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Abstract

The syntactic theories of control and state are conservative extensions of the A,-calculus
for equational reasoning about imperative programming facilities in higher-order lan-
guages. Unlike the simple A,-calculus, the extended theories are mixtures of equivalence
relations and compatible congruence relations on the term language, which significantly
complicates the reasoning process. In this paper we develop fully compatible equational
theories of the same imperative higher-order programming languages. The new theories
subsume the original calculi of control and state and satisfy the usual Church-Rosser
and Standardization Theorems. With the new calculi, equational reasoning about im-
perative programs becomes as simple as reasoning about functional programs.

1 The syntactic theories of control and state

Most A-calculus-based programming languages provide imperative programming facilities such as
assignment statements, exceptions, and continuations. Typical examples are ML [16], Scheme [19],
and Common Lisp [20]. While these additions add expressive power and increase the efficiency of
programs, they also appear to invalidate the simple reduction rules and equational reasoning of the
A-calculus that make functional programming so appealing. In two previous papers [8, 9], we have
shown that there are conservative extensions of Plotkin’s A,-calculus [18] for such programming
languages, and that it is possible to reason about programs in extended functional languages in an
equational style.
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The main difference between the simple lambda-calculi and its extended versions is a distinc-
tion between two classes of equations: equations for ordinary ezpresstons and equations for whole
programs. The reason for this distinction is the need to arrange the effects of assignments and
jumps in the appropriate order. For example, a program like z := 3; y := z + 1 is equivalent
to the program y := 4, yet the subexpression z := 3; y := z + 1 cannot be replaced by y := 4
because the context in which the former expression occurs may contain further references to z and
these references must be able to perceive the assignment to z. Still, the calculi satisfy relatively
simple variants of the Church-Rosser and Standardization properties. Most importantly, they sat-
isfy most of Plotkin’s [18] criteria for a correspondence between a programming language and a
reduction-based calculus:

(1) the standard derivations of the calculi yield the same value for a program as the operational
semantics, and

(2) a subset of the calculi equations for ordinary expressions are operationally sound.

The first property is important because a programmer can use the relatively simple reduction sys-
tem to determine the value of an imperative higher-order program by rewriting the program until
it becomes a value. The second property is a basis for program transformations and program
correctness proofs. However, as the restriction in (2) indicates, the calculi are complicated equa-
tional theories because some equivalences are not equations in the usual sense. This distinction is
unnatural and leads to problems in reasoning about equational properties of programs.

One way to simplify the equational theories for an imperative programming language is to
modify the programming language. For example, we recently showed that by adding a control
delimiter facility to the A-calculus extended with control operators, we can simplify the calculus
and get a more elegant relationship between the language and its calculus [6]. But, although
this proposal provides a good example of how calculus design can influence and improve language
design, it does not alleviate the need for better techniques for reasoning about ezisting languages.
Languages such as Scheme, ML, and Common Lisp have grown through practical experiences and
support practical applications, and they need calculi that are tuned towards their specific needs.

The solution to the problem is to relax Plotkin’s first correspondence criterion. More precisely,
we no longer require that the standard derivation of the programming language calculi terminate in
a value when the machine produces a value for a program. Instead, we allow the standard deriva-
tion to produce some other kind of term that is recognizable as a final answer. For both kinds
of imperative extensions, i.e., control operators and assignments, the result is a simple equational
calculus for imperative, higher-order programming languages that can prove the same set of ob-
servational equivalences as the old calculus but with an elegant axiomatic basis. Indeed, reasoning
with the new calculi is as simple as reasoning with the traditional A-calculus.

In the next section, we briefly summarize Plotkin’s work on the A, -calculus since it constitutes
the basis of our research. Sections 3 and 4 present our new theories of control and state, respectively.
These sections begin by briefly introducing our old calculi, which provide machine-independent
semantics for the languages and standards against which to measure the new theories. Next, these
sections introduce the new calculi and analyze the relationships between the old and new calculi.
The fifth section describes the merger of the two theories. Finally we discuss related work and
some implications of our work for an alternative denotational semantics for extended functional
languages.



2 The A-value-calculus

The expression language A of the A-calculus and the A, -calculus [2, 3, 18] is the union of a set of
values and expression juxtapositions:
e ¥ e

The set of values is the collection of basic constants (b € BConsts) and functional constants
(f € FConsts), variables (z € Vars) and A-abstractions:

vy b | Fl 2| Aze.

Constants correspond to built-in algebraic language primitives like numbers and booleans and
(mathematical) functions on them; identifiers are placeholders for values; and A-abstractions are
call-by-value procedures. Expression juxtaposition denotes function application.

The only binding construct in the programming language is A-abstraction. The set of closed
ezpressions, A°, is the set of all expressions with no free variables; Values® is the set of closed
values. We adopt Barendregt’s [2] conventions on bound variables and abstractions:

e Bound variables are always distinct from free variables in the various expressions of mathe-
matical definitions and claims.

o Abstractions that only differ by a renaming of bound variables are identified, e.g., Az.z = Ay.y.

The expression e[z «+ e1] is the result of substituting the expression e; for a free variable z in the
expression e.

An important parameter of the language definition is the set of constants and its interpretation.
Following Plotkin [18], we assume that the behavior of constants is specified by a partial function
from functional and basic constants to closed values:

§ : FConsts x BConsts — Values®.

In the mid-60’s, Landin [11, 12] illustrated in a series of papers that A is an interesting and
powerful programming language. Most importantly, he showed how a simple stack-based calculator
for algebraic expressions could be extended to the abstract SECD-machine for evaluating complete
A-programs. jFrom a programmer’s perspective, the SECD-machine is an interpreter that imple-
ments a partial function from programs to answers, where the former are closed expressions and
the latter are closed values:

evalsgep : A° — Values®.

The use of A as a programming language with an operational semantics and as the term language
for Church’s A-calculus [3] raises the natural question of how the two concepts correspond to each
other. Plotkin [18] provided the answer by defining the A,-calculus, which matches the evaluation
function evalscgp, and by providing a modified SECD-machine, which implements the A-calculus
correctly in the above sense of a Landin-style interpreter. The original SECD-semantics and the
Ay-calculus precisely model the call-by-value parameter-passing technique that is now predominant
in the functional subsets of programming languages. Besides being easy to implement, call-by-value
provides an obvious order of evaluation, which facilitates the addition of imperative features. There
is, however, no theoretical reason for choosing one over the other, even in the presence of control
operators and assignments.



The A,-calculus is an equational theory about A. More precisely, it is a set of equations that is
based on a set of term relations on A. The two basic relations, notions of reduction, are:

fa — 6(f,a) (8)
(Az.e)y — e[z « v]. (By)

The equational theory A, is the smallest congruence relation generated from the above relations.
For the formal definition, we rely on the concept of a term context, which are expressions with a
hole ([ ]) at the place of a subexpression:

C:=[]|(eC)]|(Ce)|(Az.C).

The expression C|e] stands for the result of putting the expression e into the hole of the context
C, which may bind free variables in e.

Given the notions of reduction and the definition of contexts, the definition of A, is straight-
forward.

Definition 2.1. (A,) The basic notion of reduction is
v=46UPp,.

The one-step v-reduction —,, is the compatible closure of v: e —, €' if (p,¢q) € v, e = C[p], and
e’ = C[q] for some expressions p and q and context C. The v-reduction is denoted by —», and is
the reflexive, transitive closure of —,; =, is the smallest equivalence relation generated by —,.
If ey =, €3, we write A, F e; = ep.

The A -calculus has the same characteristic properties as Church’s original A-calculus. First,
the defining notion of reduction, v, is Church-Rosser, i.e., the v-reduction satisfies the diamond

property.

Theorem 2.2 (Plotkin) If e —», e; and e —», €3, then there etists an ezpression e’ such that
e —», € and ey —», €.

Second, for every sequence of (single) reduction steps from one term to another, there is a
canonical sequence of steps between the same terms that can be found algorithmically. This idea
is important for an analysis of the correspondence between a calculus and an abstract machine.
While it is easy to see that e —», v if evalsgcp(e) = v, the inverse is not correct. If e —», v and v
is a A-abstraction, then there are possibly many different values to which e reduces, yet evalsgcp,
the interpreter, can only yield one value for e. To determine this value via a sequence of reductions,
we need canonical reductions and an algorithm to compute them.

To describe the basis of the algorithm and to state the corresponding theorem, we need some
definitions. An evaluation context is a special kind of context. The hole of an evaluation context
is in such a position that a §- or B,-redex inserted in the hole is the leftmost-outermost redex that
is not inside of a A-abstraction. We let E range over the set of evaluation contexts and define it
with the following grammar:

Eu=[]|(wE)|(Ee).
Given the definition of an evaluation context, we say that e standard reduces to €' if the reduction
occurs in an evaluation context. In other words, a standard reduction function always picks the
leftmost-outermost v-redex outside the scope of a A-expression. It is undefined on values.



Definition 2.3. (Standard Reduction Function) The standard reduction function maps e to ¢/,
e —, €', if for some evaluation context E, e = E[p|, ¢’ = E[q] and (p,q) € v. We use ——} to
denote the transitive closure of the standard reduction function.

The concept of standard reduction sequences generalizes the idea of a standard reduction func-
tion such that standard reductions become applicableto arbitrary term positions. A standard
reduction sequence also permits incomplete reduction sequences that may choose not to reduce a
leftmost-outermost redex for the rest of the sequence.

