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Abstract
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lation is the sampling strategy for shadow ray testing. It is demonstrated
that the naive strategies used in traditional distribution ray tracers are
not adequate for rendering scenes that include a large number of lumi-
naires. A new family of sampling strategies is introduced, and is shown
to solve many of the problems associated with naive sampling strategies.
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1 Introduction

In recent years the advantages of Monte Carlo solutions to rendering prob-
lems have become increasingly clear. These advantages exist primarily because
Monte Carlo methods lend themselves to problems of high dimension or high
complexity. The chief problem of Monte Carlo methods is that the expected
solution error tends to be relatively high. Fortunately, rendering problems usu-
ally require results within no more than about one percent of the correct value,
so the high error of Monte Carlo methods is not a fatal flaw.

Monte Carlo methods have been used in ray tracing programs[4, 13, 33], and
for radiosity programs[20, 1, 25, 10]. An unfortunate oversight in the graphics
literature is that it is usually assumed that once the decision to apply Monte
Carlo integration is made, that application is mechanical. It is true that it is
mechanical to generate a wvalid estimate, but generating a good estimate (an
estimate with low variance) can be difficult. Kirk and Arvo have demonstrated
that choosing ray paths and reflected ray directions probabilisticly is also more
difficult than is usually implied by the literature[17, 16].

In this paper, we focus on the design of Monte Carlo estimators for direct lighting
from areal luminaires’. We phrase our solutions in terms of the probability
density functions used to guide the shadow rays used for visibility tests. These
methods are especially appropriate when many (tens or hundreds) samples will
be taken in each pixel. If only a few sample will be taken in each pixel, then
culling methods such as that of Ward[32] or Kok and Jansen[18] would certainly
work better,

In Section 2 we describe the direct lighting integral (a special case of the ren-
dering equation[13, 11]), and the fundamentals of Monte Carlo integration. In
Section 3, we show the specifics of a Monte Carlo estimator for the color of a
point illuminated by a single luminaire. In Section 4, we argue that applying
Monte Carlo integration to a scene with many luminaires should not be done
by sending a shadow ray to each luminaire. Instead, we construct a probability
density function over the union of all luminaires and send a single shadow ray to
that union. That section contains the most important new ideas in this paper.
Section 5 discusses some time complexity issues and what kinds of programs
would benefit from the techniques described in the previous sections. Finally,
Section 6 discusses the strengths and weaknesses of the techniques presented in
this paper, and suggests some possible directions for research.

YA luminaire is an object that produces light, such as & light bulb filament. An areal
luminaire has & non-zero surface area, such as a fluorescent light panel.



Figure 1: The geometry for Equation 1.
2 Theory

Many researchers have expressed the lighting at a point in terms of an integral
equation, usually referred to as “the rendering equation™[4, 13, 11, 7]. Cook et
al. argued that Monte Carlo integration was a good way to get an approximate
solution to this integral equation. Kajiya extended the approach of Cook et
al. into the first fully unbiased Monte Carlo solution to the rendering equation.
Cook et al.’s approach is now usually called “distribution ray tracing” and
Kajiya’s method is called “path tracing”. Both methods do a Monte Carlo
integration for each luminaire by choosing sample points on each luminaire.
Each sample point will have a “shadow ray” sent to it from the point being
illuminated. Path tracing makes two changes to distribution ray tracing. The
first change is that ray branching is not allowed, so transparent surfaces will
generate either a reflected or refracted ray, but not both. The second change is
that all surfaces, including diffuse surfaces, generate a reflected ray.

It is also necessary to generate a good estimate for the color of a point being
illuminated by a single luminaire. Suppose we want to calculate the direct
lighting component at a point x viewed from direction 9. This quantity will
be a spectral radiance?, and can be written as a function of wavelength, A:
L(x,%, ). We will assume that the wavelength dependencies are handled by
calculation at a set of discrete wavelengths A; and will drop the wavelength term
from our notation. Given a luminaire, S, the direct lighting resulting from §

?In the heat transfer literature, and and some of the graphics literature, the word intensity
is used instead of radiance. Because radiance is part of an ANSI standard for Nlumination
Engineering{12], and is used in Physics[5] and Colorimitry[24], we think it, along with the
other standard terms of [12] should be adopted by the graphics community.



