = normalize([[S; P � P1 � P2 [P3]]); where;

P1 = fp1g; if (8q 2 P ((head(q) = head(p2))) (q = p2)))

= fg; otherwise;

P2 = fp2g; if (p1 6= A �! C�) ^ (head(p2) 6= S)

^(8q 2 P (head(p2) 2 tail(q))) (q = p1));

= fg; otherwise;

P3 = fA �! B�g; for Case 2a(ii);

= fA �! C1:::Cl�1D1:::DnCl+1:::Cmg; for Case 2(b);

= fA �! tail(p2)g; for all remaining cases:

Case 2(c):

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false)

= [root(t); subtrees(t01)]; otherwise;

where; t01 = struct(Replace(p1; p2)ht1;G1i); if (reachable(head(p1); root(t1); P))

= t1; otherwise:

G0 = normalize([[S; P 0]]); where;

P 0 = P � fp1g [fq j (9p 2 P) ^ (head(p) = head(p2))

^(head(q) = head(p1)) ^ (tail(q) = tail(p))g: 2

51

4.3.8 Reorder

This operator looks for trees corresponding to a given aggregate production and rearranges

the subtrees in a di�erent order to correspond to a new aggregate production.

Example 4.23 Rearrange the attributes of A nodes in d1 so that L-NAME is the �rst attribute

and F-NAME is the second.

Reorder(A �! F{NAME MI L{NAME, A �! L{NAME F{NAME MI)

(Reorder(A �! F{NAME L{NAME, A �! L{NAME F{NAME)d1).

De�nition 4.13 Let ht;Gi be a list-structure instance. Let p1 and p2 be productions such

that p1 2 P , p1 = A �! B1:::Bm, and p2 = A �! C1:::Cm, where each Ci = Bj for some j.

Then, Reorder(p1; p2)ht;Gi = ht0;G0i; where,

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p1) = false);

= [root(t); (s01; :::; s
0

m)]; otherwise; where

s0i = t0j; where j is such that Ci = Bj ;

and t0i = struct(Reorder(p1; p2)hti;Gii); if (reachable(head(p1); root(ti); P))

= ti; otherwise:

G0 = normalize([[S; P � fp1g [fp2g]])
2

4.3.9 Group

The Group operator groups subtrees of trees corresponding to a given list production, such

that the subtrees in a group agree on certain attributes. This, of course, implies that the

subtrees of the trees corresponding to the list production must correspond to aggregate

productions. This is very similar to the `nest' operator provided in query languages for the

nested relational model.

Let ht;Gi be a list-structure instance. Let A �! B� be a production in G and letD 2 tail(p),

(D 6= A and D 6= B), for some aggregate production p such that head(p) = B. Also, suppose

that for any production q in G, if head(q) = B, then q is an aggregate production. Let E

be a variable not in var(G). Then Group(A �! B�;D;E)ht;Gi does the following. For

52

each tree in t that satis�es the production A �! B�, its subtrees are formed into groups

that agree on the values of all of their attributes except D. Each group is represented by a

single tree with root node B, and with the same list of children as those of the trees in the

group, and with the subtrees determined as follows. The subtrees that correspond to non-D

attributes are the same as those of the trees in that group. The subtree corresponding to

D has as its list of subtrees the D subtrees of all the trees in the group, but with the root

nodes labeled E instead of D.

Example 4.24 Group all volumes of each book in d2 so that the VOL attribute of each book is

replaced by a VOLUMES attribute that has a subtree labeled VOL for each volume in the group.

The attributes of each VOL subtree must include the attributes of the original VOL subtree and

the YEAR attribute of the BOOK subtree.

Group(BOOKS �! BOOK�, VOLUMES, VOL)

(Replace(VOLUMES �! YEAR VOL, VOL �! NO.)

(Replace(VOLUMES �! YEAR VOL, VOL �! TITLE NO.)

(Replace(BOOK �! AUTHORS YEAR VOL TITLE, VOLUMES �! YEAR VOL)

(Reorder(BOOK �! YEAR AUTHORS VOL TITLE,

BOOK �! AUTHORS YEAR VOL TITLE)d2)))).

Figure 14 shows the result of the above query.

De�nition 4.14 Group(A �! B�;D;E)ht;Gi = ht0;G0i, where,

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; A�! B�) = false);

= [root(t); append(t001; l2)]; otherwise; where;

t001 = t01; if (D 62 children(t1))

= [root(t1); (t0011; :::; t
00

1m)]; otherwise; where; (t11; :::; t1m) = subtrees(t1);

and t001j = t01j; if root(t1j) 6= D

= [D; concat(l01; :::; l
0

k)]; otherwise; where;

l0i = (); if (children(ti) 6= children(t1))

_(9C 2 children(ti) j (C 6= D) ^ (ti[C] 6= t1[C]))

= ([E; subtrees(ti[D]0)]); otherwise;

and l2 = subtrees(struct(Group(A �! B�;D;E)h[root(t); l3];Gi)); where;

53

BOOKS

BOOK BOOK

YEAR

AUTHORS

VOL

YEAR

VOL

TITLE

YEAR

AUTHORS

TITLE

Computer Algorithms

NO.TITLE

WORD WORD

A

F-NAME MI

Donald E Knuth

The TeXbook

A

Computers Typesetting

WORD WORD WORD

&

F-NAME

WORD WORD

B1986 1986

1978

Sara Baase

NO.

A
L-NAME

L-NAMEVOLUMES

Figure 14: The result of restructuring an instance using the Group operator.

l3 = (t2; :::; tk); if (D 62 children(t1));

= subtrees(t)� fti 2 subtrees(t) j (children(ti) = children(t1))

^(8C 2 children(ti) ((C = D) _ (ti[C] = t1[C])))g10; otherwise:

where; t0i = struct(Group(A �! B�;D;E)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise

G0 = [[S; P [fD �! E�g � P1 [P2]]; where

P1 = fp 2 P j (head(p) = D)g; if (D 6= S) ^ (B 6= S)

^(8q 2 P (B 2 tail(q))) (q = A �! B�))

^(8q 2 P (D 2 tail(q))) (head(q) = B));

= fg; otherwise;

P2 = fp j (9q 2 P) ^ (head(q) = D) ^ (head(p) = E) ^ (tail(p) = tail(q))g: 2

10The result of this di�erence operation between a list and a set is the list obtained by removing from the

�rst argument, (i.e., the list), those elements that also appear in the second (i.e., the set).

54

4.3.10 UnGroup

UnGroup does the opposite of the Group operator by splitting the group represented by

each subtree of a tree corresponding to a given list production into several trees.

Let ht;Gi be a list-structure instance. LetA �! B� be a production in G, and letD 2 tail(p),

(D 6= A), for some aggregate production p such that head(p) = B. Let there be exactly one

production, say q, in P such that head(q) = D and let tail(q) = E� for some E 2 var(G).