Definition 2.4. (Standard Reduction Sequences) The set of standard reduction sequences is
defined as follows:

1. Every constant and variable is a standard reduction sequence.
2. If e1,...,€e, is a standard reduction sequence, then so is Az.eq,..., Az.e,.

3. f p1,...,pn and ¢qq,..., gy, are standard reduction sequences, then so is
P191,P2915 -+ +3Pnd1,Pn92;, -+ s Pndm-

4. If e4,...,e, is a standard reduction sequence and e —, e1, then e,eq,...,e, is a standard
reduction sequence.

We can now formalize a Curry-Feys-style Standardization Theorem.

Theorem 2.5 (Plotkin) e —», €' if and only if there is a standard reduction sequencee,...,€'.

Together, the Church-Rosser and Standard Reduction Theorems show that there is a perfect
correspondence between the SECD-evaluation function and the standard reduction function.

Theorem 2.6 (Plotkin) Let e, v be closed terms in A. Then, e—3v if and only if evalsgcp(e) =
v.

In other words, the SECD-machine terminates and returns a value for a program if and only if
the program standard reduces to the same value. It is therefore possible to define the evaluation
function via the standard reduction function, ignoring the details of the actual machine:

d
eval,(e) Loiffe —x v,

After determining that reductions in the calculus correspond to evaluations on a machine, the
question remains what equations on the calculus mean for a programmer. To understand this
relationship, we recall that a programmer can only observe the effects of entire programs via
the evaluator. Thus, to compare expressions as black boxes, a programmer must rely on those
equivalences that the evaluation function can validate for all programs in which the expression can
occur. This argument naturally leads to the definition of the operational equivalence relation.



Definition 2.7. (Operational Equivalence) Two terms, e and €', are operationally equivalent,
e ~, ¢, if and only if they are indistinguishable in all program contexts C':

eval,(C|[e]) terminates iff eval,(C|[e']) terminates

and
eval,(Cle]) = b iff eval(C[e']) = b

for some basic constant b.
Plotkin [18] showed that the A,-calculus is sound with respect to operational equivalence.
Theorem 2.8 (Plotkin) If A, b e = ¢’ then e ~, ¢'. The inverse direction does not hold.

Theorems 2.5 and 2.8 are the basis of a formal correspondence relation between programming
languages and calculi. They stipulate that

1. a calculus can evaluate a program in the same way as an independently given operational
semantics; and

2. the equations of a calculus imply the interchangeability of expressions in arbitrary contexts.

These two criteria are the basis for any further development of programming language calculi.

3 Theories of control

The language A. for programming with procedural and control abstractions is an extension of A
with a set of C-applications of the form (Ce):

é i=w | (ee} | (Ce).

A C-application applies its subexpression to an abstraction of the current control context, the
continuation. The application takes place in the empty control context, the halt continuation. A
continuation has the same first-class status as a A-abstraction; upon invocation, it discards the
control context of the application and resumes the abstracted control context with its argument.

This notion of control abstraction is derived from the treatment of continuations in the pro-
gramming language Scheme [19]. However, although the continuation created by a C-application
acts just like a continuation created by the Scheme continuation constructor call/cc, a C-application
differs from a call/cc application in that the former aborts the current control context, whereas the
latter leaves the current control context intact. This abortive affect allows us to define an abort
abstraction as an abbreviation of a C-application whose subexpression is a procedure that ignores
its argument:

AeZ c(rd.e) where d ¢ FV(e).

The effect of (A e) is an abort of the program evaluation. It discards the current control context
and returns the value of its subexpression as the final value of the program. This abbreviation is
used to simplify the reduction rules for C-applications.



Other than the introduction of C-applications, the syntax of A is adopted mutatis mutandis.
The definition of the set of values retains its shape, even though subexpressions are in the extended
language A.:

vi=¥| F|& | Axe

Similarly, the specification of the set of evaluation contexts stays the same:
Exz=[]|(vE)|(Ee),

but it now denotes the set of evaluation contexts whose subexpressions are in the extended language
A..

The following subsection briefly presents our original theory of control abstractions with an
emphasis on the set of safe equations; for a more complete description, we refer the reader to the
earlier report [9]. The second subsection contains the development of a finite axiomatization of the
theory of safe equations. The Plotkin-style correspondence theorem relies on a proof of equivalence
between the two calculi and on the idea that the old calculus is an acceptable specification of the
semantics of A.. The final subsection presents two interesting extensions of the equational theory.

3.1 A syntactic theory of control abstractions

Originally we derived the syntactic theory of control from an abstract operational semantics based
on Landin’s SECD-machine [7]. Eliminating all non-program text components from the machine
shows that the concept of “current continuation” is equivalent to the notion of evaluation context.
The machine transition rules for abstracting a control state naturally lead to two term relations
that gradually lift a C-application to the top of an evaluation context while encoding the context
as an abstraction.

When the C-expression, Ce, occurs as the function part of an application, (Ce)e’, its immediate
continuation is the application of a yet-unknown function f to the expression e’. The rest of the
continuation, k, is the continuation of the entire application. Composing the two pieces, k( fe'),
yields the functional part of the continuation of Ce, which in turn is the argument for e. Since this
continuation must abort its context upon invocation, we wrap this expression in an .A-application.
To obtain the outer part of the continuation, we use another C-application:

(Ce)e’ — C(Mk.e (Mz. Ak (z€')))).

Similarly, when the control expression occurs as the argument part of an application, the abstraction
of the control context applies the known function to an unknown argument, passing the result to
the continuation of the entire application:

v(Ce) — C(Ak.e (Az.A(k (vz)))).

The assumption that the left part of the application is a value reflects the left-to-right evaluation
order of the underlying language.

To facilitate the formal definition and future reference to the above rules, we introduce the
notion of a singular evaluation context:

E°z=@[ I ]e)



Using singular evaluation contexts, one definition schema suffices for specifying both of the above
reduction relations for A.:

E’[Ce] — C(Ak.e (Az.A(k E’[z]))). (Cugt)
The relation for lifting C-applications gives rise to an extended notion of reduction:
U — §Uﬁ,,UG;,‘ﬂ. (c)

This notion of reduction defines a full reduction relation and a congruence relation in the usual
way. It is Church-Rosser and has Curry-Feys-style standard reduction sequences. The symbol
denotes the standard reduction function for ¢. The respective theorems and proofs are straightfor-
ward adaptations of the proofs of Plotkin’s corresponding theorems. We use A,-C(c) e = €' if
e=.¢.

For a complete simulation of an abstract machine for A, the reduction based on c is insufficient
because C-applications get stuck at the top of the program. We therefore introduce a computation
rule that maps a C-application at the top of the program into an application of its subterm to the
halt continuation (Az.Az):

Ce > e(Az.Az). (Cr)
Together with the extended reduction —», the computation rule forms a computation relation
be = —». U C7.

The computation relation satisfies the diamond property, i.e., if ep. e; and e, e, then for some ¢/,
e1bc €' and epp.e’. But, since Cr only applies to entire programs, the computation relation cannot
satisfy the full Church-Rosser property. Similarly, there are standard computation sequences, which
are weak forms of standard reduction sequences. The computation relation generates an equivalence
relation on programs, which we refer to as =.. We also write A,-C” e = ¢ if e Z. ¢'. Based on
the diamond property of the computation relation and the Church-Rosser property of the reduction
¢, it is easy to show that the theory A,-C” is a conservative extension of A,.

The standard computation function is a generalization of the notion of a standard reduction
function and always performs the leftmost-outermost computation step. Like the standard reduc-
tion function, it is undefined on values.

Definition 8.1. (c-Standard Computation Function) The standard computation function maps
a program e to a program €', e ——. €', if e standard reduces to e’ or if e computes to e': s, =
e UCr.

The standard computation function faithfully simulates evaluation on a machine for A, i.e., we
can use it to define a semantics instead of a machine with complex states:

evalc(e)=v i e

This, in turn, gives rise to an operational equivalence relation in the usual manner. A A -expression
e is operationally equivalent to €', e ~. €/, if and only if the two are indistinguishable in the sense
of Definition 2.7 relative to all A.-program contexts.

;From the design of the control calculus, it follows that congruences generated by c-reduction
are operationally sound, but, due to their context-sensitivity, equations based on the computation
relation are not.



Theorem 3.2 ([9]) Let e and ¢’ be in Ac.
(i) If Ay-C(c) Fe=¢ thene~ €.
(i) Ay-C” e = €' does not imply e ~. €.

Fortunately, it is possible to factor out a large subset of equations in A,-C” that are operationally
sound: the safe equations.

Definition 8.8. (C-Safe Equations) An equation e =, €’ is safe if and only if it holds in all
evaluation contexts: A,-C” I E[e] = E[é'] for all E.

Operationally, the two terms of a safe equation have the same control effects. In order to enrich
the set of safe equations we also permit the use of safe equations in the safeness proof of an equation.
We use A,-C-safe to refer to the equational theory generated by safe equations. The safe theory is
again a conservative extension of A, and, more importantly, reduces reasoning about operational
equivalence from the set of all contexts to the set of evaluation contexts.

Theorem 8.4 ([9]) IfA,-C-safel- e =€’ then e~ ¢ .