(see Figure 1) can be written:

L(x,9) = / 9(x, xI)P(xs ¥, W)Lc(x!! 111") cosgﬁéfio_si (1)
e [ —x]

where g(x,x’) is the geomeiry term, which is gero if there is an obstruction
between x and x’, and one otherwise [13]; p(x, %, ¥, A) is the BRDF [15]; ¢’ is
the direction from x’ to x; 6 is the angle between 9 and the surface normal at
x; @ is the angle between 1’ and the surface normal at x’; dA4’ is the differential
area of x’'.

Any integral over a region R can be approximated using Monte Carlo methods

- 1(z)

= ! d ' ~ _Z
where the point z is a random variable with probability density p. For this
formula to be valid, p must be positive where f is nonzero. Equation 2 gives a
primary estimator which might have a high variance. A lower variance secondary
estimator can be generated by averaging several primary estimators (each with
a different z).

Though it is easy to devise a valid estimator, a low-variance estimator requires
either a very simple f (which almost never occurs in graphics problems) or a
careful design of the density function p. Careful design is usually called impor-
tance sampling[8, 13, 2]. A estimator a variance of zero if we use a p that is
similar to f: (
f(=)
p(:l!) 5 I
As has been pointed out many times, this is not possible in any interesting cases
because we must know I (the answer we seek) to construct this p. Instead, we

usually try to approximate this perfect p, or to approximate it for some parts
of R.

3 Direct Lighting for One Luminaire

Equation 2 can be applied to the direct lighting integral (Equation 1) if we have
a density p with which to sample, and a method to choose z; with density p on
the surface of the luminaire:

cos @’
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Once a random point x’ has been chosen on S, evaluating this expression is
straightforward except for the geometry term g(x, x’), for which a visibility ray
must be sent.

An important issue is the strategy for designing p on the luminaire. At a
minimum, p must be a valid probability density on S, and p must be non-zero
for all points on S that are both visible to x and have non-zero L,.

If S is a sphere, making p a uniform density (so the every point on the surface of
the sphere is equally likely to be chosen) would yield an unbiased estimator, but
that estimator would have an unnecessarily large variance. This high variance
arises because there is at least a one half chance that we will pick a sample
point not facing x. The closer the object is to a spherical luminaire, the larger
the chance that a point invisible to x will be chosen. A better approach is to
uniformly select a sample point from the part of the sphere that is visible to x.
Better still, we could select points uniformly with respect to the solid angle as
seen from x. This is the sampling strategy suggested by Kirk and Arvo in the
context of directional sampling[17].

It is worth noting that sampling evenly within the solid angle subtended by the
luminaire is not optimal, even if the geometry term is always one. We can see
from Equation 3 that we will have a perfect estimator if p(x) is proportional to
the integrand:

cos &'
p(x) o g(x,x")p(x, %, ¥") L (X', ¥') cos GW (4)
If we sample evenly within the solid angle subtended by the luminaire, then p

182
cos @’
p(x) o T —xIf (5)

The “missing” terms in Equation 5 (those that are in Equation 4 and not in
Equation 5) should cause noise whenever they are not constant. These missing

terms are:
9(x,x")p(x, 9, ¥")Le(x’, ¥") cos 8 (6)

The geometry term g is not constant when the luminaire is partially visible.
This causes the familiar noisy shadow edges in distribution ray tracing.

The p term is constant for diffuse surfaces. For non-diffuse surfaces we should
expect more noise. For specular surfaces such as mirrors, reflection rays are used
and no explicit direct lighting calculations are performed, so there is no vari-
ance problem for specular surfaces. The L, term is constant for simple diffuse
luminaires, but is not otherwise. For example, an ideal television screen will
be diffuse at every point, but the radiance will vary across the screen. A more



Figure 2: Noise caused by variation in the cosine term. These four lights have
equal power and illuminate a diffuse plane seen from above.

intelligent sampling strategy might build a probability distribution function on
S and thus more heavily sample the brightest parts of the screen. If S is not
diffuse, it should require either more sampling or more selective sampling than
diffuse luminaires. The cosf term is constant only for point luminaires. It will
cause more noise for luminaires that subtend a large solid angle. An example
of this effect is shown in Figure 2, where three spherical luminaires are shown
from above. Notice that the noise on the ground plane increases as the size of
the luminaire (and thus the variation in the cos @ term) increases.

