TECHNICAL REPORT NO. 338

A Template Architecture for the WAM
by
Jonathan W. Mills

October 1991

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

A Template Architecture for the WAM

Jonathan Wayne Mills*
Indiana University
Bloomington, Indiana 47405

Abstract

The similarity and prevalence of Prolog unit clauses is used to develop the
concept of template programming, where procedures are partitioned into a
template and a list of differences for each clause. Code for unit clauses on RISC
machines can be reduced to about twice that of the WAM using a four-address
architecture to support template programming. WAM bytecode for unit clauses
can be reduced approximately 40% by adding instructions for template
programming to the WAM instruction set.

1. INTRODUCTION

Prolog programs compiled to native instructions for a RISC are typically three to seven times larger than the same
program compiled to WAM byte code (Borriello et al. 1987, Mills 1988). In this paper the similarity and prevalence
of unit clauses is used to devise a method 10 reduce the size of the native coded Prolog programs. The programs that
benefit most from this proposal are those that have a large number of similar unit clauses where shallow
backtracking is a substantial part of execution time, although non-unit clauses (i.e., rules) also can be compressed 10
a lesser extent with this technique. In addition, the locality of reference of the Prolog program will be increased.
leading to more effective use of the instruction cache.

2. TEMPLATE PROGRAMMING

The method proposed is called tempiate programming, which consists of dividing procedures into two parts. The
first part of the procedure, the template trace. contains the invariant code for all clauses in the procedurc. This
invariant code need not necessarily be contiguous; 1in fact, it is expected to contain “holes” that may be as small as a
single instruction. The second part of the procedure, the difference trace, contains the instructions to fill in the holes
in the template trace. When the procedure is executed, the template trace executes repeatedly using the instructions
from the difference trace to produce the same effects as executing the instruction stream for the original procedure.

The concept of template programming was suggested by earlier work with assertive demons to reduce the run-time
overhead for assert and retract (Mills and Buettner 1988). If a demon can be created for a clause that is invariant in
most of its components (such as the slot/4 clause in Figure 1), then it is a natural next step to partition such a
clause so that the template trace is present only once in the code space. Instances of the clause are then defined by
the values placed in the holes of the template at run time. Fetching a template for a clause during shallow
backtracking which is then executed repeatedly with the "holes” filled in with instructions from the difference trace
may result in an appreciable reduction in code size.

This work was supported in part by the National Science Foundation under Grant No. MIP 90-10878.

. Lindley Hall, Department of Computer Science, (812) 855-7081, jwmills@iuvax.cs.indiana.edu

Copyright ©1990 by Jonathan W. Mills 34

assert(slot(Clause_id, block_id, permanent, Clause_id))

call allocate_slot/4 ; template—>A2 gel_constant Al, 750 ; hole
gel_constant A2, block_id’

put_value Y2,Al ; make sure it's a constant get_constant A3, 'permanent’ i

switch_on_term fail, Const, fail, fail getl_constant A4, TT550 : hole |
Const: ; do nothing, both constants same proceed :

store Al —> (A2+1) ; fill 1st hole Template

store Al —> (A2+7) ; fill 2nd hole

call index_&_link_slot/4

Demon

Figure 1. Assertive demon and template

The holes that are shown in the slot/4 clause are the values that are encoded in a WAM bytecode. However, in the
native code for a RISC architecture such as the LIBRA, the values are encoded in single instructions (Figure 2).

get constant C, Al

arf Ai Tl

add r0 Cleé con: T2

sub g6 T1I TZ %0

unify sc Tl T2 5+2 (no mode splitting)

if traill push+ TR T1

Figure 2. Value for constant C encoded in add instruction as constant C16 and tag con

A straightforward way to implement template programming is to create the template and difference traces as
coroutines using call and return. To do this an initial block must use call to establish the addresses for
subsequent returns in the main part of the template and difference traces (Figure 3).

Difference trace
Initial
(for first clause) call temp
oo retum temp
Main
(for successive clauses)

Figure 3. Template programming with call and return

Copyright ©1990 by Jonathan W. Mills 55

This structure can be extended by equating the try clause to the initial template and the retry clauses to the main
template, and by adding a final template for the trust clause of the procedure. This has the advantage of allowing
the retry code to be placed into the main template instead of the difference trace.

Given the low density of RiSC code compared to WAM bytecode, the overhead of template programming
implemented using call and return instructions may be acceptable to reduce code size, and, for existing commercial
RISC:s is the only implementation technique possible. However, for Prolog RISCs such as the LIBRA, which have
higher-density code, the resulting performance decrease is noticeable. In the next section a hardware solution is
offered that implements the template and difference traces as instruction-level coroutines,

3. INSTRUCTION-LEVEL COROUTINING

Template programming was shown 1o be a form of coroutining within a clause, where a single thread of exccution is
decomposed into a pair of instruction traces. The template trace common to all clauses in a procedurc is onc
coroutine. The rest of the instructions in the procedure, i.c., the difference trace, is the other coroutine.
Recombining the pair of template and difference traces at execution time by executing them as coroutincs generates
the instruction stream for the unpartitioned procedure.