Also, suppose that for any production q in G, if head(q) = B, then q is an aggregate

production. Then, UnGroup(A �! B�;D �! E�)ht;Gi looks for trees corresponding to

A �! B�. For each such tree s, it breaks up each subtree si into several trees (si1; :::; sin) so

that all the sij 's have the same list of children as si. The subtrees of each sij corresponding

to the non-D attributes are the same as those of si. The subtree corresponding to D has as

its subtrees, the subtrees of the jth subtree of the D node of si.

PerformingUnGroup(A �! B�;D �! E�) on an instance, immediately after aGroup(A �!

B�;D;E), will give back for each tree corresponding to A �! B�, all of its original subtrees,

but not necessarily in the original order.

Example 4.25 Restructure the instance d2 by grouping together all the books authored by

each author.

Rename(B,BOOKS,*)(Group(BIBLIO �! ITEM�,B,BOOK)

(Rename(BOOK,ITEM,*)(Rename(BOOKS,BIBLIO,*)

(Replace(BOOK �! AUT YEAR VOL TITLE, B �! YEAR VOL TITLE)

(Replace(BOOK �! AUT YEAR TITLE, B �! YEAR TITLE)

(Reorder(BOOK �! YEAR AUT VOL TITLE, BOOK �! AUT YEAR VOL TITLE)

(Reorder(BOOK �! YEAR AUT TITLE, BOOK �! AUT YEAR TITLE)

(Rename(AUTHORS,AUT,*)(UnGroup(BOOKS �! BOOK�, AUTHORS �! A�)d2))))))))).

Figure 15 shows the result of the above query.

De�nition 4.15 UnGroup(A �! B�;D �! E�)ht;Gi = ht0;G0i where,

t0 = t if (t = []) _ (has{leaf(t))_ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)] if (satisfies(t; A �! B�) = false);

55

BOOKS

BOOK BOOK BOOK

YEAR VOL TITLE YEAR VOL TITLE YEAR TITLE

Computers Typesetting Computer Algorithms

NO.TITLE

WORD

WORD WORD WORD

WORD

F-NAME MI

&

Donald E Knuth

The TeXbook

A

Computers Typesetting

WORD WORD WORD

&

F-NAME

WORD WORD

B

1986 1986 1978

Sara Baase

NO.

L-NAME
L-NAME

AUT

BIBLIO

ITEM ITEM

AUT BOOKS

Figure 15: An example of restructuring with the Group and UnGroup operators.

= [root(t); concat(l1; l2)]; otherwise; where;

l1 = (t01); if D 62 children(t1)

= (s1; :::; sn); otherwise; where; n = size(subtrees(t1[D]));

and; si = [root(t1); (t00i1; :::; t
00

im)]; where;

subtrees(t1) = (t11; :::; t1m);

and; t00ij = t01j; if root(t1j) 6= D;

= [D; subtrees(t01ji)]; otherwise;

where; subtrees(t1j) = (t1j1; :::; t1jn)

and l2 = subtrees(struct(UnGroup(A �! B�;D �! E�)l2
0))

where; l02 = h[root(t); (t2; :::; tk)];Gi:

t0i = struct(UnGroup(A �! B�;D �! E�)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise

56

G0 = normalize([[S; P � P1 [P2]]); where;

P1 = fD �! E�g; if (B 6= S) ^ (D 6= S)

^(8q 2 P (B 2 tail(q))) (q = A �! B�))

^(8q 2 P (D 2 tail(q))) (B = head(q)))

= f g; otherwise;

P2 = fq j (9p 2 P) ^ (head(p) = E) ^ (head(q) = D)

^(tail(q) = tail(p))g: 2

4.3.11 Number

This operator �nds trees corresponding to a given list production and numbers the subtrees.

The left most subtree is numbered `1', the next one is numbered `2' and so on. This operator

is useful, in combination with the Sort operator, in preserving the order of the elements in

a list of subtrees, while performing operations, like Group and UnGroup, that can change

their order. Section 5.7 contains a few examples that illustrate this. Number is also useful

as a counting operator as shown in Example 4.26.

Let ht;Gi be a list-structure instance. Let A �! B� be a production in P and suppose that

there are no list or leaf productions in P with B as the head. Let D be a variable, not in

var(G). Then, for each tree corresponding to A �! B�, Number(A �! B�;D) numbers

its subtrees by adding to each subtree, a tree with root node D and leaf node i, where the

number i corresponds to the ith subtree.

Example 4.26 Find the number of books in d1.

Replace(ANSWER �! B, B �! *)(Rename(B,(B),ANSWER �! B�)

(Retrieve(B,ANSWER)(Find(D, (�, >), B)

(Insert(A,(-,*))((Retrieve(D,A)(Number(BOOKS �! BOOK�,D)d1)),

h[D,0],[[D,fD �! Integerg]]i))))).

The resulting structure will have ANSWER as the root node and an integer representing the

number of books as the leaf.

57

De�nition 4.16 Number(A �! B�;D)ht;Gi = ht0;G0i, where

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t001; :::; t
00

k)]; if (satisfies(t; A�! B�)); where;

t00i = [root(ti); (t0i1; :::; t
0

im; [D; i])]; where; (ti1; :::; tim) = subtrees(ti);

= [root(t); (t01; :::; t
0

k)]; otherwise;

where; t0i = struct(Number(A �! B�;D)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise

G0 = normalize([[S; P � P1 [P2]]); where

P1 = fq 2 P j (head(q) = B)g; if (B 6= S)

^(8p 2 P (B 2 tail(p))) (p = A �! B�));

= fg; otherwise;

P2 = fD �! Integerg [fp j (9q 2 P) ^ (head(q) = head(p) = B)

^(tail(p) = tail(q)D)g 2

4.3.12 Sort

This operator sorts the subtrees of trees corresponding to a given list production. The

subtrees must all correspond to aggregate productions and must all have a common attribute

on which the sorting is to be done. We �rst de�ne a sort speci�cation.

De�nition 4.17 Let G = [[S; P]] be a list-structure scheme and B be a variable in var(G).

Then, L is a sort speci�cation on B, if (i) L is C, or C(L0), where C is a variable in var(G) and

L0 is a sort speci�cation on C, and (ii) for some aggregate production p in P , head(p) = B

and C 2 tail(p), and (iii) for every production q in P if head(q) = B then C 2 tail(q) and q

is an aggregate production and (iv) if L is C, there can only be leaf productions with C as

the head and if there are two or more leaf productions with C as the head, then their tails

must all be constants of the same domain. 2

A sort speci�cation is essentially an attribute or a path leading to an attribute on which the

sorting is to be done.

Example 4.27 Sort the books in d1 by the YEAR attribute.

58

This query can be expressed as follows:

Sort(BOOKS �! BOOK�,YEAR)d1.

Let us suppose that the book instances had an attribute called DATE which is the date when

the book was published, and DATE was an aggregate of two attributes MM and YY. If we wanted

to sort the books according to the date published we could do the following.

Sort(BOOKS �! BOOK�,DATE(YY))(Sort(BOOK �! BOOK�,DATE(MM))d1).