An important topic of research is how to design p(x) for non-diffuse surfaces
and luminaires. As material and luminaire models become more complex, we
need to strive to make densities behave more like the density in Equation 4.
We do not believe this will be trivial. For triangular luminaires, we could only
approximate constant sampling within the solid angle subtended by the triangle,
so implementation of even the simple density of Equation 4 was difficult. The
details of our implementations of p(x) on triangles and spheres can be found in
[31].



4 Direct Lighting for Multiple Luminaires

If there are N luminaires S; to Su, then the direct lighting will be given by
the same integral as Equation 1, but the domain of integration will have to
be extended to the union of the areas of every luminaire. Assuming we can
construct a probability density function that covers all luminaires, then we can
use a Monte Carlo estimator for direct light, and thus use only one or a few
shadow rays. Such an approach makes much more sense when making a picture
of an environment with thousands or millions of luminaires. In this section, we
show several ways to make a density function that covers all luminaires, and
show the results of our implementation.

We usually view the direct lighting as I, a sum of N integrals, where each
integral represents the radiance contribution from a single luminaire. In an
abstraction of this problem we have N integrals over N domains R; through
Ry.

I=L+DL+--+Iy (7)
where each integral I; is defined by:
fi(=)
I; :/ f(2du(z') ~ 8
per, TEIHEN ) &

where p;(z) is a probability density on R;

This can be extended using N separate Monte Carlo integrations:

A fls) . fuls)
G SR E (e = ®)

This corresponds to sending N shadow rays to N luminaires. Instead, we can
define a region R to be the union of all R;, and define a function f(z) to be
whatever f; is appropriate for the point being evaluated:

f]_ [t) ifz e R]_
fz(z) ifz € Ry

f(z) = (10)

}N(Z) ;f z € Ry

Note that Equation 2 can be applied even if R has holes or is not fully connected.
We simply need to estimate the integral:

= z’ z' N'—f-@
r=4 rm, [~ (11)



Figure 3: Top row: 1 Sample per pixel. Bottom row: 20 samples per pixel. Left:
constant «;. Middle: linear e;. Right: conventional fza.mpling.

We have a estimator as soon as we can develop a valid density function p on R.
An easy way to do this is to combine the known p;:

05'1?1(*) ifzeRy

axpa(z) ifz€R,
p(z)=1 . i (12)
aypn(z) ifz€RN

where the o; sum to one, and where each «; is non-zero if I; is non-zero. The
value of e; is the probability of selecting a point in R;. The p; is then used to
determine which point in R; is chosen.

We can use the same types of p; for luminaires as used in the last section. The
question remaining is what to use for a;.

4.1 Constant o

The simplest way to choose values for a; would be to make them all equal:
o; = 1/N for all i. This would definitely make a valid estimator because the o;



sum to one and none of them is zero. This approach was proposed by Lange[19].
Unfortunately, in many scenes this would not be a good estimator because it
would produce a high variance.

4.2 Linear o;

Suppose we had perfect p; (see Equation 4) defined for all the luminaires. A
zero variance solution would then result if we could set o; = I;. Recall that
I; in this case is the radiance of x due specifically to S;, which we will denote
L;. If we can make «a; approximately proportional to I;, then we should have a
fairly good estimator. We call this the linear method of setting o; because its
execution time is linearly proportional to N, the number of luminaires.

To obtain such o; we get an estimated contribution I; at x by approximating
Equation 1 for S; with the geometry term set to one. These L;s (from all
luminaires) can be directly converted to ¢; by scaling them so their sum is one.
This method of choosing e; will be valid because all potentially visible luminaires
will end up with positive o;. We should expect the highest variance in areas
where shadowing occurs, because this is where setting the geometry term to one
causes o; to be a poor estimate of ;. Figure 3 shows a sphere illuminated by two
luminaires, calculated using constant ey, linear a;, and traditional sampling (a
shadow ray for each luminaire). This case is simple enough that the behavior of
the constant a; method is not too bad. If the luminaires were less symmetrically
placed, the constant method would produce more noise.

