Garbage Collecting a Heap which includes

a Scatter Table

Daniel P. Friedman

David S. Wise

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReEPorT No. 34

GARBAGE COLLECTING A HEAP WHICH INCLUDES
A SCATTER TABLE

DanieL P. FRIEDMAN
Davip S. Wise

Revisep: AueusT, 1976

Garbage Collecting a Heap which includes a Scatter Table

Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University
Bloomington, Indiana 47401
Abstract: A new algorithm is introduced for garbage collecting
a heap which contains shared data structures accessed from a
scatter table. The scheme provides for the purging of useless
entries from the scatter table with no traversals beyond the two
required by classic collection schemes. For languages which use
scatter tables to sustain unique existence of complex structures,
like natural variables of SNOBOLY4, it indirectly allows liberal
use of a single scatter table by ensuring efficient deletion of
useless entries. Since the scatter table is completely restructured
during the course of execution, the hashing scheme itself 1is easily
altered during garbage collection whenever skewed loading of the
scatter table warrants abandonment of the old hashing. This procedure
is applicable to the maintenance of dynamic structures such as those

in information retrieval schemes or in languages like LISP or SNOBOLL.

Keywords and phrases: hash table, bucket, key, inverted tree,

oriented tree, chaining, rehashing, SNOBOL4, LISP.

CR categories: 3.74, 4.1, 4.34.

Research reported herein was supported (in part) by the National

Science Foundation under grant no. DCR75-06678 and no. MCS75-08145.

Garbage collection [§2.3.5]1¥ is generally a two-pass scheme

for recovering unused nodes from a heap, a region of computer
memory divided into nodes accessed by the user only via references.
During the first pass all useful structures represented within the
heap are traversed and a mark bit is set within every node en-
countered. Then the heap is traversed or swept completely and
every unmarked node is added to a list of available space. Addi-
tional traversals may provide for repacking the structures into
adjacent nodes at one end of the heap [§2.3.6-9] and for such re-
packing when nodes are of variable sigze [2]. In this paper we
assume that all nodes in the heap are of equal size and that no
repacking is necessary; 1f these features are needed then the
scheme presented here can be easily extended.

A scatter table [§6.4] is a dynamic structure often used for

efficiently associating ALGOL 60 style identifiers with values.

It is a common part of the input phase of a computer program used

to associate new occurrences of an identifier with information
established earlier; the symbol table in an interpreter or compiler
is an example of its application. Another use is within interpreters
like that of SNOBOLY4, which maintains unique instances of data
structures and clash every newly created structure against extant
structures through a scatter table [2, Chapter 8]. The common struc-
ture of such a table is a fixed size sequential array of references
to linearly linked lists [1]. The array is accessed by a pseudo-
function, the hash function, mapping identifiers to array indices

hopefully scattering the identifiers uniformly. When an

%411 § section references in this paper are to Knuth [3].

identifier or key is encountered in input it is

hashed to a subscript for the array which selects a linearly
linked list called a bucket. That bucket 1s scanned for an
occurrence of the newly encountered key; if no occurrence is

found a new entry may be added. Because bucket size and therefore
table size is dynamic, a bucket scan usually requires a linear
traversal. The net effect of the scattering strategy is reduction
of the length of that traversal by a factor of the scatter table
size over the search required if there were only a single bucket,
that is, if all identifier associations were maintained in a
single 1list.

When a scatter table is used in a system with a heap it is
natural to maintain the table in the heap itself since its struc-
ture is similar to that of other structures represented
there. If this is done then the garbage collection algorithm
must carefully preserve all associations represented within the
scatter table; their safety is guaranteed by marking all nodes
representing these associations during a traversal of the scatterl
table in the first phase of garbage collection. Not every entry
in the scatter table need be marked during this traversal since
entries without associated values do not contribute to the infor-
mation content of the scatter table. Such useless entries may
occur if an identifier has occurred but has not yet been associated
or if a prior association has been cancelled.

Define an element to be a node in the heap which represents

the association between an identifier and its value. Since the

elementary items in a data structure (sometimes called atoms)
are usually identifiers of some sort we shall assume that they
are also represented as elements. Elements are therefore dis-
tinguished nodes; every node in the heap has a Boolean ATOM
field which is set true only in elements (Figure 1). An element
contains an INFRASTRUCTURE, composed of its key and its value and
a reference field NEXTINBUCKET for structuring the scatter table.
If a particular element is not in the scatter table and therefore
free from being associated with future uses of its key in input
(e.g. REMOBed or GENSYMed atoms in LISP) then its NEXTINBUCKET
field contains the reference NIL. Finally, like all nodes in the
heap, an element has a MARK bit for use by the garbage collector.
Since the garbage collector can distinguish elements from
other kinds of nodes, it should be able to recover space used to
represent them taking into account that some may still be useful
entries in the scatter table. An element is useless if it 1s not
accessible through the structure associated with another element
in the scatter table and either it is not in the scatter table
or it has no value association yet established. A useless element
may be purged from the system without affecting accessible infor-
mation; if its key is encountered on input sometime after garbage
collection then the element may be regenerated with no information
lost during its absence. While a useless element is easily detect-
able after the marking phase of garbage collection, it still must
be carefully removed from its bucket lest the bucket's structure

be destroyed by the loss of the purged elements NEXTINBUCKET field.