De�nition 4.18 Let ht;Gi be an instance and let A �! B� be a production in P and L a

sort speci�cation on B. Then,

Sort(A �! B�; L)ht;Gi = ht0;Gi, where

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; A�! B�) = false)

= [root(t); append(t0q; l)]; otherwise; where;

q = smallest(subtrees(t);L); and

l = subtrees(struct(Sort(A�! B�; L)h[root(t); (s1; :::; sk�1)];Gi));

where; si = ti; if i < q

= ti+1; otherwise;

where; t0i = struct(Sort(A �! B�; L)hti;Gii); if (reachable(A; root(ti); P))

= ti; otherwise:

Let G = [[S; P]] be a list-structure scheme and let (t1; :::; tk) be a list where each ti is a

non-empty structure over G0, where G0 = normalize([[B;P]]), for some B 2 var(G). Let L

be a sort speci�cation on B. Then,

smallest((t1; :::; tk); L) = q j (8bj (bq � bj)) ^ (8bp ((p < q)) (bp > bq))); if L = C;

where; each bi = subtrees(ti[C]);

= smallest((c1; :::; ck); L0); if L = C(L0);

where; each ci = ti[C] 2

59

4.3.13 Apply

All of the operators de�ned so far perform global actions on instances. The operators examine

the instance at every level, checking if the tree being examined corresponds to a production

or to some other pattern, and then perform some action on it. In some cases it might be

convenient to have the operators perform locally. For instance, consider Figure 16 which

contains information about a PARTS and SUBPARTS database. Suppose that we want to

retrieve, for each part, the part numbers (PNO's) of (recursively) all of its subparts and add

this list as an extra attribute to each PART tree. The result we expect is shown in Figure 17.

However, performing a Retrieve(PNO,B) will give us all of the PNO's in the instance and not

the desired result. What is needed is an operator which can apply any other operator (or a

composition of several operators) to speci�c trees in the structure of an instance, and which

can, for each such tree, store the result of the operation within the same tree.

PARTS

SUBPARTS

PART PART

PNO PNAME SUBPARTSPNO PNAME

SUBPARTSPNO

PART

PNAME

PART

SUBPARTSPNO PNAME

1001 1012

1425

1267

Widget

Rivet

Handle

Bolt

Figure 16: The PARTS list-structure.

The operators de�ned so far all have one or more parameters, (e.g., Sort has two param-

eters { a production and a sort speci�cation), and all except Insert and Substitute take

60

one instance as input. We will refer to unary operators (operators that take only one in-

stance as input) with values substituted for their parameters as parameterized unary opera-

tors. For example, Find(BOOK, [YEAR (= (1990))], B) is a parameterized unary operator

over the book-collection scheme. In the case of Insert(Substitute), we de�ne the function

Insert{f(Substitute{f) that has the same parameters as Insert(Substitute), but that takes

only one instance as input and returns a function that takes a single instance as input.

(Insert{f(A;�)ht2;G2i)ht1;G1i = Insert(A;�)(ht1;G1i; ht2;G2i).

Insert{f(A;�)ht2;G2i returns a function which when applied to ht1;G1i returns the same re-

sult as the one that would have been obtained by applying Insert(A;�) to (ht1;G1i; ht2;G2i).

Similarly, (Substitute{f(�; �)ht2;G2i)ht1;G1i = Substitute(�; �)(ht1;G1i; ht2;G2i).

De�nition 4.19 A parameterized operator � over a scheme G, is either a parameterized

unary operator over G or is of the form Insert{f(A;�)ht2;G2i or of the form

Substitute{f(�; �)ht2;G2i such that for any instance ht;Gi, �ht;Gi is a valid operation. 2

Note that for any parameterized operator �, if �ht;Gi=ht0;G0i, then G0 is independent of t.

So, we can write �(G) = G0.

De�nition 4.20 A parameterized expression, f over a scheme G is a list of parameterized

operators (f1; :::; fn), n � 1, such that (i) fn is a parameterized operator over G and (ii)

each fi�1, 1 < i � n, is a parameterized operator over fi(fi+1(:::(fn(G)):::)). 2

De�nition 4.21 Let ht;Gi be an instance and let p = A �! B1:::Bk be a production

in G and let B be a variable not in tail(p). Let f = (f1; :::; fn) be a parameterized ex-

pression over G0 where G0=normalize([[A;P]]). Let eval(f; ht;Gi) denote the expression

(f1(f2(:::(fnht;Gi):::))). Then,

Apply(A �! B1:::Bk; B; f)ht;Gi = ht0;G0i, where t0 and G0 are as follows:

t0 = t; if (t = []) _ (has{leaf(t)) _ (subtrees(t) = ())

_((satisfies(t; p) = true) ^ (struct(eval(f; ht;Gi)) = []))

= [root(t); (t01; :::; t
0

k)]; if (satisfies(t; p) = false)

= [root(t); (t01; :::; t
0

k; [B; (struct(eval(f; ht;Gi)))])]; otherwise;

where; t0i = struct(Apply(A �! B1:::Bk; B; f)hti;Gii); if (reachable(A; root(ti); P));

= ti; otherwise:

61

G0 = normalize([[S; P [Pf [P1]]);

where; [[Sf ; Pf]] = f1(:::(fn(normalize([[A;P]]))):::);

and P1 = fB �! Sf ; A �! B1:::BmBg: 2

Example 4.28 The query corresponding to the PARTS-SUBPARTS example can be expressed

as follows.

Delete(SPNO,(*,([PNO,([D,*])]),*))(Find(PNO, (�, <), D)

(Replace(SPNO �! S,S �! �)

(Apply(PART �! PNO PNAME SUBPARTS,SPNO,(Retrieve(PNO,S)))d2)))

The last two operations (Find and Delete) are necessary since the Apply operation will

retrieve, for each PART, not only the PNO's of the SUBPARTS but also that of the PART

itself.

PARTS

SUBPARTS

PART PART

PNO PNAME SUBPARTSPNO PNAME

SUBPARTSPNO

PART

PNAME

PART

SUBPARTSPNO PNAME

1001 1012

1425

1267

Widget

Rivet

Handle

Bolt

SPNO SPNO

SPNO

SPNO

PNO PNO

1425 1267

1267

PNO

Figure 17: An example of the Apply operation.

62

4.3.14 Change-Scheme

Change{Scheme is a value preserving operator which is used to modify the schema of an

instance by adding new productions and deleting extraneous ones (extraneous productions

are those that are not satis�ed by any tree in an instance). Each of the operators that

we have described so far returns, as the result of the operation, an instance whose scheme

depends only on the scheme(s) of the input instance(s) and not on the value(s) (i.e., the

structure). Because of this, queries tend to enlarge the schemas (increase the number of

productions) of the results. Since the value of the result of an operation is not examined to

determine the productions that should be in the scheme of the result, schemas of the results

of queries tend to \accumulate" productions. It would, hence, be useful to have an operator

that can delete productions from the schema of an instance without making changes to its

value.