This method of setting o; was first used in [25], and was first theoreticly justified
in [28].

Implementing the linear o; code was trickier than we expected. We implemented
a method for each type of luminaire that estimated L; for a particular x and
p. If the entire luminaire is below the tangent plane at x, then the estimate for
L; should be zero. An easy mistake to make (which we made), is to set L; to
zero if the center of the luminaire is below the horizon. This will make o; take
the one value that is not allowed: an incorrect zero. Such a bug will become
obvious in pictures of spheres illuminated by luminaires that subtend large solid
angles, but for many scenes such errors are not noticeable (the figures in [25]
had this bug, but it was not noticeable). An example of one sphere illuminated
by a large luminaire is shown with and without the bug in Figure 4.



Figure 4: Left: incorrect ;. Right: correct «j.

4.3 Spatially Subdivided o

In the linear method, choosing «; based on estimated contribution requires
querying every luminaire in the scene. This is acceptable for many scenes, but if
N is large (thousands or millions), even that might be too slow. In such scenes
at most a few hundred luminaires (and usually at most tens) will contribute
significantly to the radiance at any particular point. Suppose we can partition
S ={51,...,Sn} into two subsets Syright and Sgim, where Sy ign: is the set of
luminaires that are “important” to x (i.e. they contribute significantly to the
radiance of x), and Sgim is simply S — Sjrighi. With these two subsets of S we
can construct low cost a;.

Suppose that the size of Si,igne 1s Ny. If we have partioned S correctly, then
N, should be much less than N. For each S; in Spright, we estimate L; in
the same way we did in the linear method. We choose one S, randomly from
S4im, and estimate L, accurately. If L, is zero, we repeatedly choose S, until
a non-zero L, is found. We now assume that all members of Sy, contribute
approximately the same amount as S.. This gives estimates of I; for all S;, and
will be reasonably accurate for the important luminaires. We can now construct
a probability space by normalizing the a; so that they sum to one. If we want
more accuracy for the a; of members of Sg;,., we can average L, over several
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The difficult part of this method is deciding which luminaires are in Syrign:
for a particular x. As pointed out by Kok and Jansen[18], a luminaire that is
important to the color of x is likely to be important to the neighboring points of
x. This implies we can use a spatial subdivision scheme to precompute a Sy ign:
for each spatial cell in the spatial subdivision structure. For a particular cell
(a box aligned to the Cartesian axes), a luminaire is put in Syrign: if it might
contribute more than a threshold average spectral radiance to a diffuse surface
within the cell. A simple way to determine whether the maximum potential
contribution of a luminaire is above the threshold is to evaluate Equation 1 with
g, p, and cos @ all set to one for all points (implementationally a large number
of points) on the boundary of the spatial subdivision cell. For diffuse spherical
luminaires, we need only evaluate the potential contribution at the point on
the cell nearest the luminaire. For more complicated luminaires, methods for
avoiding a brute force search need further study.

An easy way to choose the subdivision cells is simply to use the leaf cells of
the conventional subdivision structure (e.g. the octree leaves of a Glassner style
octree used for ray intersection acceleration[6]), and maintain a separate Sp,ighs
list at each leaf. This is a finer than needed subdivision for scenes where P,
the number of objects, is much greater than N, the number of luminaires. An
advantage of this is that no luminaire lists need to be constructed for empty cells,
and the characteristics of reflective objects can be used to construct the lists.
Instead, we have implemented a separate light ociree that recursively subdivides
itself until each leaf is at a maximum allowed depth or when the size of Sj,;gn: for
that cell is below a specified limit. The depth and size limits are similar to those
in a conventional octree, and their values are even less well understood by us so
far. To avoid excess subdivision, we check to see if the minimum contribution
of an important luminaire to a cell is above the threshold. If all members of
Syright are thus determined to be in Sy,ign: for any possible descendant of that
cell, we do not subdivide.