The template architecture for the WAM is an extension of the LIBRA. The first part of the extension adds a second
program counter to the LIBRA processor. The only difference between the program counters is that one is selected
for initial use when the LIBRA is reset, otherwise neither program counter is preferred. The second part of the
extension adds a one-bit fourth address field, next address PC select, to each instruction. The fourth address field
need not require a longer instruction word. The single-bit field could replace one of the skip condition field bits in
the LIBRA instruction format (Figure 4).

Figure 4. Original (top) and four-address (bottom) LIBRA instruction formats

The next address PC select field allows zero-cost zero-delay branches to be executed between any pair of
instruction streams. This is possible because the fourth address field is available without decoding as soon as the
instruction has been fewched. Thus, next address PC select can be used 10 steer the choice of program counter
for the next instruction fetch, even in a pipelined machine (note that there is still a delay if instruction streams are
switched at the same time as a branch is executed). The overhead of one call or return instruction for each
difference trace inswruction or code segment that fills a template hole can be avoided by switching between program

counters (Figure 5).

There is no overhead for filling a hole in a template, even when only a single instruction is required. Nor is there a
performance degradation, because the dual program counters address each race independently, with each instruction
selecting the program counter used for the following instruction. There is a set-up overhead required: each program

Copyright ©1990 by Jonathan W. Mills 56

i
;
:

Figure 5. Using the next address PC select field to implement instruction-level coroutining

counter must be loaded with an address by executing an execution control instruction such as a Jjmp or call with

the mext address PC select field set to select the desired program counter. This also forces the subsequent
branch delay slot to belong to the instruction stream that executed the branch. There is also the overhead of saving
the second program counter in the choicepoint if a clause succeeds on a try or retry instruction, and restoring the
second program counter if failure later occurs. However, the total overhead is only a few instructions per procedurc,
and is absorbed in the overall reduction of code size.

4. COMPARISON OF CODE SIZES

A simple but representative unit clause, p/4, will be used to compare the reduction in code size due to different

implementations of template programming:
el & ¥, z, T)

In the clause shown, a is a constant common to all clauses, and x, y, and z are literals which represent WAM
symbolic constants. Thus, the arguments have similar types, but only the first value is identical in all clauses.
which is reasonable if the database is indexed on the first argument of the clause. This results in a template with
three holes. Given that there are n clauses in the p/d procedure, then the general formula for code size in bits is:

3. bils,ry + N(bILS, gumens) + bilSexiy

where bitsyry is determined from the code for try-family instructions, bitsarguments from code for the arguments,
typically get and unify instructions, and bitsexj; from proceed and execute. Because these divisions are not
natural in a procedure 10 which template programming has been applied, code size is calculated by summing the
number of bits in the template and difference traces:

Z bi'-sunplm trace + bi'sd.i.ffmee trace

The implementations compared are the WAM, the LIBRA without template programming, the LIBRA with call and
return coroutining, the LIBRA with instruction-level coroutining, and a template-programming version of the
WAM. To ensure that the procedure contains all try-family instructions, n =10 will be chosen. All indexing is
assumed to be done outside the block of code whose size is being determined.

tzy_ family
get_constant a, Al
get_constant xp, A2
get_constant yp, A3
get_constant zp, A4
proceed_or_execute

Using the instruction encodings for the WAM given in (Warren 1983), the code size for this representation of the
clau-es is 240 + 960 + 80 bits, or 1280 bits.

Copyright ©1990 by Jonathan W. Mills 57

For the LIBRA without template programming, the WAM bytecode expands into the following instruction sequence:

ldhi LaddrHi ;retry_me_else

add r0 Laddrlo TI1

st B ~3 Tl

drf Al T1 ;get_constant a, Al
add 0 a con: T2 B

sub gc TL EP ro

unify se T1 T2 5+2

if traill push+ TR T1

drf A2 T1 ;get_constant Xxp, AZ
add r0 xp con: T2

sub sc T T2 =0

unify sc TI T2 542

if traill push+ TR T

drf A3 T1 ;jget_constant yp, A3
add r0 ypn con: T2

sub s¢ TI T2 =0

unify sc Tl T2 542

if traill pushs TR T1

drf A4 Tl ;get_constant zp, A4
add ro Zp con: T2

sub sc T1 T2 r0

unify s¢ T T2 5+2

if traill push-+ TR T2

ret CPC ;i proceed

These expansion for the WAM instructions are found in (Mills 1989). The try_me_else instruction (not shown)
includes the register saves needed to creatc a choicepoint, and is thus substantially longer than the retry_me_else
shown in the example. All instructions are 40 bits long; thus the number of bits needed for this representation of
the clauses is 960 + 8000 + 400, or 9360 bits.