In summary, the calculus of control abstractions is like an ordinary A-calculus with Church-
Rosser and Standardization Theorems. Moreover, it closely corresponds to the programming lan-
guage definition for A.. If we need to evaluate a program, the standard computation will produce
the correct value; for proving operationally sound equations, we often must work in the theory of
safe equations. In general, we will be more interested in the latter than the former because most
interesting properties of programs are characterized by safe equations. Unfortunately, working with
the theory of safe equations is not as easy as working with the A-calculus since it is not a simple
axiomatic theory with a finite set of axioms or axiom schemas but a theory based on a filtered
subset of another theory, A,-C”. We introduce a simple axiomatic characterization of safeness in
the next subsection.

3.2 An axiomatic basis for safe equations

The disturbing element in the calculus of control abstractions is the rule Cr. The purpose of the
rule is to replace a C-application (Ce) at the root of a program with an application of e to the halt
continuation. For an axiomatic characterization of safe equations, we must find a way of replacing
this special relation with simple notions of reduction that approximate its effect.!

A partial solution is to leave C-applications at the root of the program alone and to continue
with the evaluation of the subexpression. More precisely, when a C-application reaches the root
of the program after a number of Cyp reductions, it has the shape (CAk.e), and an evaluation
may continue with e. But this clearly leads to an accumulation of C-applications at the root of
a program. By observing that the outermost C-application removes the current continuation and
that therefore the next C-application’s continuation is the halt continuation, we are led to a rule
that captures the idempotency of the abort action of C-applications:

C(Ok.C &) — C(Ak.e(Az.Az)). (Cidem)

'Tim Griffin independently and simultaneously discovered another solution while studying the connection between
a typed variant of the control calculus and classical logic [10]. He proposes to restrict the set of programs to expressions
of the form C(Ak.ke) and to use Cigem 2s a replacement for Cr.




The only exception to this reasoning is the case where the program is already a C-application and
the subexpression is not an abstraction. We therefore need a rule for transforming an arbitrary
subexpression of a C-application into a A-abstraction. The task of this abstraction is to receive a
continuation and to apply the subexpression to it. A first attempt at the rule could be

Ce— C(Mk.c k).

Unfortunately, this version is not strong enough. If, for example, e is a A-abstraction that eventually
causes an application of k¥ to some value, the reduction would be stuck and no further evaluation
would be possible. The solution is to replace k¥ by (Az.A(kz)) so that an application of the
continuation can initiate a program abort. Putting things together, the additional rule becomes

Ce — C(Mk.e (Az. Ak z))). (Ctop)

Although a Cigem redex is also a Cyop redex, this ambiguity causes no problem: by imposing an
appropriate condition on the standard reduction function (see below), it is still possible to emulate
a deterministic machine.

Together, the two new relations, Cigemn and Ciop, can closely simulate the top-level rule of
A.-C”. Indeed, the entire system of c-reduction, Cijem, and C},, suffices for simulating a complete
evaluation. To begin, we introduce the notion of reduction

d=cU Cidem u Gtop-

As usual, we let — 4 and —»4 stand for the respective one-step reduction and its transitive closure.
Furthermore, we write A,-C(d) I e = ¢’ if e =4 ¢/. Next we characterize the relationship between
standard computation and the new reduction system with three lemmas. Clearly, the new system
subsumes the standard computations that are entirely based on c-reductions.

Lemma 3.5 If e — ¢’ without use of Ct then e —»ge'.

Proof. Suppose e — ¢’ without use of Cr. Then e —¢ €’ and therefore e —»ge’. O
Given the operational motivation behind the introduction of Cjgem, it should also be obvious
that once a C-application is at the root of the program the evaluation proceeds as before.

Lemma 3.6 If e, ¢’ then C(\k.e) —»qC(Ak.€').

Proof. Since C;g.m is essentially an instance of Cr inside of the context C(Ak.[ ]), every computation
step in the old derivation is a reduction step inside of C(Ak.[ ]) in the revised calculus. The rest
follows by transitivity. O

Finally, if an evaluation in A,-C” uses a top-level step, there is no equivalent step in the new
reduction system. However, based on the above lemmas, we can show that the rest of the evaluation
in A,-C® can be simulated, and that there is always a close relationship between the respective
terms in the two sequences.

Lemma 3.7 Ife——:e' with at least one C-step, then e —»4C(Ak.€}), where e} may be converted
to ' by replacing all occurrences of (ku) with u for arbitrary values u.

10



Proof. By assumption, the derivation for e r-5-+: e’ must contain a first step using Cr:
e —*Cey > (e1(Az.Alz)) -7 €.

We tag this first, newly-created halt continuation with a dagger t so that we can track it through
the rest of the computation and distinguish its occurrence in the final answer.
By Lemma 3.5, the first part of the above derivation is easily simulated in the new system:

e —»qCe; —4C(Ak.es(Nz.Al(k 2))).

Since replacing (kz) with z in the underlined term yields the underlined term in the previous
derivation, the underlined terms satisfy the desired relationship.

To complete the proof, it suffices to show that the invariant is preserved by all steps following
the first top-level step. For this, we consider two cases.

1. Assume that the tagged continuation is not applied to a value during the rest of the compu-
tation. It is easy to see that in A,-C” the second half of the derivation,

ex(Az.Alz) =2 ¢,
can be transformed into the derivation
e1y —_ el where e’ = e[y — (Az.Alz)].
By Lemma 3.6, it follows that
C(Ak.e1y) —ng C(Ak.€l),
and, by replacing free y with (Az.Af(k z)),
C(Ak.e;(Az. Al(k z))) —»a C(Ak.eyy — (Az.Al(k 2))]).

Again, a replacement of (kz) with z throughout e/ [y « (Az.Al(k z))] yields e} [y «— (Az.Alz)],
which is e'.

2. Assume that the tagged continuation is applied to a value for a first, and last, time:

er(Az.Alz) ! E[(Az.Alz)v] o E[AlY] 57 €.

By the same reasoning as in the first case, there must be an evaluation context E, and a
value v, such that

C(k.ex(Az.Al(k 2)) —»g COk.Eyfyv))ly « (Mz.Al(k z))])
—a  COk.By[Al(kvy)]ly — (Az.Al(k 2))]),

where E = E [y « (Az.Alz)] and v = vy « (Az.Alz)]. Substituting v, for (kv,) and
z for (kz) in the underlined term yields E,[(Atv,)][y « (Az.A'z)], which is the underlined
term E[Atv] above. The corresponding terms in the two derivation sequences still satisfy the
desired invariant.

The rest of the standard computation sequence in A,-C” can only eliminate some or all of the
evaluation context E. These steps are easily mimicked in the new calculus without violating
the desired relationship. O

1



fa — §(f,q) (6)

(Az.e)v — e[z — 7] (Bv)
E*[C e] — C(Mk.e (M. Alk E’[z]))) (Ciz)
Ce — C(Ak.e (Az.A(k z))) (Ctop)
C(Ak.(Ce)) — C(Xk.e(Az.Az)) (Cidem)

Figure 1: The revised syntactic theory of control

In summary, Lemmas 3.5 through 3.7 show that if a program has a value according to eval,,
then the new calculus can reduce the program to a recognizably equivalent expression. The es-
sential difference is that the reductions in A,-C(d) “remember” whether or not the computation
used any control operations. Thus, the answer in the new theory may be a simple value, v, a
C-application that abstracts over a value, C(Ak.v), or a C-application that abstracts over the ap-
plication of a continuation variable to a value, C(Ak.k v). In the first case, v is the same answer
the evaluation function eval. would produce; in the latter two cases, the body of the C-application
may be converted to the expected answer by replacing all occurrences of (kv) with v.

More importantly, the proofs of the above lemmas also show that the new calculus basically
reduces programs to answers with standard reduction steps. More precisely, an evaluation with the
new rules begins with standard reduction steps based on the relation c. If this yields a value, the
evaluation is finished. If not, it reaches a C-application, in which case it employs a single Cy,,-step,
followed by a number of standard reduction steps based on ¢ possibly intermingled with Cigem
reductions on the complete program. If this yields a C-application of the above form, the evaluation
stops and produces an answer. We abstract this process in an evaluation function.

Definition 3.8. (d-Evaluation) If (C(Mk.e),C(Ak.€')) € Cigem or € — €', we say that
C(Ake) F—idem C()\ke')

Let v and vy be values such that v = vy[y « (Az.Az)].

A program e in A. evaluates to the value v, evaly(e) = v, if and only if

e e—Z v, 0r

o er—2Ce —41C(Ak.e(Nz.Al(k 2))) 1, C(Mk.kvy[y — (Az.Al(k ))]), or

idem

o er—tCe —y C(Ak.e'()«m.Af(k z))) %, COAk.vyly — (Az.Al(k z))]).

idem

Note: Once again we tag the first halt continuation in the above definition to distinguish its

occurrences in the last term of the reduction.
Based on the above lemmas, it is easy to prove that the two evaluation functions, eval. and

evaly, are equivalent.
Theorem 3.9 Fore € A, eval.(e) = evaly(e).