Another difficulty in building the light octree is what to use for the average
radiance threshold. For our program we assume we know what spectral radiance
distribution, L, would map to white (an rgb triple of [255,255,255] on our CRT)
on the display device. We set the radiance threshold to be some fraction of L,,3.
Because our display device has eight bits per channel, we usually make the
threshold a few percent of L,,. Such a threshold will ensure that any luminaire
that can change the pixel color more than a few steps will be included in Spyiga:.
If L., is chosen correctly, than the sum of contributions of luminaires should be

3L should be chosen according to a perceptual viewer model, such as the model imple-
mented by Tumblin and Rushmeier[30]. Such models will become increasingly important as
physically based rendering becomes more popular.
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Figure 5: A scene rendered using the light octree with 9 rays per pixel, and 30
rays sent in pixels with high variance (fewer than ten percent).

no more than L,,, and thus the number of important luminaires should be less
than one hundred for most scenes.

Figure 5 shows a scene with 108 luminaires renderered using the light octree.
This runs only a little faster than the linear method on this scene because N
is only 108, but the two methods produce very similar results. Figure 6 shows
four pictures of a pair of sphereflakes. Each sphereflake is composed of 7381
spheres. In the three images with 7381 luminaires, the light octree was used.
As expected, the one sample case has a large variance, and the forty sample case
is fairly smooth. Notice that both 10 sample cases (with 1 and 7381 luminaires)
have visible noise. This implies that both cosine and visibility errors cause noise
in the 7381 luminaire case. The 7381 luminaire figure with ten samples took
less than twice as long as the one luminaire case with ten samples. This means
the overhead of choosing the ray using the light octree does not swamp the cost
of sending the shadow ray, even in this extreme case where half of the objects
are luminaires. In less pathological scenes, the light octree should be smaller
relative to the number of primatives, and performance should be even better.

12



Figure 6: Top left: One luminaire, 10 samples per pixel. Top right: 7381
luminaires, 1 sample. Bottom left: 7381 luminaires, 10 samples. Bottom right:
7381 luminaires, 40 samples.
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5 Discussion

In Section 3 we showed that it is relatively easy to develop a valid sampling
scheme for any luminaire on whose surface we can devise a probability density
function p(x). This means we can add even complicated luminaires such as
toroidal luminaires to a ray tracing system without adding any bias to the
results. For a torus, and for most explicit surfaces, we can sample with a
constant p. More intelligent p could be substituted later when they are found,
without changing anything but this component of the code. This is consistent
with our experience that there is a direct mapping from the mathematics of
Section 3 to the lighting code, then the code is easy to prototype and debug
with a uniform p, and can later be improved cleanly by changing to a better p.

In Section 4 we showed three ways to sample a space of many luminaires. The
first method, where o; are all the same, has the advantage that it is O(1) time to
choose a shadow ray, and is easy to implement, but it is not useful for complex
scenes (except as a debugging case). The second method we have found to work
quite well in practice, is reasonably easy to implement, and is O(N), where N
is the number of luminaires, to generate a shadow ray. The light octree method
is much harder to implement, but is approximately O(log N) (this assumes
the depth of the octree is approximately log N and that the cells contain an
approximately constant size Sj,igni). For scenes with hundreds of thousands
of luminaires, this complexity is much better than the O(N) method. Ward’s
method[22], which he has shown to work quite well in scenes with reasonably
large N, should probably not be used for very large N because he sorts the entire
luminaire list and thus takes O(N log N) time. After selecting a shadow ray,
there will be a time cost for the intersection calculation of of at best O(log P)*
where P is the number of geometric primitives in the scene. Because P > N,
and sending a ray costs O(log P) time, a time cost to select the ray of O(log P)
should be acceptable.

Clearly, the linear and light octree methods are only useful for scenes with a
large number of luminaires. Such scenes are becoming increasingly important.
In outdoor scenes, especially in urban settings, scenes with thousands and even
hundreds of thousands of luminaires are commonplace. In opera and theater
applications, hundreds or thousands of luminaires are common[29]. In infrared
scenes, almost all surfaces are luminaires, so something such as the light octree
is crucial. These methods also make it easy to use luminaires defined by many
polygons or parametric patches. No matter how many patches define a light

*This is a loose use of the big-oh notation. We mean average time complexity for envi-
ronments encountered in practice. If hierarchical spatial subdivision is used, the a O(log P)
time will happen for well-behaved environments. Such behavior has been assumed for time
complexity analysis in radiosity[9, 27], and has much empirical evidence behind it, but has
not yet been proven even for special cases.
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bulb surface, it will receive only one shadow ray.