It is also necessary to be able to add new productions to a schema of an instance. For

example, let us suppose that in an instance ht;Gi, the scheme G has the production A �!

Integer and every tree in t which corresponds to this production has either a `0' or a `1' as

its leaf. Now let us suppose that we want to change G by replacing the production A �!

Integer by A �! 0 and A �! 1. We will need an operator that allows productions to

be explicitly added since none of the other operators can give us the desired result. Note,

however, that if we wanted to perform the opposite, i.e., replace A �! 0 and A �! 1 with

A �! Integer, or if we wanted to add aggregate or list productions, we could do so with the

Substitute operator (see Section 5.6). However, Change{Scheme provides a more natural

way of modifying schemas.

If ht;Gi is an instance and P1 and P2 are sets of productions such that P1 � P and P2\P = �,

then the set of productions P is replaced by P �P1[P2 provided every tree in t corresponds

to some production in P � P1 [P2.

We �rst de�ne the function required{in which takes a structure t, a set of productions P ,

and a production p, as arguments and returns true or false depending on whether or not

there is some tree in t which is satis�ed by p and is not satis�ed by any production in P

(other than p).

� Let t be a structure, P a set of productions, and p a production. Then,

63

required{in(t; P; p) = true; if (satisfies(t; p) = true)^

(8q 2 P ((q 6= p)) (satisfies(t; q) = false)))

= true; if (t 6= []) ^ (has{leaf(t) = false)^

(9ti 2 subtrees(t) j

(required{in(ti; P; p) = true))

= false; otherwise: �

De�nition 4.22 Let ht;Gi be an instance and let P1 and P2 be sets of productions as

described earlier. Then,

Change{Scheme(P1; P2)ht;Gi = ht;G0i, where

G0 = G; if (9p 2 P1) j (required{in(t; P � P1 [P2; p) = true);

= normalize([[S; P � P1 [P2]]); otherwise: 2

Example 4.29 Remove the extraneous production A �! F-NAME L-NAME from the instance

d1.

Change{Scheme(fA �! F{NAME L{NAMEg,fg)d1

Example 4.30 Replace the productions NO. �! Integer and NO. �! Char in the in-

stance d2 with the set fNO. �! 1,NO. �! 2,NO. �! A,NO. �! Bg.

Change{Scheme(P1; P2)d2

where P1 and P2 are the set of productions being deleted and added, respectively.

64

5 A Discussion on the List-Structure Algebra

The choice of the operators for the algebra was based on the criteria outlined in Section 4.1.

We show, in this section, how the algebra meets these criteria. We list the �ve criteria again

for easy reference.

(i) The language should be well-suited for list-oriented applications.

(ii) The operators must be simple enough to understand and implement but powerful enough

to enable queries to be expressed succinctly.

(iii) The number of basic operators required to express most reasonable queries must be kept to

a minimum.

(iv) The language must satisfy the closure property. In other words, the type of the objects

returned by the operators must be the same as the type of the operands.

(v) Except for operators that are designed speci�cally to change the scheme of an instance

depending upon its value, all other operators, when applied to an instance, must return an

instance whose scheme is independent of the value of the input instance.

As mentioned in Section 1, the concept of ordering is crucial to any list-oriented application.

It is, therefore, essential that this concept be built into not only the data model, but also the

query language. Similarly, the concept of variable schema, which is important for many list-

oriented applications, must also be incorporated in the query language. It is quite obvious

from the choice of the operators and their semantics that the list-structure algebra satis�es

these two requirements and hence also satis�es criterion (i).

Again, from the de�nitions themselves, one can see that criteria (iv) and (v) are satis�ed.

Now, according to criteria (ii) and (iii) the number of operators should be kept to a minimum

while allowing most reasonable queries to be expressed succinctly. These two criteria are

somewhat con
icting since the minimal set of operators needed to express a certain class

of queries may not be su�cient to express most queries succinctly. In other words, while a

small set of operators is more manageable than a larger set, a minimal set of operators may

not be the ideal choice for a practical query system. The choice of the operators for the

65

list-structure algebra was based on achieving a reasonable balance between the two criteria,

rather than on satisfying one or the other. The rest of this section shows how this balance

is achieved.

All of the operators, except Reorder are basic operators. In some of the other operators, not

all di�erent cases are basic. For instance, the case when � in Substitute(�; �) is a variable

can be expressed in terms of other operators, whereas the case when � is `�' cannot always

be expressed using other operators. We show how the non-basic operator and the non-basic

cases for the basic operators can be expressed in terms of other operators and then justify

why these non-basic operators and cases are provided. We also show how operators like

union, di�erence, intersection and join can be simulated in this algebra.

5.1 Delete

Delete(A;�)ht;Gi, where � = (62 (C1; :::; Cm)) (Case 1(b) in Section 4.3.4) can be simulated

in terms of the other Delete cases as follows.

For each p 2 P , such that head(p) = A and one of the Ci's is in tail(p) and someDi 2 tail(p)

and Di 62 (C1; :::; Cm) perform the following:

1. Replace(p;E �! tail(p)), where E 62 var(G)

2. For each Di 2 tail(p) such that Di 62 (C1; :::; Cm) perform a Delete(E; (� [Di; �]))

3. Replace(A �! E;E �! �)

The scheme of the result of the above simulation will contain extraneous productions since a

Delete(E; (� [Di; �])) will not delete the productions with E as the head and Di in the tail.

These can be removed by means of the Change{Scheme operator. This Replace case has

been provided because if there are several attributes that are to be deleted (possibly from

several di�erent productions) then the number of Delete operations can be quite large when

expressed in terms of the other Delete cases.

66

5.2 Substitute

Let � = A and � be a structure pattern over B. Substitute(�; �)(ht1;G1i; ht2;G2i) can be

expressed in terms of the other operators as follows.

Let C, D and E be variables not in G1 or G2. For better readability, we list the operations

to be performed in separate steps instead of writing a single expression formed by their

composition. We make a few simplifying assumptions. We assume that (a) A 6= B, (b) for

all productions p; q 2 P1, if head(p) = head(q) = B, tail(p) = B1:::Bm, and tail(q) = Q�,

then 8Bi 2 tail(p), Bi 6= Q and (c) for all p 2 P1 if head(p) = B then B 62 tail(p). The

cases when these assumptions do not hold can also be simulated in terms of other operators,

although a few additional steps will be required.

Let c = (� l), where l is such that � = [B; l].

1. r1 = Find(B; c; C)ht1;G1i

2. r2 = Rename(B;D;A �! �)r1

3. r3 = Rename(B;E; �)ht2;G2i

4. r4 = Insert(D; ([C; �]; �))(r2; r3)

5. r5 = Delete(D; (62 (E)))r4

6. r6 = Rename(E;B; �)r5

7. r7 = Replace(D �! B;B �! �)r6

8. r8 = Rename(D;B; �)r7

9. r9 = Replace(B �! C;C �! �)r8

r9 is equivalent to Substitute(A;�)(ht1;G1i; ht2;G2i).