Proof. By Lemmas 3.5 and 3.7, A,-C(d) can simulate standard computations. A simple check of
their proofs shows that the reduction steps in the new system indeed conform to Definition 3.8.
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— For the other direction, assume that evals(e) = v. Then, either e —¢ ¢/, in which case the
conclusion is obviously true. Or,

er—2Ce' — g C(Ak.e'(Az. Al(k 2))) 2, C(Ak.kvyly — (Mz.Al(k 2))])

idem
e r—2 Ce' — 4 C(Mk.e'(Oz. Al(k 2))) 2, C(Mk.vyly — (Az.Al(k 2))])

idem

for an appropriate v,. It is easy to see that in both cases,
er—xCe' . e'(Az.Alz) 0 vy — (Az.Alz)).

Hence, e —. v and eval(e) = v as desired. O

More importantly, we can show that the theory A,-C(d) can also prove all safe equations in
the old theory of control. To establish the claim, we need a lemma for each direction. The safeness
of the new proof rules can be established by straightforward calculations.

Lemma 3.10 A,-C-safe F Cigem, Ciop-

Proof. The safeness of C;ger follows from a simple calculation. Let E be an arbitrary evaluation
context. Then,

A,-C” | E[C(Ak.Ce)] (Ak.Ce)K  for some term K determined by E
Celk — K]

(e[k — K])(Az.Az)

(Ak.e(Az.Az))K

= E[C(Ak.e(Az.Az))].

Verification of the safeness of Cy,, is slightly more complicated:

Ao-C” F E[Ce] = eK  for some term K determined by F

e(ra.A(Kz)) )
(Ak.e(Az. A(kz)))K

= E[C(Ak.e(Az.A(kz)))].

Since the continuation K is an abstraction of the form Az.Ae, the step (1) is a consequence of the
following safe equality:

A-C° F (Az.A(Kz)) = (Az.A(Ae)) = (Az.A4e) = K.

The equation A(Ae) = Ae follows from the safeness of Cigem. O
Every safe equation is also an equation in the new theory A,-C(d).

Lemma 3.11 If A,-C-safet e = ¢/, then A,-C(d) Fe=¢.

Proof. The proof requires several lemmas about the shape of proofs for safe equations. Since it
only contributes insight into the old theory, the proof is explained in the appendix. O

The two preceding lemmas show that adding the two axioms Cijern and Cy,p to the theory
A,-C(c) provides an axiomatic characterization of the theory of safe equations.
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Theorem 3.12 (Safeness) A,-C(d) Fe; = ey iff A,-C-safele; = e

Proof. The theorem follows from Lemmas 3.10 and 3.11. O

An immediate consequence of this theorem is that all equations in the revised theory of control
are operationally sound. In other words, two equal expressions are indistinguishable via evaly with
respect to all Ac-contexts (in the sense of Definition 2.7).

Corollary 8.18 If A,-C(d) | e; = ey then e; =~ e;.

As to the classical properties of the new reduction d, we can show that it is Church-Rosser,
which provides an alternative proof of A,-C(d)’s soundness. The Church-Rosser property moreover

shows that A,-C(d) (and, by the proceeding theorem, A,-C-safe) is a conservative extension of
A,

Theorem 3.14 (Consistency) The notion of reduction d is Church-Rosser. If e —»ge; and
e —4 ey, then there is €' such that e; —» g€’ and e; —»ge€’.

Proof. 2 The proof requires some generalizations of standard techniques. First, we define an
alternative set of reduction rules:

fa — &(f,a) (6)

(Az.e)v — e[z « ] (Bv)
E’[C(Am.e)] — C(Ak.e[m — (Az.A(k E*[z])))]) (Clis)
C(Ak.(C(Am.e))) — C(Ak.e[m « (Az.Az)]) (Cliem)
C(Am.e) — C(Ak.e[m «— (Az.A(kz))]) (Ctop)

Ce — C(Ak.e (Az. Ak z))) (Ctop)

We refer to the new set of reductions as d’. It is easy to show that d and d’ are equivalent reduction
relations, i.e., —»4 - d’ and —» 4 I d. Second, we show in several steps that the new system is
Church-Rosser. The proof for

c' =6 U ,6 U C}:ﬂ

is a simple adaptation of the Church-Rosser proof for ¢ [9]. It is also straightforward to prove
that Cly,, Ciop and Cy,, each directly satisfy the diamond property, and that they are therefore
Church-Rosser. Next we combine the relations and use the Hindley-Rossen method [2:64-66] for
proving the Church-Rosser property of the larger relations. This is straightforward for the union
of ¢’ and Cl,,,, of B, and C{,,, and of g, U Cy,, and Ci,p. The final step requires us to show
that the reductions based on ¢’ U Cj,,,. and Cy,p U C},, commute. For this we use Barendregt’s
commutation lemma [2:65] for the transitive closure of relations and apply it to ¢/ U Cjy,,, and a
parallel one-step reduction relation based on Cy,, U C},,. Based on this, it is easy to show that
the reductions based on ¢’ U Cj;,,, and B, U Cyop U Cy,, commute. Hence, the union, which is the
reduction based on d’ is Church-Rosser because both sub-relations are Church-Rosser. Since d and
d’ are equivalent as reductions, d is also Church-Rosser. O

The new theory of control also has standard reduction sequences, albeit non-traditional ones.

To allow both Ci,p and other d-reductions in standard reduction sequences, we must extend the

?We gratefully acknowledge Erik Crank’s help with this proof.
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set of evaluation contexts to a set of d-evaluation contexts such that ¢ standard reduction steps
can take place after a C-application reaches the top of the entire term. The rest of the definition
is conventional.

Definition 3.15. (d-Standard Reduction Relation; d-Standard Reduction Sequences) Let the set
of d-evaluation contexts (E?) be defined as follows:

E?:= E | C(Ak.E).

The standard reduction relation maps e to &', e —4 €', if there is a d-standard evaluation context
E9 such that e = E4[p], ¢’ = E¥q] for some (p,q) € d.

By adding the following clause to the definition of standard reduction sequences of the A,-cal-
culus (Definition 2.4), we get the set of standard reduction sequences for A,-C(d):

o Ifey,...,e, is a standard reduction sequence, then sois C ey,...,C e,.

Clearly, the standard reduction for d generalizes the standard reduction for v but is a relation
instead of a function. The reduction theory based on d satisfies the same standardization theorem
as conventional A-calculi.

Theorem 3.16 (Standardization) e —sge' if and only if there is a standard reduction sequence

e, ...,e.

Proof. The proof is an adaptation of Plotkin’s corresponding proof. O

Finally, we can show that the evaluation function is again determined by the transitive closure
of the standard reduction relation based on d. Since the latter determines a relation but not a
function, the statement of the theorem takes on a slightly peculiar form.

Theorem 3.17 (Evaluation) evaly C {(e,v)|e+—3v, or e —35C(Ak.kV'), or
e —3 C(Ak.v"), where v = v'[y — (Az.Az)]}

Proof. The standard reduction relation obviously extends the relations ——. and +—— 4., from
Definition 3.8. O
With this last theorem, we have explored all the conventional aspects of the connection between

programming languages and calculi.

3.3 Extensions of the equational theory

It is not immediately obvious from the preceding discussion why the reduction Cjy must be re-
stricted to capturing only singular evaluation contexts. Combined with C},p, which effectively
captures empty evaluation contexts, the two relations serve to capture arbitrary evaluation con-
texts. Consequently, the following generalization of Cfz would seem to be a natural unification of
Clipt and Ciop:

E[Ce] — C(Mk.e (Az.A (k E[z]))). (Cx)

This rule captures an arbitrary evaluation context in a single step and applies the subterm of the
C-application to an appropriate continuation.
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The notion of reduction Cg subsumes Cjy and Cy,p as sub-relations, but the inverse is not true.
Consider the term u(v (C e)). Two uses of Cyp yield the term

C(Ak.e (Az.A ((Ay-A (k (v y)))(v 2)))),

but a single application of Cg with E = u (v [ ]) produces
C(Ak.e (Az.A (k (u (v ))))).

Both terms are in normal form and it is thus impossible to prove their equivalence in either A,-C(d)
or A,-C(d) modified with Cg. In short, although Cg adds equational power to the calculus, it
destroys the Church-Rosser property.

A second extension of the theory A,-C(d) is based on the observation that the safe theory
cannot simulate the evaluation in a perfect manner. In A,-C(d), there are three different types of
answers. First, an evaluation may simply yield a value. Second, an evaluation may abort some part
of a computation and produce the answer (CAk.v) (with v possibly containing k), which basically is
an exceptional answer. Finally, the answer may have the shape (CAk.kv). In this case, the program
discovered the answer at some point in the evaluation and used a continuation to escape from the
rest of the evaluation. If the answer does not contain any references to the captured continuation,
it is uninteresting from an observational perspective that the program used a continuation for
escaping from the evaluation process.

We could avoid the third kind of answer for an evaluation in A,-C(d) by introducing an addi-
tional reduction that eliminates C-applications when they have become superfluous:

CAk.ke) —> eif kg FV(e) (Cetia)

Unfortunately d U C.yn is not Church-Rosser. A counterexample is the C.pp,-redex itself, which
is also a Cyop-redex. Whereas a Ceim-step yields e, a reduction with Cy,p, followed by a B,-step
leads to CAk.((Az.A (k z)) e). Since e does not necessarily have a value, we cannot continue the
reduction as necessary.

We leave unsolved the problem of finding an extended theory that includes Cg or C.im and
still satisfies the classical properties of reduction theories.