Even in scenes with only a few luminaires, the linear or light octree techniques
can be useful. Many of the recent rendering techniques can be viewed in terms
of replacing surfaces with what we call imposters. An example of an imposter
is a luminaire with zero reflectivity that is shaped like a reflecting patch and
emiis light in exactly the same distribution and intensity as the reflecting patch
reflects light. There is no way visually to tell an imposter from the original
surface. Adding an imposter reduces the number of patches whose reflected light
needs to be calculated and increases the number of luminaires. Using imposters
becomes more attractive if the cost of direct lighting does not increase linearly
with N. Imposters have been used effectively by Kok and Jansen[18] and by
Chen et al.[3]. Radiosity programs can be viewed as a preprocess that replace
all diffuse surfaces with imposters, so only viewing is required.

The methods could behave poorly in the presence of very bright luminaires that
do not contribute radiance to the visible points in the scene. An example of
when this could happen is a room at noon with the window shades fully closed.
In this case it might be wise to view the lighting calculation as more than one
integral, where especially bright luminaires are sampled separately from the
dimmer luminaires. to the union of interior luminaires. The overall reason this
case is a problem is because the «; are bad estimates. Bad «; estimation can
happen because the geometry term, g(x,x’), is not accounted for, or because
the radiance estimate for the luminaire is bad, as might happen when using a
complicated directional luminaire. Perhaps some inclusion of shadowing in the
selection of Sj,ign: would help.

The careful reader may have noted that two important sampling issues have been
ignored in this paper. The first issue is that, in practice, Quasi-Monte Carlo
integration is used instead of true Monte Carlo. The second issue is that we
must be able to choose sample points that are distributed according to density
p- These two issues are related. If p is a density on a d-dimensional space,
and we have a random d-dimensional point £ that is distributed evenly on the
d-dimensional cube [0, 1]¢, than the ¢(¢) will be distributed according to p for
some transformation function ¢. To perform Monte Carlo integration we use a
set of input random points {{1, {3, - . .,€n} and use ¢ to generate n sample points
with the proper density: {t(£1),%(£2),-..,t(én)}. To produce a lower variance
result we can use Quasi-Monte Carlo integration, where a quasirandom® set of
points is used instead of the random §;[35]. The most up to date discussion of
quasirandom points for ray tracing is by Mitchell[21]. A description of how to
generate a transformation function £ is described in some classic Monte Carlo
books(8, 24, 14], and several ¢ useful in ray tracing are given in [26].

fquasirandom objects have some of the desired distribution quantities of random numbers
without being truly random. See [35] for further details.
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It should be noted that we have phrased our discussion in terms of an integration
over visible and nonvisible surfaces. It is also possible to integrate over all visible
surfaces. This method is usually phrased in terms over an integration over all
solid angles (see the form of the rendering equation given by Immel et al.[11]).
This gives rise to sending rays toward certain directions, rather than toward
certain points. Kirk and Arvo proposed such a method[17], and it has been
used for the indirect illumination component in many programs[4, 13, 33, 23].

6 Conclusion

The methods we have presented illustrate that the crucial step in a Monte Carlo
integration is the design of the probability density function the samples are
chosen from. We have shown that careful design of the function on luminaires
can significantly decrease the computation time of the direct lighting calculation
in complex scenes.

Future work should include more sophisticated ways to construct probability
densities on luminaires, and fast estimates of luminaire contributions for the
assignment of a;. The most unfinished business is how to design and use sub-
division structures for lighting. We are confident that our octree approach,
though able to produce pictures not practical by other means we know of, can
be greatly improved upon.

The basic rationale for this method is that direct lighting should not be cal-
culated to a higher accuracy than necessary. This is very similar in concept
to Kajiya’s argument that we should not expend much work for deep parts of
the ray tree[13]. It is certainly not true that one shadow ray per viewing ray is
optimal, however. For the 100 luminaire case, one shadow ray is better than 100
shadow rays, but two or three might be better still. This issue requires further
investigation.
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