For the LIBRA with template programming implemented by call and return coroutining, two code sequences arce
generated. The main template trace is given by:

ldhi LaddrHi ;retry_me else

add rg LaddrlLe TI

st 2 wE T3

drf Al Ti ;get_constant a, Al
add re a con: T2

sub se T1 I2 =0

unify s¢ I3 TR 5+2

if traill push+ TR Ti

drf A2 Tl ;get_constant xp, A2
ret CP1

sub sC T T r0

unify s Il T S+2

if traill push+ TR T

drf A3 T1 ;jget_constant yp, A3
ret CP1

sub sc T1 T ro

unify sC Tl T 5+2

if traill push+ TR “2%

drf A4 Tl ;get_constant zp, A4
ret cP1

sub 5C Tl T2 o

unify sec Tl T2 542

if traill push+ TR, 'T1

ret CPC ;iproceed

nop

goto <start of the main template trace>

Copyright ©1990 by Jonathan W. Mills

58

andmcxamplcblockﬁommcdiﬁmccmisgivcnby:

add r0 xp con: T2
ret cP2 '
acdd r0 yn con: T2
ret cp2 _
add r0 z, con: T2
ret cp2

The initial block in the template trace must set up the choicepoint and the coroutining into the difference trace; the
first block of the difference trace must establish coroutining into the template trace; and the last block in the
difference trace must remove the choicepoint, and will not branch back to the template trace, but will perform the
equivalent of the WAM execute instruction if the clause succeeds. The number of bits needed for this
representation of the clauses is 1840 bits for the template trace + 2640 bits for the difference trace, or 4480 bits.

For the LIBRA with instruction-level coroutining the call and return instructions are replaced by the one-bit next
address PC select field, indicated by a “D” if the next instruction executed comes from the difference trace (while
executing an instruction from the template trace), or a “T™ for the opposile case:

ldhi LaddrHi iretry_me_else

add r0 Laddrle T:

st B -1 Tl

drf Al T ;iger_constant &, Al
add ré a con: T2

sub sc Tl T2 ro

unify sc¢ Ti =2 5+2

if traill push+ TR 7=

drf A2 7L 8} ;jger_constant xp, A2
sub g T =2 ro
_unify sc Tl T2 542

if traill push~+ IR 0TI

drf A 2 D jger_constant yn, A3
sub T TR re

unify g TE bom 5+2

if traill push-+ TR TR

drf AL T1 c ;get_constant zp, AL
sub sC Tl "T2 r0

unify sc sl Té 5+2

if traill push~ e R

ret et . iproceed

nop

gote <start cf the main template zrace>

and an example block from the difference trace is given by:

add ¢ xp con: T2 T
add r0 yn con:; T2 T
add r0 2zn con: T2 T

The number of bits needed for this representation of the clauses is 1520 bits for the template trace + 1440 bits for
the difference trace, or 2960 bits.

Finally, if a template-programming version of the WAM is emulated, the already dense encoding scheme of WAM
instructions is further compressed. The emulator must maintain a pointer to the difference trace, which now consists
solely of the data to fill holes in the template. One argument is added to the backtracking and control instructions to
select their mode of operation. This is necessary because these instructions are present only once in a templatc.
This leads to three new WAM instructions:

set_t_pointer DTaddress, NCaddress loads the adc* ‘2ss of the difference trace and the “next
clause” address — which is always the template

Copyright ©1990 by Jonathan W. Mills 59

try_how uses an argument from the difference trace to
perform either a try, retry, or trust instruction
but do not update the next clause address
proceed_how uses one argument from the difference trace 1o
" perform either a proceed or execute instruction

and extensions to two families of WAM instructions:

tget_family get with an argument from the difference trace
tunify_family unify with an argument from the difference trace

Using the new WAM instructions the p/4 procedure is split into the following template trace:
set_t_pointer <difference trace>, <start of main template>

try_how
get_constant &, Al
tget_constant A2
tget_constant A3
tget_constant A4
proceed_how

and an exampie block from the difference trace:

recry
Xn

¥n

Zn
proceed

Extending the instruction encodings for the WAM, the code size for this representation of the clauses is 88 bits for
the template + 640 bits for the difference list, or 728 bits.