4 Theories of state

The extension of the A,-calculus to a theory of procedural abstraction and assignment requires two
new syntactic constructs for the underlying term language. First, there is a need for assignable
variables—also called state variables—that denote different values at different times. To distinguish
the set of assignable variables from the set of binding variables of the simple A,-calculus, we rename
the latter set Varsy and refer to the former as Vars,, annotating elements according to their set-
membership: z, € Vars) and z, € Vars,. Since assignable variables do not denote fixed values,
we do not use them as values.

Second, the extended language needs a construct for altering the value, or state, of an assignable
variable. For this purpose we use the o-capability, which is a new form of value, (czy,.€). A o-
capability is similar to a A-abstraction, but instead of binding a variable in some expression, it
represents the right to assign the variable a new value. Upon invocation, it globally alters the value
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of its variable and then continues with the evaluation of its subexpression or body. We refer to the
extended language as A,.

The notions of substitution, contexts and evaluation contexts are adapted appropriately. The
latter definition has the same shape as in the A,- and the A,-C-calculus framework, but denotes a
subset of contexts over A,.

In the following subsection, we introduce the calculus of procedural abstraction and state [8].
Like the original calculus of control, the state calculus requires two kinds of term relations and,
moreover, relies on further extensions of the language A,. We show in the second subsection that
both program-level term relations as well as additional language extensions are superfluous. In
addition, our new theory of state is a proper extension of the existing one.

4.1 A syntactic theory of state

According to B,, the application of a procedural abstraction to an argument value is equivalent
to the evaluation of the procedure body with all occurrences of the procedure parameter replaced
by the argument. Given this, it is reasonable to expect that a reduction relation for procedures
with assignable parameters replaces the assignable parameter with something that corresponds to
the argument value. The traditional solution is to maintain an additional function that maps a
parameter name to a value: a store. In our earlier report [8], we demonstrated that the store and its
management can be incorporated into the term structure of the program. The key is to keep track
of the substituted values via a unique label that is attached to the value before substitution. Based
on this labeling scheme, an assignment can be simulated by replacing all values that are tagged
with the same label by a different labeled value. The use of the value of an assignable variable
requires stripping off the label of the labeled value. The deallocation (or garbage collection) of
unusable storage happens automatically.

A complicating fact for the definition of the extended term language is the potential for self-
referential values. For example, the expression (Az.(oz.z)(Ay.z))0 evaluates to a recursive function
that returns itself upon application. To achieve canonicity in the representation of such values, we
add labeled bullets of the shape o for all labels z. For convenience, we add o-capabilities with
labeled bullets in the variable position (o % .e), which represent the result of substituting labeled
values for free variables.

Following these preliminary remarks, we define the extension of A, to Ag with the following
abstract syntax:

e u= v|(ee) |z, | v°| o
v u= c|zy| (Azae) | (Azo.€) | (0zg.€) | (00" .€)

The set of labels is the set of assignable variables (used without subscript). When the distinction
between assignable and binding variables is irrelevant or deducible from context, we omit the
subscripts A and o from variables. As indicated above, the substitution of free variables in terms
is adapted mutatis mutandis with one exception: (0z.e)[z « v'] = (0 o' e[z — ']).

Since the labeling strategy is a textual representation of a store, we need to ensure that programs
describe consistent stores. For example, every label should be attached to only one value and labeled
bullets should be used only to indicate self-references; typical terms that violate these conditions
are (Az.1)¥(Az.0)Y and o'. To eliminate such terms without a corresponding store configuration,
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we impose three context-sensitive conditions on the term language and use the resulting language
as the basis of the calculus:

(C1) an z-labeled bullet (e¥) can only occur as a sub-term of an z-labeled value or in the variable-
position of a o-capability, and an z-labeled value must not contain z-labeled values, only
z-labeled bullets;

(C2) the bound variable of a A-abstraction must not occur as a sub-term in a labeled value;

(C3) the labeling of the two subexpressions in an application must be consistent: if »* is a subterm
of e and u* is a subterm of ¢’ where (e ¢') is an application, then v and » must be identical
after replacing labeled values in them by the labels.

Equipped with the notion of labeled terms, we introduce labeled-value substitution, e[e® «— v7],
which replaces all z-labeled values in an expression e by v® such that the resulting expression
respects the above conditions. This may involve replacing labeled subvalues by labeled bullets in
v.

Next, we can turn to the question of how to simulate the execution of a A, program through
reductions of Ag-terms. For an example, we consider the application of an abstraction with an
assignable parameter to a value. We would like to model this effect with a substitution of the
parameter by a labeled value. Since the label must be unique for every reduction of such an
application, it is impossible to perform several reductions in parallel in different parts of the term.

The coordination of the effects of labeled-value substitutions becomes possible by ensuring
that only one such contraction is applicable. Since the only unique point in a term is the root, the
calculus again coordinates imperative effects of transition steps by splitting the set of term relations
into a set of simple notions of reduction and computation rules. The reductions lift a redex to the
top of the program where the computation rules perform the appropriate action. There are three
kinds of redexes that require unique actions:

1. the application of a procedural abstraction with an assignable variable to a value, (Az,.€)v;

2. the application of a o-capability to a value, (o e®.e)v, which must proceed with the evaluation
of the body after replacing all occurrences of u* with v® in the entire program; and

3. the use of a labeled value, v, which produces the value v[e® « v%].

According to the above reasoning, such redexes must be lifted to the top of the program just
before they are evaluated. Consequently, the reductions must lift the redexes out of evaluation
contexts, and, after applying the appropriate computation rule, the evaluation must continue with
the expression in the hole of the original evaluation context. Putting all of this together, we
introduce the following notions of reductions where the meta-variables X ranges over assignable
variables, labeled values and labeled bullets (depending on context):

E[((Azs.€)v)] — (Azq.Ele])v (BE)
E[((0X.e)v)] — (o0X.Ele])v (oE)
ElX] — (w.Ep)X (D5)

In accord with the variable assumptions in Section 2, we assume in these equations that variables
are renamed as necessary to avoid conflicts.
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Once redexes reach the top of the program, the appropriate action must take place. For the
simulation of these in a term rewriting system, we define the following computation rules:

(Azs.e)v > e[z, «— v¥] where y € FV(e,v) (Br)
(0 0° .€)v > e[o” — v7] (or)
(wv®) > u(v[e® «— v*]) (Dr)

Notice that (oz.e)v is a redex for the reduction relations but not for the computation relations: in
A, assignments can only be made to bound variables (which are replaced by labeled variables in
time).

We define the calculus of state in the same way as the calculus of control. The basic notion of

reduction is
S:VUﬁEUO'EUDE.

When terms are equal according to s, e =, €', we write A,-S(s) I e = €’. As usual, —, and —»,
denote the one-step reduction and its transitive closure. The computation relation is defined by:

b, = —»,UBrUor U Dr.

The relation =, is the smallest equivalence relation generated by the computation relation >,. We
denote equivalences in this theory by A,-S” F e = €.

The syntactic theory of state satisfies the same variants of the classical properties as the syntactic
theory of control. Its sub-theory based on the relation s is Church-Rosser and the computation
relation satisfies the diamond property. There are standard reduction sequences for the reduction
relation and standard computation sequences for the computation relation. As above, we denote
the standard reduction function with —,. Most importantly, a subset of the standard computation
mapping defines an evaluation function.

Definition 4.1. (s-Standard Computation Function) The standard computation function maps
a program e to a program e, e —, €', if e standard reduces to €’ or if e computes to e’: s, =
s, UG Uor U Drp.

Now the evaluation function on A, (and Ag), eval,, can again be defined as the transitive
closure of the standard computation relation:

eval,(e) =v if er—,v.

Mutatis mutandis, this definition induces an operational equivalence relation for A, (=) (along
the lines of Definition 2.7). Most importantly, we can prove that equations between A, terms in
the calculus are safe and imply operational equivalence.

Theorem 4.2 ([8]) Let e and e’ bein A,. If A,-S" e = ¢ thene~, €.
Unfortunately, the theory A,-S” is not compatible with respect to equations over A, terms. For

example,
Ap-S® F (Az.(02.2)1)0 = 2,
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yet,

Ae-S” I Ay.(Az.(02.2)1)0 = Ay.2.
In the second equation, the top-level steps that are crucial for evaluating assignments can no longer
be performed because the expressions are embedded inside of A-abstractions. We could solve this
problem by introducing an extended theory of safe equations as in the old theory of control, but
fortunately, there is a better solution for this problem.

4.2 The revised syntactic theory of state

The crucial insight that leads to an improved theory of state originates from a simple observation
about the context-sensitive restrictions of the language Ag. The motivation for the restrictions
is the existence of terms in the unconstrained language that do not represent an intermediate
consistent store in the evaluation of a A,-term. The context-sensitive restrictions eliminate such
terms.

Lemma 4.3 For every term e € Ag there is a term €' € A, such that &' v} e.

Proof. By the context-sensitive restrictions on Ag, for every term e € Ag with labels z1,...,z,,
there is a term e” € A, with free assignable variables z,,...,z, and values uy,...,%, in A, such
that

e=e’...[z; — (Az.2)%]...[0% — (w;...[z; — (Az.z)™]...)%]...