One can expect update operations, where one item is replaced by another, to be used very

often. Since there are several steps involved in performing this in terms of the other operators

in the algebra, it is better to provide an equivalent single step operation. Substitute(�; �)

cannot, in general, be expressed in terms of the other operators.

5.3 Rename

Rename(A;B;C �! �) can be expressed in terms of the other Rename cases.

67

(a) If A 6= C and B 6= C, then for each p, such that head(p) = C and A 2 tail(p), perform

a Rename(A;B; p).

(b) If A 6= C and B = C, then perform the following steps:

1. For each p such that head(p) = C and A 2 tail(p) perform a Rename(A;D; p)

where D 62 var(G).

2. Rename the D nodes to B by performing a Rename(D;B; �).

(c) If A = C, then for each p such that head(p) = C and A 2 tail(p), perform a

Rename(A;D; p) whereD 62 var(G). Then for each such p, perform aRename(A;B; q),

where head(q) = D and tail(q) = tail(p). Finally, perform a Rename(D;B; �).

When there are several productions with C as the head, it is more convenient to use

Rename(A;B;C �! �), which is the reason this Rename case has been provided.

5.4 Replace

The Replace operator is a basic operator since it cannot always be expressed in terms of

other operators. However, of the various cases, (described in Section 4.3.7), the following

cases can be simulated using other Replace cases and other operators of the algebra.

(a) Replace(A �! B;B �! �) can obviously be expressed in terms of other Replace cases.

For each production p in the scheme of the input, such that head(p) = B, we can

perform a Replace(A �! B; p). (If A = B, then Replace(A �! A;A �! A) should

be performed �rst before any of the other Replace operations). However, if there are

a large number of productions with B as the head, then it is more convenient to use

the more general case, i.e., Replace(A �! B;B �! �).

(b) Replace(A �! C1:::Ck; Cl �! C1:::Ck), where Cl 62 (C1; :::; Ck), can be expressed by

Find(A; �; Cl) if there is only one production whose head is A. If there is more than

one production whose head is A, then the corresponding expression is Find(A; (�

([C1; �]; [C2; �]; :::; [Ck; �])); Cl). This is Case 1(c) of Replace, described in Section

4.3.7, when tail(p1) = tail(p2). The case when tail(p2) has fewer variables than tail(p1)

can also be expressed in terms of other operators but involves several operations.

68

(c) Replace(A �! B�; C �! B�) can be expressed as Find(A; 8[B �]; C). However,

this Replace case has been provided for the sake of consistency. Since, the purpose of

the Replace operator is to either introduce or remove internal nodes from a structure,

while that of Find is to search and mark trees that satisfy certain conditions, it is

more natural to use Replace when the main purpose is to introduce nodes.

(d) Replace(A �! b; C �! b) where b is a constant can be written as Find(A; (� b); C).

We use the same reasoning provided in the previous case to justify why this Replace

case is provided.

In all of the above cases, the structure of the result of applying the alternate expression

will be the same as the one that would have been obtained by applying the corresponding

Replace operator. However, the scheme will contain extraneous productions that can be

removed using Change{Scheme.

5.5 Reorder

This is the only operator in the algebra for which it is always possible to �nd an equivalent

expression in terms of the other operators. Reorder(A �! B1:::Bk; A �! C1:::Ck)ht;Gi

can be simulated by the following steps. We assume that A 62 (B1; :::; Bk). The case when

A 2 (B1; :::; Bk) requires a few additional steps. We list the parameterized operators to be

applied in sequence to ht;Gi. Let B, C and D be variables not in var(G).

1. For each Bi do the following:

(a) Find(Bi; �; C)

(b) For each p in G (the original scheme) such that head(p) = Bi, perform a

Change{Scheme(fpg; fg).

(c) Insert(Bi; (�; [C; �]))h[D; j]; [[D; fD �! Integerg]]i, where Bi = Cj

(d) Change{Scheme(fBi �! Cg; fg)

2. Rename((B1; :::; Bk); B;A �! B1:::Bk)

3. Sort(A �! B�;D)

4. Rename(B; (C1; :::; Ck); A �! B�)

69

5. For each Ci, perform the following:

(a) Delete(Ci; (62 (C)))

(b) Replace(Ci �! C;C �! �)

At this stage the structure of the result will be the same as that of the result of applying

the Reorder operation. However, the scheme will contain many extraneous productions. We

expect this rearranging operation to be needed quite often in queries, and hence the decision

to provide this as an operator of the language.

5.6 Change-Scheme

It is possible to add new productions to the scheme of an instance without changing its value

(except in the case when the new production is of the form A �! b, and the production

A �! � , where b 2 Dom(�), is present in the original set of productions). This can be done

using the Substitute operator. For instance, let ht1;G1i be an instance and let us suppose

that we want to add the production A �! BC to the scheme G1 (where A;B;C 2 var(G1)).

Then, if S1, the start symbol of G1, is not equal to A,

Substitute(�; [A; �])(ht1;G1i; h[];G2i) = ht1;G
0

1i,

where G2 is a list-structure scheme whose start symbol is A and whose set of productions P2

is such that P2 � P1 = A �! BC, and G01 = [[S1; P1 [fA �! BCg]].

If S1 = A, then

Replace(A �! D;D �! �)(Substitute(�; �)(Find(A;�;D)(ht1;G1i); h[];G2i))

will give us the desired result, where D 62 var(G1) and � is a structure pattern over11 AG1

such that if � = [A; l] then l 6= � and if l = (�1; :::; �m) then at least one of the �i's is not a

`�' or a `�'. (The constraint on l is to ensure that there is no tree in Find(A;�;D)ht1;G1i

with which � can match). However, as mentioned earlier, since one cannot always add leaf

productions or delete extraneous productions using other operations, Change{Scheme is an

essential operation.

11We use the subscript G1 for A to denote the fact that the structure pattern over A is de�ned in the

context of G1.

70

5.7 Union, Di�erence and Intersection

We give examples to show how union, di�erence and intersection can be simulated in this

algebra. We assume that these operations take two instances, ht1;G1i and ht2;G2i as input

and form the union, etc., of subtrees of all trees in t1 corresponding to a given list production

and the subtrees of t2. For instance, Union(R �! P �)(r1; r2), (where r1 and r2 are the

instances shown in Figure 18(a) and Figure 18(b)), will give the result shown in Figure 19.

R

P P P

A B A B A B

R

P P P

A B A B A B

a a ab b b1 2 31 2 3a1 a1b1 a2 b2 b2

(a) (b)

Figure 18: The instances r1 and r2.

P P P

A B A B A B

R

P P P

A B A B A B

a a ab b b1 2 31 2 3a1 a1b1 a2 b2 b2

Figure 19: The Union of r1 and r2.