A naive algorithm for purging useless elements during
garbage collection requires that the buckets be maintained as
doubly-linked lists to allow deletion of a useless element from
its bucket when it is discovered during the sweep phase. An
alternative allows the single-linked buckets which we have
assumed but requires a traversal of every bucket between the mark
phase and the sweep phase. During this pass unmarked elements
are removed from their buckets [2, Chapter 8].

We present a garbage collection scheme below which provides
for the purging of useless elements from singly-linked buckets
during a simple two-pass garbage collection. During the first
pass each bucket 1s completely but cheaply restructured; the
second pass restores the linear structure including only The non-
useless elements in perhaps a different order. The restructuring
is easily understood if we view each bucket as a single-level
oriented tree [§2.3] with the bucket's entry in the scatter array

(the bucket header) as the root and each element in the bucket as

its son (Figure 2). Usually the tree is represented as its
naturally corresponding binary tree [§2.3.2] based on an undefined
ordering of the oriented tree. This structure amounts to the
linear list representation of a bucket which we have assumed
(Figure 3a), because no node is both a father and a son. Between
phases of garbage collection a bucket is instead represented as

an inverted tree (Figure 3b) with each son (element) referencing
its father and the root nodes (bucket headers) referencing NIL.
During the sweep phase the bucket is restored to its linearly

linked form (Figure 3c).

The marking phase of the algorithm [§2.3.5] traverses the
scatter table inverting all buckets, marking all associated
elements, and traversing all of their infrastructures--including
those of any elements encountered. In this way useful elements
not in the scatter table are marked. The two effects of this
phase on a useful element in the scatter table do not necessarily
occur at once; an element is marked as soon as 1t 1s encountered
in traversing some useful structure but an element has its
NEXTINBUCKET field reset to reference its bucket header only as
it is encountered by the scatter table traversal. The marking
algorithm below may be preceeded by marking traversals of struc-

tures rooted in system structures disjoint from the scatter table.

ELT := FIRSTINBUCKET(B):;

FIRSTINBUCKET(B) := NIL;

WHILE ELT # NIL DO

IF ELT is yet unmarked and has a value THEN

< traverse and mark ELT and its infrastructure;
{ TEMP := NEXTINBUCKET(ELT) ;

NEXTINBUCKET(ELT) := B;

ELT := TEMP.

Lk.....

After this algorithm the former order of each bucket (Figure
3a) is lost. The inverted tree representation which results (Figure
3p) still fits the definition of a bucket as an oriented tree. An

effect of the sweep phase below is to reconstitute each bucket in

its linear form (Figure 3c) restoring only non-useless elements

to a structure ordered by their machine addresses in the reverse
order of the sweep through memory. It is therefore adventageous
to locate all frequently-used, system-defined elements at the end
of the heap to be swept last and restored at the head of

their respective buckets.

Sweep phase: FOR all nodes, N, in heap DO
f""

IF N is unmarked THEN AVAIL <N [§2.2.3] ELSE
'Polear N's mark;
IF N is an element THEN
B := NEXTINBUCKET(N) ;
IF B # NIL THEN
NEXTINBUCKET(N) := FIRSTINBUCKET(B);

FIRSTINBUCKET(B) := N.

Two features of classic hashing/garbage-collection schemes are
not possible using these algorithms. First, no bucket-search scheme
can depend upon an ordering within each bucket (other than by
location), so secondary hash schemes like SNOBOLL's [2, Chapter 9]
must be abandoned. Secondly, the garbage collection must proceed
to completion before the scatter table may be used again; Minsky's
proposal of a parallel process for garbage collection [§2.3.5-12]
therefore cannot be adopted.

This garbage collector has been introduced as one which

allows efficient recovery of useless nodes including those

representing useless elements in the scatter table. Because

the scatter table is completely reconstructed during the course
of garbage collection and there is a particular point (between

the mark phase and the sweep phase) at which the scatter table
appears to be empty, it provides a fine opportunity to completely
revise the hashing scheme. Statistics gathered during the traver-
sal of the scatter table in the mark phase might indicate that the
current hashing scheme is inadequate. (Either the hash function
might be generating a skewed distribution of keys among the
buckets or the buckets might be uniformly overfilled indicating

a need for more buckets [1].) In that event a new hashing scheme
can be chosen before the sweep phase and then during the sweep,
instead of returning a marked element to its former bucket, its
key can be rehashed under the new scheme and the element placed
into the appropriate bucket of a fresh scatter table. With such

a provision garbage collection might result in a correction of a
breakdown in the hashing scheme, as well as in recovery of unused

space.

References

1. D. Gries. Compiler Construction for Digital Computers, Wiley,
New York (1971), 216-224.

2. Ralph E. Griswold. The Macro Implementation of SNOBOLL4.
W. H. Freeman, San Francisco (1972), Chapters 8-9.

3. Donald E. Knuth. The Art of Computer Programming 1 & 3, Addison
Wesley, Reading, MA (1975 & 1973), Sections 2.3, 2.3.5, and
6.4,

MARK? NEXTINBUCKET \
\ATOM!| INFRASTRUCTURE /

Figure 1. Fields in a node representing an element.

4R
A AR D

Figure 2. A bucket of five elements.

e U oA e -4

-10-

FMCPACVIID

Figure 3a. The representation of the bucket before
garbage collection.

Figure 3b. The representation of the bucket between
the phases of garbage collection.

Figure 3c. The representation of the bucket after
garbage collection without useless elements

assuming a sweep in order of incresing address.