Template programming can also be applied to rules, although with less effective compression as is shown in the
following set of rules from a theorem prover written in Prolog:

ir(min(X,2,2), max(2,X1,21), 7, i i, HB2,H3 | }+ 1~
sc(max{¥,Z,¥1l), =1),
sc(min(X,¥Y,Xl), H2),
scl miniX,¥Y1,21), H3).

ir(min(X,¥,X1), max(Z,X1,21}, 17, { Hl,H2,H3]) :-
sc(max(¥,2,Y1l), HL),

sc(min(X,2,2), K2),
sc{ min(X,¥1,21), H3).
ir(min(X,¥1,21), max(Z,X1,21), 17, [H1,H2,H3 !) :-
sc(max(Y,Z,Yl), Hi),
sc(min(X,¥,X1), H2),
sc(min(X,2,2), K3).

In this example the native LIBRA code for the original clauses requires 120 instructions, or 4800 bits. Using
instruction-level coroutining and template programming reduces this to 34 instructions for the template and 3 x 6, or
18, difference instructions for a total of 52 instructions or 2080 bits:

ir(min(X,e,*), max(2,X1,21), 17, [H1l,H2,H3]) :-
sc(max(Y,Z,¥Y1), H1),
sc(min(X,*,*), H2),
sc{ min(X,e*,®), E3).

Z, Z, Y, X1, ¥i., 21,
Y, X, 2, z, ¥l, Zi.
¥1l, 2i, XY, X1, Z, Z.

Copyright ©1990 by Jonathan W. Mills %

5. SUMMARY AND CONCLUSIONS

The reductions in code size are summarized relative to the original WAM code. In the example unit clause, even a
software implementation of template programming reduced the size of the native code by a factor of two. Thus,
template programming may be a useful technique to optimize the size of code generated by native-code compiler.
Combining template programming with other optimization techniques, such as global analysis to remove trailing
and dereferencing (Holmer et al. 1990).

Bits Model/W AM Ratio
WAM 1280 1.0
LIBRA 9360 7.3
LIBRA, call/return coroutining 4480 25
LIBRA, instruction-level coroutining 2960 2.3
WAM, template instructions 728 0.57

In all cases locality of reference is improved, which should increase the cache hit ratio. This is because the template
will remain in the cache throughout shallow backtracking, while only the difference trace will be fetched. In
addition, more difference trace code will exccute out of the cache since this code is small. In the four-address LIBRA
this advantage transiates directly into a performance gain because there is no overhead once coroutining is
established. Further work is needed to determine whether the overhead of call and return coroutining precludes
performance advantages gained by a higher cache hit ratio.

REFERENCES

Borriello, G., A. Cherenson, P. Danzig, and M. Nelson. 1987. RISCs vs. CISCs for Prolog: A case study.
Proceedings of Second International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS II). Palo Alto, California. In ACM SIGPLAN Notices 22: pp. 136-145.

Holmer, B. K., B. Sano, M. Carlton, P. Van Roy, R. Haygood, W. R. Bush, A. M. Despain, J. M. Pendleton, and
T. Dobry. 1990. Fast Prolog with an Extended General Purpose Architecture. Proceedings of Seventeenth Annual
International Symposium on Computer Architecture. IEEE Computer Society Press.

Mills, J., and K. Buettner. 1988. Assertive Demons. Proceedings of Fifth Joint International Conference on Logic
Programming. Seatile.

Mills, J. W. 1988. "LIBRA: A high performance balanced RISC architecture for Prolog." PhD Dissertation, Arizona
State University, Tempe, Arizona.

Mills, J. W. 1989. A pipelined architecture for logic programming with a complex but single-cycle instruction set.
Proceedings of IEEE 1st International Tools for Artificial Intelligence Workshop. Fairfax, Virginia: [EEE Computer
Society Press. pp. 526-533.

Warren, D. H. D. 1983. An abstract Prolog instruction set. Technical Note 309. SRI International, Stianford,
California.

Copyright ©1990 by Jonathan W. Mills 61

Proceedings of the

2nd NACLP Workshop on
Logic Programming Architectures and Implementations
Held as a part of NACLP90, The 1990 North American Conference on Logic Programming

November 1, 1990
Hyatt Regency Hotel
Austin, Texas

Organized by:

Jonathan W. Mills

Computer Science Department
101 Lindley Hall

Indiana University

Bloomington, Indiana 47405-4101
USA

Jwmills@iuvax.cs.indiana.edu

Edited by Jonathan W, Mills

Micha Meier

ECRC, Arabellastr. 17
8000 Munich 81

West Germany

EUROPE micha@ecrc.de
usa micha%ecrc.de@pyramid.com

Proceedings not including articles Copyright ©1990 by the Association for Logic Programming
Articles Copyright ©1990 by the respective authors

iii