Union(R �! P �)(r1; r2) can be expressed in the algebra by applying the following sequence

of operations. Let S be a variable that is not in the scheme of r1 or r2.

r3 = Replace(R �! P �; S �! P �)r1

r4 = Insert(R; ([S; �]; �))(r3; r2)

r5 = Rename((S;R); S;R �! SR)r4

r6 = Replace(R �! S�; S �! P �)r5

The instance r6 contains the union of the subtrees of r2 and the subtrees of all trees in r1

that correspond to R �! P �. By union, we mean that the subtrees of the two trees being

71

unioned are simply concatenated. Duplicates are not removed as in the case of a set union.

However, if for some reason we wanted the union to add to trees in t1 only those subtrees in

t2 that are not already present in the trees that correspond to R �! P �, then we will have

to perform some additional steps. Most of the steps required to perform this second type

of union as well as di�erence and intersection are the same. So, we list the common steps

involved in all of these operations and then specify the additional steps necessary for each

operation. We assume that there is only one production p that has P as the head and we

assume that p is an aggregate production with A B as the tail. If there are several aggregate

productions with P as the head, then some of the steps listed below, e.g. steps 9 and 15,

will have to be repeated for each such production. If there is a list production q with P as

the head, we can perform a Replace(q;A �! tail(q)) so that all the trees that correspond

to R �! P �, have subtrees that correspond only to aggregate productions.

Let C, D, E, F , S and Q be variables that are not in the schemes of r1 or r2.

1. r3 = Insert(P; (�;�))(r1; h[C; 1]; [[C; fC �! Integerg]]i)

2. r4 = Insert(P; (�;�))(r2; h[C; 2]; [[C; fC �! Integerg]]i)

3. r5 = Replace(R �! P �; S �! P �)r3

4. r6 = Insert(R; ([S; �]; �))(r5; r4)

5. r7 = Rename((S;R); S;R �! SR)r6

6. r8 = Replace(R �! S�; S �! P �)r7

7. r9 = Change{Scheme(P1; fg)r8

where, P1 = fR �! S�; R �! S; S �! P �; S �! S; S �! S�; P �! ABg

8. r10 = Number(R �! P �;D)r9

9. r11 = Replace(P �! ABCD;E �! CD)r10

10. r12 = Group(R �! P �; E; F)r11

At this stage we perform di�erent sequences of operations according to the operator being

simulated.

Union

11. r13 = Find(E; [F (� ([C; 1]; �))] ^ [F (� ([C; 2]; �))]; Q)r12

12. r14 = Delete(Q; (�; ([F; ([C; 2]; �)]);�))r13

72

Di�erence

11. r13 = Find(E; [F (� ([C; 2]; �))]; Q)r12

12. r14 = Delete(R; (�; ([P; (�; [E; ([Q; �])])]);�))r13

Intersection

11. r13 = Find(E; [F (� ([C; 1]; �))] ^ [F (� ([C; 2]; �))]; Q)r12

12. r14 = Delete(R; (�; ([P; (�; [E; (�; [F; �];�)])]);�))r13

The following steps are again common to all the di�erent cases.

13. r15 = Replace(E �! Q;Q �! �)r14

14. r16 = UnGroup(R �! P �; E �! F �)r15

15. r17 = Replace(P �! ABE;E �! CD)r16

16. r18 = Delete(P; (� [C; �]))r17

17. r19 = Sort(R �! P �;D)r18

18. r20 = Delete(P; (� [D; �]))r19

r20 contains the �nal result. Figure 20 shows the result of performing the operations corre-

sponding to the union operation. The numbering and sorting steps can be omitted if it is

not necessary that the order of the elements be preserved. For instance, in the case of union,

the above sequence with steps 8, 9, 15, 17 and 18, omitted (and with all occurrences of the

variable E replaced by C, and with corresponding changes to the structure, value and delete

patterns), when applied to the instances in Figure 18 will give the result shown in Figure 21.

P P P

A B A B A B

R

P P

A B A B

a a ab b b1 2 31 2 3a1 a1b1 b2

Figure 20: Union of r1 and r2 where no duplicates are added.

We have shown how operations like union, di�erence, can be simulated in the algebra. While

it is quite cumbersome to express these operations in terms of the algebraic operators, these

operations have not been provided in the algebra. This is because we do not expect them to

73

be used very often and since we know that they can be simulated in the algebra when really

necessary.

P P P

A B A B A B

R

P P

A B A B

a a ab b b1 2 31 2 3a1 a1b1 b2

Figure 21: Union of r1 and r2 where no duplicates are added and the order of the elements

is not preserved.

5.8 Cartesian-Product and Join

We show how `joins' between two instances can be simulated in the algebra. We assume that

the cartesian-product or join is performed between trees in the �rst instance that correspond

to a given list production, and the structure of the second instance. We assume that the

structure of the second instance also corresponds to a list production and that the subtrees

of the two trees being joined all correspond to aggregate productions. Figure 23 shows the

result of Join(R �! P �)(s1; s2) where s1 and s2 are the instances shown in Figure 22(a)

and Figure 22(b), respectively.

R

P P P

A B A B A B

P P P

A A A

a a ab b1 2 31 2 3a1 a1b1 a2 2 2

(a) (b)

S

P

A

a2d d d d1

D D D D

Figure 22: The instances s1 and s2.

This join can be simulated by the following steps. Let Q, E and F be variables that are not

in the schemes of s1 or s2.

74

R

P

A B

a ab b1 21 2 22 dd d1

D

P

A B D

P

A B

a b1 1 2d

D

a b2 2

P

A B D

Figure 23: The result of Join(R �! P �)(s1; s2).

s3 = Rename(P;Q; �)s2

s4 = Rename(A;E; �)s3

s5 = Insert(P; (�;�))(s1; s4)

s6 = UnGroup(R �! P �; S �! Q�)s5

s7 = Replace(P �! ABS;S �! ED)s6

At this stage we have, essentially, the cartesian-product of the two instances s1 and s2. We

can now delete the trees in s7 that do not agree on the values of A and E and then delete

the E subtree to get the join of s1 and s2.

s8 = Find(P; (A 6= E); F)s7

s9 = Delete(R; (�; ([P; ([F; �])]); �))s8

s10 = Delete(P; (� [E; �]))s9

s10 is equivalent to Join(R �! P �)(s1; s2).

As mentioned earlier, goals (ii) and (iii) in Section 4.1 are con
icting and this is somewhat

true in the case of join-like operators. Not providing these operators in the language seems

to violate goal (ii) since simulating these operations in terms of the other operators involves

a number of steps. On the other hand, it is not entirely clear how often one can expect such

operations to be needed. Unlike the (
at) relational model, the hierarchical structure of the

list-structure model allows complex objects to be represented within the same structure (to

a limited extent). This in turn, reduces the number of join operations that are typically

needed in a query. However, one can expect join operations to be used more often than

operations like union and di�erence. Also, the frequency of use of the join operations is very

likely to be dependent on the type of application being supported. In applications where

join operations are needed very often, it would be useful to provide these as operators within

the language.