First, for every label z; in e, there is a unique value u; that corresponds to the collection of z;-
labeled values. By condition (C3), we can construct this value by replacing all labeled values with
their labels in an arbitrary z-labeled value (not a bullet!). This algorithm produces the values u;
through u,. Second, we can also obtain e” by replacing all occurrences of a labeled value with its
label. By construction, the terms e”, u,, ..., u, satisfy the above condition. We can now take

e = (X e B (O 0 B B YU o A M MDY o X0,

which proves the proposition. O

In order to simplify the presentation of terms like ¢’ in the preceding lemma, we introduce a
simplified version of Landin’s [11] letrec: the p-application.® A p-application is a combination of a
finite function from assignable variables to values, represented as a set 6 = {(z1,v1),...,(Zn, Vn)},
and an expression e; it expands according to the construction in the lemma:

i T T A W L dEf (AE] oo Bn (O8] o s B B YUY « ot (AR oo . (A2 2).

The set notation is justified since all expansions corresponding to some linear arrangement of the
set clearly reduce to the same term in A,-S”. When we write pf U @'.e, we assume that 6 U ¢ is a
finite function. Finally, we define pfl.e = e. We use Dom(8) to denote the set of defined variables,
{z1,...,Zn}, in the function 6.

3Recently, Abadi et al. [1] proposed and studied a variant of the A-calculus that incorporates explicit substitutions.
Our p-applications correspond to their closures: in the notation of Abadi et al. pf.e would be the term e[d] for a
non-recursive #. In other words, our p-applications generalize their notion of closure to the more common notion of
Scheme- and ML-like closures whose lexical variables may be bound to recursive values.
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It also follows from the above Lemma that every theorem e; = ey in A,-S” for e;,e5 € Ag
implies the existence of a theorem
p01.€1 = pbs.e5

for some pb.€}, pfs.€5 € A,. This holds, in particular, for the computation rules, which we would
like to eliminate. Assuming that no labeled value gets lost during a transition, the reformulation
of the top-level relations yields the following set of term relations:

p0.((Az,.e)v) — poU{(z,v)}.e
p0 U {(z,0)}.(uz) — p8U {(z,)}(u0)
pO U {(z,u)}.((0z.€)v) — pbU{(z,v)}.e

The first rule says that a Bp-transition creates a new entry in the p-application. The second
rule specifies that the use of an assignable variable corresponds to a lookup of the variable in the
p-application-set. And finally, the assignment is a modification of one pair in the set.

In short, the set of the (global) p-application acts like a store, and the translation of the
computation rules have the appropriate effects on the finite store. More importantly, these rules
are completely independent of the context in which they occur. They do not rely on the uniqueness
of new variables, have no effect on the context, and the lookup is relative to the closest (part of
the) store in the term. Hence, there is no further need for coordinating these rules, and we may as
well take these relations as notions of reduction.

Unfortunately, the above rules are not quite strong enough to replace the computation rules in
the preceding subsection. The assumption that a transition does not loose labeled values is too
strong. If, for example, a bound assignable variable does not occur in the procedure body, the
corresponding instance of B would translate as

p0.((Azy.€)v) — ph.e,

OoT even

p0.((Azs.€)v) — pf'.e, ¢ cé
if v contains the last reference to some other assignable variables. In general, the right hand side
of the new reductions may contain variables in the store of the p-application that are no longer
relevant to the evaluation of the body. These variables and their associated values are garbage
and can be discarded. Whereas garbage collection is automatic in A,-S®, we need to introduce an
explicit garbage collection rule for the new system:

ploU O1.e — pby.eif 8o # O and Dom(6) N FV(pby.€) = 0. (ge)

We have summarized the revised theory of state in Figure 2. The rules in the figure slightly
differ from the rules developed above. In order to reduce the number of reductions, we have merged
the Ag-, og- and Dg-rules with the replacements for the computation rules. This also requires a
new term relation, p, for merging two p-applications, which would otherwise be the effect of the
lifting rules. The basic reduction relation for the new calculus is

t=vUB,UDU0cUgcUpy.

The new theory is referred to as A,-S(t). With Lemma 4.3 and the garbage collection rule, we can
show that the new set of rules is a complete replacement for the computation rules.

21



fa — 6(f,0) (©)
(Azr.e)v — efzy « v] (By)
(Mape)o — pl(z,9)he (6.)
p0U {(2,)}.Elz] — p8U {(z,9)}.Elb] (D)
pO U {(z,u)}.E[(oz.e)v] — pfU{(z,v)}.Ele] (o)
ploU b1.e —> pby.eif 6y # 0 and (gc)
Dom(6) N FV(pby.e) =0
p.E[pf'.e] — p8U @' .E[e]if §' # 0 and pb.E # [ ] (pu)

Figure 2: The revised syntactic theory of state

Lemma 4.4 Let e1,ex € Ag and let pby.e}, phy.ey € A, be their counterparts according to Lem-
maf4.3. If A,-S® I e1 b, €3 then Ay-S(t), BE, Dg, 05 - p01.€5 — pfs.e5.

Proof. The proof relies on two facts about the construction in Lemma 4.3:

1. The algorithm for converting e to pf.e’ does not alter the structure of the term e except for
replacing labeled values by labels. In particular, values remain values and non-values remain
non-values.

2. The labeled values in e that are moved into the store of the program pf.e’ preserve their
structure in the same way.

As a consequence, a redex in e; not inside of a labeled value becomes a redex at the homologous
position in e{. More specifically, s-redexes becomes s-redexes and Br-, o7-, and Dr-redexes become
instances of f,-, o-, and D-redexes, respectively. Similarly, s-redexes inside of labeled values in
e1 become s-redexes inside of the values in the store of pf;.e] that directly contain the redex (a
labeled value directly contains a subexpression if there is not a labeled sub-value that contains the
subexpression).

Given these preliminaries, it is easy to see that, given a reduction in A,-S”, a reduction in
Ay-S(t) of the corresponding redex in pf;.e] leads to a term p6*.ej. Clearly, neither s- nor t-redexes
create new free variables but the substitution process associated with s-redexes may eliminate some
labels by vacuous substitutions. On the other hand, the corresponding t-redexes will eliminate the
corresponding variables. Hence,

pb*.e} = pby U b.€),
such that, by the construction of pf.ej,
Dom(0) N FV (pb2.€5) = 0.
This permits an application of the garbage collection rule, gc, and we get
pb1.e; — pb*.el, — pby.eh. O

The lemma implies that the new theory, extended with the lifting reductions, can prove all the
equations on A, that the old theory can prove.
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Theorem 4.5 Lete,e’ € A,.
(i) If A,-S® e = ¢ then A,-S(t),B8, DE,o5Fe=¢.
(i1) The converse does not hold.

Proof. (i) By the diamond property, A,-S” F e = ¢’ implies that there is a term e* such that
Ay-S” I ep?e* and A,-S” F e'pl e*. Tt follows from Lemma 4.4 that A,-S(t),0g,05, Det-e—»e*
and A,-S(t),Br,05, Dg - ¢ —» e*. Therefore, A,-S(t),Bg, Dg,05 e =¢€.

(i) Here is a simple proof in A,-S(t):

A-S(t) F Ay.(Az.(02.2)1)0 = Ay.p{(z,0)}.(c2.2)1 = Ay.p{(z,1)}.2= Ay.2

As explained at the end of the previous subsection, the resulting theorem is not provable in the old
theory. O

A second important consequence of Lemma 4.4 is that the reduction theory based on t alone
can simulate the evaluation of A,-programs.

Lemma 4.6 Lete € A,. If eval,(e) = v for some value v € Ag then e —» pf.v' where pf.v' € A,
is the counterpart of v according to Lemma 4.5.

Proof. If eval,(e) = v for some value v € Ag, then e—,v. In such a series of standard computation
steps, subsequences of standard reduction steps according to g, 0, and Dg are always followed by
standard computation steps according to fr, o, and Dr, respectively; the latter always precedes
a B, step, which puts the de-labeled value into the original evaluation context. In other words, (g,
og, and Dg in standard computations only occur in clusters that, by Church-Rosser and diamond
property, are equivalent to the following three cases:

1. E[(Az.e)v]—, (Az.Ele])vr, Ele[z «— v']]
2. E[v}] —, (Az.E[z])v' >, (Az.E[z])v][e’ — v']—, E[v[e! — 2|]
3. E[(0z.€)v]—, (0z.E[e])v>, Ele][o! « v

Translating these kinds of sequences into the new calculus according to Lemma 4.4, merges them
as Bo/pu, D, and o steps:

1. p0.E[(Az.e)v] — p8.E[p{(z,v)}.€] —¢ p8 U {(z,v)}.Ele]
2. p.E[l] —¢ pb.E[6(1)]
3. poU {(z,u)}.E[(oz.€)v] —¢ pf U {(z,v)}.E[e]

In short, the translation incorporates preliminary lifting reductions into the simulated top-level
steps. But then the derivation in the extended theory no longer uses any lifting steps, i.e., A,-S(t) F
e—» pfo'. O

Based on this lemma, we can now define an evaluation function using only t reductions. The
main idea behind the definition is that programs can maintain a textual representation of the store
in the form of a p-application at the root of the program.
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Definition 4.7. (t-Evaluation) Let e —4; €’ if
l.e=p0. M, M —, M, and €' = pf.M', or

2. (e,e') € (c UDUgecU (puopPs)), where (pu o B,) is the composition of B, and py, ie., a
Bs-step followed by a p_-step.