75

6 Extending the List-Structure Model and Algebra

In this section we describe possible extensions and modi�cations to the list-structure model

and the list-structure algebra. In Section 3.1 we outlined the kinds of data objects that

should be representable in any model that supports list-oriented applications. The list-

structure model supports all of those object types except (ordered and unordered) sets and

bags. Sections 6.1 and 6.2 show how the model and the language can be extended to deal

with sets. Section 6.3 shows how the model (and the language) can be extended to resolve

ambiguity when a structure corresponds to two or more productions. In Section 6.4 we show

how arithmetic operators can be incorporated in the language.

6.1 Ordered Sets

The list-structure model currently allows three types of objects, atomic objects (leaf nodes),

aggregate objects and lists of objects of the same type. Lists (subtrees of trees that cor-

respond to list productions) can have duplicate elements. However, in some cases, it may

be known that certain lists will not have duplicates and it might be useful to be able to

impose this as a constraint. For example, the list of authors of a book will not have du-

plicate elements. The model can be extended to allow this type of lists as a di�erent list

representation, as follows.

We will �rst need to distinguish between productions that refer to general lists (the ones

we have seen so far) and productions that refer to ordered-sets (or lists that cannot have

duplicate elements). We can do so by placing a distinguishing symbol on the arrow in the

production. For example, A
list
�! B� and A

o{set
�! B� refer to list and ordered-set productions,

respectively. The de�nition of a structure has to be modi�ed as follows:

Let type be a function that takes a production as input and returns the type of the production

{ `aggr' if it is an aggregate production, `list', if it is a list production, `o-set' if it is an

ordered-set production and `leaf' if it is a leaf production.

De�nition 6.1 t is a �nite structure over a scheme G = [[S; P]], if

1. t = [], the empty structure over G,

2. t = [S; l], where S, the start symbol, is the root of the structure and l is a list of

76

subtrees, such that

(a) l = (t1; :::; tk); k � 1, and for some p 2 P , head(p) = S and tail(p) = B1:::Bk, and

each ti is a non-empty structure over Gi, where Gi =

normalize([[Bi; P]]), or

(b) l = (t1; :::; tm), m � 0, and for some p 2 P , head(p) = S, tail(p) = B�

and type(p)=`list', and each ti is a non-empty structure over G0, where G0 =

normalize([[B;P]]), or

3. t = [S; f[t1; :::; tm]g] m � 0, and for some p 2 P , head(p) = S, tail(p) = B� and

type(p)=`o-set', and each ti is a non-empty structure over G0, where G0 =

normalize([[B;P]]), and 8ti; tj (ti 6= tj), or

4. t = [S; b], where S is the root of the structure and b is a constant, and for some p 2 P ,

head(p) = S and either tail(p) = b, or tail(p) = � , where � is a type and b 2 Dom(�).

2

The de�nitions of the operators must also be modi�ed. Rather than rewriting the de�nitions

for all the operators, we show how the de�nitions can be modi�ed by giving the modi�ed

de�nition for one of the operators. We �rst describe a new function, rm{dpl that will be

used in the de�nition.

� The function rm{dpl takes a list l1 and returns an ordered-set with any duplicate elements

in l1 removed. If there are several occurrences of an element in l1, the �rst occurrence of

that element (from left to right) is the one that is retained. �

We rede�ne the operator Substitute as shown below. The only di�erence between the de�ni-

tion given here and that in Section 4.3.5 is that when the subtrees of a tree corresponding to

an ordered-set production are being replaced, the function rm{dpl is applied to the resulting

list of subtrees. This is because, the pattern � can match with several subtrees in the list of

subtrees which will result in duplicates after the substitution.

Let ht1;G1i and ht2;G2i be two list-structure instances. Let � be a structure pattern over

some B 2 var(G1) and let root(t2) = B. Let � be either � or a variable A 2 var(G) such

that for some p 2 P1, head(p) = A and B 2 tail(p).

77

De�nition 6.2 Substitute(�; �)(ht1;G1i; ht2;G2i) = ht0;G0i, where

t0 = []; if (t1 = []) ^ (t2 = [])

= t1; if (t2 = []) ^ (((� = �) ^ (match(t1; �) = false)) _ (� 6= �))

= t1; if (t1 = []) ^ (((S1 6= S2) ^ (� = �)) _ (� 6= �))

= t2; if ((� = �) ^ (match(t1; �)))

= t1; if (((match(t1; �) = false) ^ (� = �)) _ (� 6= �))

^((has{leaf(t1)) _ (subtrees(t1) = ()))

= [root(t1); rm� dpl(t0011; :::; t
00

1k)]; if (subtrees(t) = f[t11; :::; t1k]g);

= [root(t1); (t0011; :::; t
00

1k)]; otherwise;

where; t001i = t01i; if (� = �) _ ((� 6= �)^

((match(t1i; �) = false) _ (root(t1) 6= �)))

= t2; otherwise

where; t01i = struct(Substitute(�; �)(ht1i;G1ii; ht2;G2i));

if ((� 6= �) ^ (reachable(�; root(t1i); P)))

_((� = �) ^ (reachable(B; root(t1i); P)))

= t1i; otherwise

G0 = normalize([[S1; P1 [P2]]) 2

Most of the other operators can be extended along similar lines. Some, however, will require

additional changes. Instance patterns, conditions, etc., will have to be rede�ned. Some

of the function de�nitions, such as those for concat and append will have to be modi�ed.

Additional operators that make trees that correspond to a list production, correspond to an

ordered-set production, and vice-versa could be provided.

6.2 Sets

While ordered-sets are useful in modeling lists that cannot have duplicates, in some cases,

it might be necessary to be able to model general sets (in which the order of elements is

immaterial). For instance, we might be interested in �nding all the books whose authors are

all members of a given set. The `�' comparison operator will not give us the correct answer

if the set of authors is an ordered set. There are two possible ways of extending the model

to deal with this type of situation.

78

One way is to introduce set comparison operators that take ordered-sets as arguments but

treat them as general sets, by ignoring the order of the elements. For example,

f[a1; a3]g � f[a1; a2; a3]g is false, whereas f[a1; a3]g
set
� f[a1; a2; a3]g is true,

where
set
� denotes the subset comparison, whereas � denotes the sublist comparison. Simi-

larly,
set
� can be used to denote set equality between structures. In this method, the model

does not need to be extended to allow sets and only the query language has to be modi-

�ed. A disadvantage of using di�erent operators for list and set comparisons is in compar-

ing structures with many di�erent levels of sub-structures. For instance, in the expression

f[a2; a1; f[a4; a5]g]g
set
� f[a1; a2; f[a5; a4]g]g, the comparison between the two structures could

treat only the outermost ordered-sets as sets or treat ordered-sets at all levels as sets. There

are obvious limitations in both schemes since each type of comparison precludes the other.

A second way of dealing with set operations is to introduce general sets as a new data type

within the model itself. This can be done along the lines outlined in the previous section

for incorporating ordered sets in the model. Thus, A
set
�! B� will represent a set production

and a structure corresponding to this production will be of the form [A; ft1; :::; tkg]. This

overcomes the problem of determining if entities are to be treated as sets or ordered-sets.

6.3 Resolving Ambiguity

Given a structure t over some scheme G, it is possible to determine a unique production in

G that t corresponds to, except in the following cases. When t has () as its list of subtrees

and there are two or more list productions in G that have t's root as the head - for example,

if t = [A; ()] and A �! B� and A �! C� are both in G - then t corresponds to more than

one production. Similarly, if t = [A; (t1)], where t1 has B as its root and there are two

productions, A �! B� and A �! B, in G, then t corresponds to both productions.

Such ambiguities could sometimes lead to unexpected results. Suppose that t1 is a structure

that corresponds to A �! C� and that it has a non-empty list of subtrees. Let us suppose

that after a few deletions, t1 is left with an empty list of subtrees. Now, let us suppose

that we want to insert some structure t2 as the left-most subtree in trees that correspond to

A �! B�. t2 will be inserted in all trees that correspond to A �! B�, including t1. Thus t1

which originally corresponded to A �! C� will now correspond to A �! B�, even though

79

this was not intended.

There are several ways of overcoming this problem. One way would be to disallow two list

productions from having the same head and to disallow two productions such as A �! B�

and A �! B in the scheme. A better way would be to include a reference to the productions

within the structure. So, for instance, a structure could be represented by the triplet [A,n,l],

where A is a variable, l, a list of subtrees and n, a reference (a number or a pointer) to the

production p that t corresponds to.

6.4 Arithmetic Operators

In theory, not all query languages have built-in arithmetic functions, while in practice most

query languages provide aggregate functions like sum and average. Languages like SQL, and

those proposed in [15] and [13], are examples of query languages augmented with aggregate

functions.

In the list-structure algebra, the Apply function provides an easy means of integrating the

results of aggregate or other functions in the structure. We give an example to illustrate

this. Let sum be a function which takes a list production, say A �! B� as a parameter

and which when applied to a structure, searches (in a depth-�rst manner) for a tree that

corresponds to the production. It then, returns the sum of the leaf nodes of the subtrees

(assuming that B occurs as the head of only one production p, where tail(p) is an integer

constant or the type INTEGER). If no such tree is found it returns an empty structure [].

So, sum(A �! B�) when applied to the structure x3 in Figure 24 will give the integer `12'

as the result.

Now, consider the structure x4 in Figure 24. Let us suppose that we want to �nd the sum

of all the C subtrees of each of the B subtrees of A. The following expression will, for each

B tree, restructure the B tree so that its group of C subtrees is an attribute, �nd the sum

for its C subtrees, and insert the sum as a second attribute.

Apply(B �! D,E,sum(D �! C�))(Replace(B �! C�,D �! C�)x4)

The structure of the result of the above expression is shown in Figure 25.

80

A

B B B

3 7 2 3 7 2 8 8 5

A

B B

C C C C C C

The structure x3 The structure x4

Figure 24: Example list-structures.

3 7 2 8 8 5

A

B B

C C C C C C

D DE E

12 21

Figure 25: An example of an arithmetic operation using the Apply operator.

Alternatively, we can have sum return as a result, a structure with a speci�ed root node,

whose subtree is the integer denoting the sum. For example, (the structure part of) sum(A �!

B�; G) when applied to the structure x3 in Figure 24 will be [G; 12]. This way, the closure

property that was discussed in Section 4.1 is maintained.

81

Acknowledgements

I would like to thank Ed Robertson, Larry Saxton and Dirk Van Gucht for their ideas and

suggestions which improved this paper substantially. I would also like to thank Orestes

Appel and Chad Edge who worked on a partial implementation of the list-structure model

and algebra.

References

[1] Abiteboul, S., and Hull, R. Restructuring hierarchical database objects. Theoret-

ical Computer Science 62 (1988), 3{38.

[2] Andries, M., Gemis, M., Paredaens, J., Thyssens, I., and Van den Bussche,

J. Concepts for graph-oriented object manipulation. Tech. Rep. 91-36, University of

Antwerp (UIA), 1991. To appear in Proceedings EDBT'92, Lecture Notes in Computer

Science, March 1992.

[3] Bancilhon, F., et al. The design and implementation of O2, an object-oriented

database system. In Proceedings of the 2nd International Workshop on Object-Oriented

Database Systems (Bad M�unster am Stein-Ebernburg, Germany, September 1988),

pp. 1{22.

[4] Chen, P. P. The entity-relationship model{toward a uni�ed view of data. ACM

Transactions on Database Systems 1, 1 (March 1976), 9{36.

[5] Codd, E. F. A relational model for large shared data banks. Communications ACM

6, 13 (June 1970), 377{387.

[6] Gonnet, G. H., and Tompa, F. W. Mind your grammar-a new approach to mod-

elling text. In Proceedings of the 13th VLDB (Brighton, England, 1987), pp. 339{346.

[7] G�uting, R. H., Zicari, R., and Choy, D. M. An algebra for structured o�ce

documents. ACM Transactions on O�ce Information Systems 7, 4 (April 1989), 123{

157.

[8] Gyssens, M., Paredaens, J., and Van Gucht, D. A grammar{based approach

towards unifying hierarchical data models. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data (Portland, Oregon, 1989), pp. 263{272.

82

[9] Hammer, M., and McLeod, D. Database description with SDM: A semantic

database model. ACM Transactions on Database Systems 6, 3 (September 1981), 351{

386.

[10] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979, ch. Context-Free Grammars, pp. 77{106.

[11] Hull, R., and Yap, C. K. The Format model: A theory of database organization.

JACM 31, 3 (1984), 518{537.

[12] Jaeschke, G., and Schek, H. J. Remarks on the algebra on non-�rst normal form

relations. In Proceedings of the �rst ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems (Los Angeles, 1982), pp. 124{138.

[13] Klug, A. Equivalence of relational algebra and relational calculus query languages

having aggregate functions. Journal of the ACM 29, 3 (July 1982), 699{717.

[14] Macleod, I. A. A query language for retrieving information from hierarchic text

structures. The Computer Journal 34, 3 (1991), 254{264.

[15] Ozsoyoglu, G., Ozsoyoglu, Z. M., and Matos, V. Extending relational alge-

bra and relational calculus with set-valued attributes and aggregate functions. ACM

Transactions on Database Systems 12, 4 (December 1987), 566{592.

[16] Pistor, P., and Traunmueller, R. A database language for sets, lists and tables.

Information Systems 11, 4 (1986), 323{336.

[17] Rabitti, F. A model for multimedia documents. In O�ce Automation, D. Tsichritzis,

Ed. Springer, New York, 1985, pp. 227{250.

[18] Shipman, D. W. The Functional Data Model and the data language DAPLEX. ACM

Transactions on Database Systems 6, 1 (March 1981), 140{173.

[19] Thomas, S. J., and Fischer, P. C. Nested Relational Structures. JAIPress, 1986,

pp. 269{307.

83