A program e in A, evaluates to the answer pf.v, evali(e) = pb.v, if e}, pf.v and there is no
e’ such that pf.v sy €.

The single-step evaluation relation (——¢;) is a proper relation because of its non-deterministic
use of garbage collection. On the other hand, by demanding complete garbage collection, eval;
becomes a (partial) function on A, programs. Moreover, it is equivalent to the old evaluation
function.

Theorem 4.8 Let e, pf.v € Ay, v' € As, and assume that pf.v' ——> v. Then, eval,(e) = v' if and
only if evaly(e) = pb.v.

Proof. A simple check of Lemma 4.6 shows that the left to right direction is built into Definition 4.7,
and that the arguments are invertible. O

Since, unlike in the case of control, the new theory extends the old theory, we cannot prove the
soundness of the new theory via the old one. Instead, we must assert some classical properties first.
First, the theory is Church-Rosser.

Theorem 4.9 (Consistency) The notion of reduction t is Church-Rosser. If e—»e; and e—;
ey, then there is €' such that e; —», €' and e; —»; €'.

Proof. The classical methods for Church-Rosser proofs for untyped A-calculi apply. O
Second, we can define a standard reduction relation and a set of standard reduction sequences
for A,-S(t).

Definition 4.10. (t-Standard Reduction Relation; Standard Reduction Sequences) The definition
of —; is based on a set of t-standard evaluation contezts, E:

E:=FE | pb.E.

The standard reduction relation maps e to €', e —; €/, if there is a t-standard evaluation context
E such that e = E[p], ¢’ = E[q] for some (p, q) € t.

By adding the following clause to the definition of standard reduction sequences of the A,-cal-
culus (Definition 2.4), we get the set of standard reduction sequences for A,-S(t):

e Ifeq,...,e, is a standard reduction sequence, then so is oz.e1,...,0z.€,.

Third, the new theory of state satisfies the usual standardization theorem.

Theorem 4.11 (Standardization) e—»; e’ if and only if there is a standard reduction sequence

€.l
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Proof. The proof is an adaptation of Plotkin’s corresponding proof. O
Finally, we are ready to prove that the new theory is sound. We do this in two steps.

Theorem 4.12 (Evaluation) Let e, pf.v be in A,.
(i) If evali(e) = pB.v, then e —} pb.v.
(ii) If e —>} pb.v, then there exists pb' v' such that evaly(e) = p8'.v'.

Proof. (i) The relation ——¢; is clearly a subset of the standard reduction relation, in which all
non-v steps are restricted to the root of the program.

(ii) The relation —; generalizes —y; such that all reductions can be performed inside of a
program as well as at its root. Moreover, it disconnects the relation py o 8, such that py- and
B.-reductions can be separated. However, it is also easy to see that a sequence of ——; steps can be
rearranged so that all p-applications are merged with the top-level p-applications as soon as they
occur in an evaluation context. Clearly, such rearranged sequences are still standard reduction
sequences, and more importantly, they are also sequences of —,;-steps. The difference between
the two answers is that a standard reduction sequence does not assume that all garbage is eliminated
whereas the evaluation function insists on this. O

Now, recall that two A, expressions e and e’ are operationally equivalent, e ~, €', if and only if
they are indistinguishable relative to all A, program contexts (in the sense of Definition 2.7). The
final theorem says that the new calculus is operationally sound in the sense that two expressions
are equivalent in the calculus only if they are operationally equivalent.

Theorem 4.13 IfA,-S(t) Fe=¢ thene~, €.

Proof. Since A,-S(t) is a conventional calculus, A,-S(t) F e = €' implies A,-S(t) F Cle] =
C|e'] for all contexts C. Now assume that for some context C, eval;(C|e]) terminates. By the
Standardization Theorem 4.11, C[e] —} pf.v and therefore A,-S(t) + C[e'] = Cle] = v. By
the Consistency Theorem 4.9 and the Evaluation Theorem 4.12, C[e'] 3}, p6’.v' and therefore
eval;(C[e]) is defined too. By symmetry, Cle] terminates if and only if C[e’] terminates.

For the second condition, assume that eval;(C[e]) = ¢ and eval:(C[e']) = d for constants ¢ and d.
Then, by Lemma 4.6, A,-S(t) I C[e] —» c and A,-S(t) F C[e'] —»d. Hence, ¢ = Cle] = C[e] = d.
Again by the Consistency Theorem, ¢ = d, which proves that e ~, ¢’. O

In summary, the new theory of state based on the reduction t is the essential calculus of state.
It can evaluate programs (4.8); it is consistent (4.9); it has standard reduction sequences whose
standard reduction relation is an evaluation mechanism (4.12); and it is sound (4.13). Finally, it
also extends the old theory (4.5).

Note: The nature of variables

;From Scheme’s [19, 21] practical point of view, the new theory only contains one disturbing
element, namely, the partitioning of the variable set into binding and assignable variables. The
reason for this separation is the desire to use variables as values as in A,. However, in a language
with assignments variables no longer stand for one value but for a series of values. Consequently,
they should not be considered as values but as expressions that always have a value. By excluding
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the set of variables from values, the distinction between the two variable sets becomes superfluous
and the language becomes Scheme-like:

z|v|(ee)

!
v u= Apie|oze.
A revised calculus only requires a single axiom for parameter-passing, namely, §,. The only loss of
this modified theory is that it is no longer a conservative extension of the original A,-calculus.
On the other hand, such a revised calculus easily accommodates another reduction that simpli-
fies work with the calculus. In the revised calculus a variable is said to be assignable if it occurs in

the variable position of a o-capability. When a variable in a p-set is no longer assignable, the new
calculus can replace the variable with its recursive value:

U {(z,0)}.e — (pbe)lz — vz — Y(Ao.0)] (py)

if z is not assignable in e, v, and @

(where Y g (Afy.(Az.zz)(Az. f(Ay.(zz)y))y)). A restricted version of G, can be derived from py.

5 TUnified theories of control and state

The original theories of control and state are completely orthogonal to each other [5]. The sum of
the extended notions of reduction yields a theory for a language with facilities for both control and
state manipulation; indeed, the shape of the reduction relations as pattern-matching rules stays the
same. As a result, the larger theory contains the theories of procedural abstraction, control and

state as sub-sets.
In our new framework, a simple merger is insufficient, since a C-application may block variable
references and assignments. Thus we must introduce an additional notion of reduction to move

C-applications outside of p-applications:
p8.Ce —> Cpl.e (pC)
Let Ag, stand for the merged language:

¢ u= v|(ee)]| (Ce}| 2o
v = B| f|%x]|Ame| oz

Furthermore, let d’ and t’ stand for the extension of the notions of reduction d and t to Ag,. The
new theory of control and state is based on the union of these reductions with pC:

cs=d&' Ut" UL
Most importantly, the new notion of reduction is syntactically consistent.

Theorem 5.1 The extended notion of reduction cs is Church-Rosser.
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Proof. All three parts of the relation satisfy the Church-Rosser property. The proof that the union
does is a straightforward generalization of the Hindley-Rossen method [2:ch3]. O

As a consequence, the larger theory contains the theories A,-C(d) and A,-S(t) as subsets.
Evaluation can be defined for the larger theory. A program p evaluates to ¢ in the new theory if
and only if p evaluates to a value v in the old theory, where ¢ is of the form v’ or CAk.vj, v}, can
be converted to v' by replacing all occurrences of (ku) with u as in Lemma 3.7, and v’ may be
constructed from v using the algorithm of Lemma 4.3.

6 Towards a better understanding of imperative languages

The most closely related research on reasoning with continuations and assignments is the work by
Mason and Talcott. Over the past few years, they have developed equational theories for a first-
order version of Lisp with destructive cell operations [13], for a A¢-like language on control [22, 23],
and, most recently, for a higher-order imperative version of Lisp without control abstractions [14].
For a fragment of first-order destructive Lisp without arithmetic and recursion, they have also
shown that it is possible to obtain a complete theory [15].

Mason and Talcott’s equational proof systems are essentially ad hoc approximations to the
operational equivalences of the respective languages. They find the axioms of these theories by
extracting and generalizing frequently used laws from example correctness proofs of programs.
From a high-level perspective, the axioms are related to our notions of reduction, but the two
frameworks strongly differ in the details. Mason and Talcott have not yet addressed the questions
of how their theories relate to the underlying theory of procedural abstraction and of how the
various theories relate to each other.

An early effort in the direction of equational theories for proving the correctness of higher-order
imperative programs is due to Demers and Donahue [4]. The focus of their research is Russell,
an extension of the higher-order typed A-calculus with cells and destructive cell operations; their
major result is a proof system for Russell with several dozen axioms, quite unlike our reductions
or the Mason-Talcott axioms. Besides equational assertions, the theory also has statements for
expressing the purity and legality of expressions as well as their imperative effect. There are no
formal results on the equational theory nor its relationship to the original A-calculus.

Neither Mason and Talcott’s research nor the work by Demers and Donahue provides an analysis
of the equational theories from the perspective of a reduction theory. Both theories are clearly
intended for practical use with a particular programming language and proof system.

The principal motivation for our work is a better understanding of the essence of imperative
extensions of higher-order programming languages based on the A-calculus. Our new theories
rely on minimal sets of notions of reduction, which provide a simple operational semantics for the
respective languages. The A,-calculus is the core of all theories; the various theories are conservative
extensions of the respective subtheories. In this sense, our operational semantics is modular: the
semantics of an extended language is an extension of the semantics for the simpler language. The
advantage of this approach is that results on evaluation and proof systems automatically lift to
richer languages; the disadvantage is a certain weakness of the proof systems. We believe that
recent work by Moggi [17] on the computational A-calculus—motivated by similar concerns—and
our own work are the correct starting point for developing modular proof systems for large, powerful
languages.

The development of a good proof system will require the development of an induction principle
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and other mathematical tools in order to strengthen the power of the system. One possible solution
is to work with the underlying operational approximation relation and to axiomatize its use [14].
The more popular direction relies on the ideas of denotational semantics. Currently, however,
denotational semantics provides different models for different languages, especially in the realm
of the imperative, higher-order language family. It is consequently difficult to relate results on
a language to results on its extensions. Qur approach to operational semantics should lead to a
collection of denotational models for imperative higher-order languages in which a model for an
extended language contains the model for the core language as a projection. Such a denotational
theory would provide an improved understanding of control and state in programming languages
and their relationship to other language facilities.

Acknowledgement Both Udday Reddy and Carolyn Talcott independently suggested to look
for simpler, congruent versions of our calculi. Tim Griffin read an early draft of this paper and
proposed clarifications of several opaque points in our discussions. Erik Crank came up with large
number of counter-examples to the Church-Rosser property of various extensions of our control
theory; he also pointed out a flaw in an early draft of the proof for the Soundness Theorem of the
new state theory. We also appreciate the referees’s efforts, leading to the elimination of a number
of mistakes and a greatly improved presentation of our results.

A Appendix: Proof of Lemma 3.11

Before we can sketch the proof of Lemma 3.11, we need to collect some facts about the general
shape of proofs of safe equations. We know from the definition of safeness that if e =, ¢’ is safe
then Ele] =. E[e'] is a theorem for every evaluation contexts E. Consequently, by the Church-
Rosser and the Standardization Theorems, there must be standard computation sequences from
Ele] and E[€'] to some term p. The proof of Lemma 3.11 relies on the fact that these two standard
computation sequences have certain properties.

Definition A.1. (Standard Computation Sequences) The definition of standard reduction se-
quences is based on the relation ¢. They are defined just like standard reduction sequences for
the relation d: see Definition 3.15. We extend standard reduction sequences for ¢ to standard
computation sequences for the theory A,-C” as follows:

1. All standard reduction sequences are standard computation sequences.

2. If e >, e; and ¢ through e, is a standard computation sequence, then e,e;,...,e, is a
standard computation sequence.

For the following lemmas, we use the terminology grabbing a continuation, by which we mean
a sequence of applications of Cjy followed by a top-level transition Cr, which creates a new ab-
straction of the form (Az.Az) and provides access to an abstraction of the evaluation context E.
We represent such a continuation with (A + E). The following lemma provides the justification
for this notation by connecting the invocation of the continuation to the reduction of the encoded
evaluation context. Again, we label instances of A in order to keep track of continuations.

Lemma A.2 ([9]) ((A+ E)v) =] Au if and only if E[v] —». u.
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Furthermore, the definition of a standard computation sequence implies that all top-level tran-
sitions in a standard computation sequence are part of the series of standard computation steps at
the front-end of the sequence. In particular, if a sequence grabs and invokes a continuation, then
there is a standard mapping between the two points.

Lemma A.3 If E[C e]—— e(A! + E) and e(A! + E),..., Alv is a standard computation sequence
(for some value v), then E[C e] —. Alv.

Proof. Obvious: (A'v) can only get to the root of the program by computation rules. By Defi-
nition A.l such transitions can only take place within the series of standard computation steps at
the front-end of the term sequence. O

The two preceding lemmas lead to the first crucial property of the standard computation se-
quences for safe equations. If both sequences grab a continuation, the continuation is invoked if
and only if both sequences invoke it.

Lemma A.4 Let Ce =, Ce' be a safe equation. Let E be an arbitrary evaluation contezt and let p
be such that
E[Ce] —2 e(A' + E),...,p

and
ElCe'|—s2 e (At + E),...,p

where e(A+ E),...,p and ¢'(A+ E),...,p are standard computation sequences.
Then, e(Al + E)+=s! Alv if and only if &/(Al + E) -7 Aty for some values v and u.

Proof. By Lemma A.3, it suffices to look at the front-end of the standard computation sequence.
Thus assume that e invokes the continuation but ¢’ does not. Since the computation sequences are
in standard form, the decision to invoke or not to invoke the continuation does not depend on the
evaluation context E. Hence, we may consider a less arbitrary context, say, E = (Az.c)[ | for some
constant ¢ not in e or ¢’. By Lemma A.3, this implies p = c.

The second derivation sequence, on the other hand, may or may not discard the newly created
continuation. If it does not, p must still contain the corresponding new A-application. On the
other hand, if ¢’ throws away its continuation, p can no longer contain any part of the evaluation
context, i.e., the unique constant ¢. In either case, the second derivation sequence places inconsistent
requirements on the term p. This contradiction proves our claim. O

A second property of standard computation sequences for safe equations is that if only one of
the derivation sequences grabs the evaluation context, then the common term is an .A-application
and the continuation is never invoked.

Lemma A.5 Let Ce =, €' be a safe equation. Let E be an arbitrary evaluation contezt and let p
be such that
E[Ce]—2e(AT + E),...,p

where e(A! + E), ..., p is a standard computation sequence. Moreover, let
E[e| —».p

and let E[€'],...,p be the corresponding standard computation sequence.
Then, p = Agq for some q. Moreover, it is impossible that G(AT + E) invokes the continuation
(At + E), i.e., it is impossible that p = Alq.
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Proof. It is easy to see that the evaluation context in this continuation must not occur in p because
the second term, e/, cannot construct (.Af + E) for arbitrary contexts E. Consequently, the first
derivation must eliminate all pieces of E including the labeled continuation (Af + E), and p cannot
contain any pieces of the evaluation context. As a result, the second derivation sequence must
abort the entire evaluation context E without performing a top-level step. Consequently, the term
p is of the shape Ag for some term ¢. By the above argument that p does not contain a tagged
abort application, we also know that p # Alq. O
With Lemmas A.4 and A.5, we can now prove Lemma 3.11.

Lemma 3.11 If A,-C-safe - e = ¢/, then A,-C(d) e = ¢'.

Proof. The proof is an analysis of the derivations of the equations E[e] =, E[e’]. As discussed,
there must be two standard computation sequences that start in the two distinct terms and end in
a common term:

Ele],...,p and E[€'],...,p.
There are three major cases:

1. Neither standard computation sequence uses top-level rules. Then the standard computation
sequences are such that
Ele] —¢p and E[e'] —». p.

Since —». C —»y, these reductions also hold in d, and A,-C(d) I Ele] = E[e'].

2. Both sequences grab the continuation. According to Lemma A.4, we must now distinguish
two subcases:
(a) Both sequences invoke the continuation:
Ele] —¢ q(,l'LJr + E) E'[(A! + E)v]
Atuly — (Al + E)]

0O o# 0 #

=3
—

1=
b

and

-2

Ele1+—z: g (A + E) . E"[(A!+ E)
=t Aty — (A + E)).

By Lemmas 3.5, ..., 3.7, we know that the following holds in A,-C(d):

Ele] +—% C(Ak.g(A!+Ek+E))
—»g C(Ak.kuly — (Al + &k + E)))

and

Ele] +—3 C(k.g'(At +k+ E))
—»g CAk.ku'[y — (At + & + E))).
Since u and v’ are values, the rest of the standard computation sequence must be provable

in Ay-C(c):
Av-C(c) F uly — (A + E)] = /[y — (AT + E)]
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By this we directly have that
Ap-C(d) F uly « (Al + k + E)] = v'[y — (A" + k + E)].
But then we also get that

A-C(d)F  COk.kuly — (At +k+ E)])) =
C(Ak.ku'[y « (Al + k4 E)))
and hence A,-C(d) I E[e] = E[€].

(b) Neither sequence invokes the continuation. The analysis of case 2a applies again with
the exception that the intermediate terms

C(Ak.kuly — (AT + k + E)))

and
COk.ku'[y — (A + k + E))])
look like
C(\k.uy — (At + &k + E)))
and
COka'ly — (A + &k + B))),
respectively.

3. Finally, it may be the case that one sequence grabs the continuation and the other does not:
E[e]—2 g(A' + E),...,p and E[e'] —».p.

It follows from Lemma A.5 that p has the shape Ar, that r does not contain the tagged
continuation, and that ¢ does not invoke the continuation. Again by Lemmas 3.5 through 3.7

Ele] —»4 C(Mk.g(Al + k + E))
and, given that (A" + k + E) does not occur in p,
Ele] —»4a C(Ak.g(A! + k + E)) —»4 C(Ak.p), k & FV(p).

Since we know from Lemma A.5 that p is of the shape Ar = CAd.r for some r with d not in
r, we can derive the rest with a simple calculation:

Ao-C(d) F CAk.p

CAk.(CAd.r)
= CMe.(Mdr)(Ae Ak z))
= Chk.r

p.

These are all possible cases and now we know that A,-C(d) - E[e] = E[e] for all E. This holds
in particular for E = [ ] and therefore A,-C(d) Fe=¢. O
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