TECHNICAL REPORT NO. 337

Rule-based Data Dependence Analysis
by
Larry Tenny

October 1991

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Rule-based Data Dependence Analysis

Larry Tenny
October 30, 1991

Abstract

In this paper we outline a new approach to data dependence anal-
ysis. Our techique involves using rules to derive the data dependence
graph from information readily obtainable from a parse tree and flow
analysis of a program. The rules presented are written in the Rex-
UPSL language. We present a complete example of the derivation of
a data dependence graph.

1 Introduction

The semantics of most programming languages impose a strict order on the
execution of statements in the language. Except for specific transfer of con-
trol statements (eg. goto), or conditional statements (eg. if-then-else),
the order imposed by the language is the textual order of the statements
in the program. Arbitrary changes to the textual order of statements in a
program change the behavior of the program. Thus the semantics of the
programming language demand a particular order of execution.

This order might seem to pose a rather serious problem for compilers that
attempt to optimize code since many of these optimizations result in a re-
ordering of statements [1]. Compilers that attempt to automatically vectorize
or parallelize code might seem doomed from the start since vectorization and
parallelization at best requires some statements to be executed concurrently,
and at worst, executed in a random order.

Under certain conditions, however, this ordering can be relaxed. Some
statements may be executed concurrently or in a random order without

program — procedure+

procedure —— procedure-declaration declaration* statement+
statement —— assignment | conditional | do-loop

assignment — variable = expr

conditional — if (logical-expr) then statement+ endif

do-loop — do variable = expr , expr [, expr] statement+ enddo

Figure 1: Abstract syntax for our language model.

changing the semantics of the resulting program. Determining which of the
statements in a given program can be re-ordered is the subject of this paper.

Data dependence analysis plays a key role in code optimization and pro-
gram restructuring. Some aspects of data dependence analysis are employed
in almost every optimizing compiler, but it finds heavy use in compilers that
attempt automatic code vectorization and parallelization.

The central goal of data dependence analysis is to determine, as much as
computationally possible, the nature and extent of data interactions between
statements in a program. Some aspects of these interactions are undecidable.
Some are computationally expensive. Some are simply a matter of choos-
ing the appropriate representation. Data dependence analysis provides the
higher level abstractions and operations access to information about these
interactions.

We use a restricted version of Fortran as our language model (see Fig-
ure 1). We use Fortran because it is the language of choice in high per-
formance computing environments that benefit most from the restructuring
processes.

The Fortran we use is restricted in the sense that our model retains some,
but not all of the semantic qualities of Fortran. For simplicity we do not
allow any of the methods for aliasing memory locations (like equivalence or
common blocks), non-structured loops which contain more than one induction
variable, and anything but simple linear functions in array indices. These
restrictions may seem severe, but in practice, most Fortran programs fit into
this model.

The ideas presented here are not tied to the language model we have
chosen. Indeed, these techniques apply to virtually all imperative languages.

Much about data dependence analysis is not covered in this paper. In
particular, we do not address interprocedural analysis [15], semantic analy-
sis [12], nor symbolic subscript analysis [8].

2 Scalar Analysis

We call variables that denote arrays vector variables and all other variables
scalar variables. The importance of this distinction will become clear shortly.
For now, we assume that all variables are scalar. Vectors will be handled after
we have developed some basic tools.

Aside from specific control constructs like if, goto and subroutine or
function invocation, the semantics of our model, and indeed of most pro-
gramming languages, require statements to be executed in textual order.
This requirement arises directly from the often implicit requirement that the
order of the side-effects to the state of the program be predictable. Consider
the following statements.

Si:z=x+y
Sy:a

]
N
+
o

If S, is executed before S;, the value in the variable a would likely be
different than if S; is executed first. It would seem then, that the textual
order of statements in a program mandate a fixed execution order. However,
consider:

x+b
c+b

Sa: z
Ssi:a

Here the statements may be executed in either order without changing
the final values of a or z. We call this property commutativity.

A fundamental problem for us is to determine when two statements are
commutative. Commutativity implies that parallel execution of the state-
ments is semantically valid, assuming of course that other factors such as

I/O are not involved. To see why this might be the case, consider a parallel
processing model in which two or more statements are randomly distributed
to two or more processors for unsynchronized execution. Due to the proba-
bilistic nature of such a model, it would be impossible to guarantee a specific
execution order while at the same time maintaining concurrent execution (ie.
no synchronization). If the statements are commutative we would require no
such guarantee.

Not only is it important for us to determine when two statements are
commutative, but it is also important to determine when two statements
access common variables. We call this property factorability. Notice that
both S3 and S4 access but do not modify variable b. We say that S; and S,
are factorable.

In some parallel architectures, factorability may degrade performance al-
most to the point of serialization. In other parallel architectures, most no-
tably those with a large data cache or an abundance of registers, we might
expect an increase in performance due to the lower memory access latency.

In this section we describe a framework for analyzing the data dependen-
cies in a program. Along the way we will assume that information about
control is readily obtainable from a traditional control dependence analysis.
For an in-depth treatment of control analysis see [1] and [18]. We will take
the liberty of referring to data dependence analysis as simply dependence
analysis unless the reference is unclear.

We begin our discussion with a definition.

Definition 1 Let P be a program in our model.

Se€P <= §isa statement in P
VAR(S) = {v:vis an occurrence of a variable in S}

VAR(S) is the set of all occurrences of variables in S, not simply the
set of variables in S. Each occurrence of a variable in a statement is unique.
We might denote a variable occurrence by its node identifier in the program’s
parse tree. We could introduce notation like v;, where the subscript would be
unique for each occurrence of variable vin statement S. In order to streamline
matters as much as possible we introduce notation at the set level and urge
the reader to keep this subtle distinction in mind when we deal at the variable
level. Later we will denote an occurrence of variable v in statement S by v;
for 1 <4 < n where n is the number of occurrences of vin S.

4

Definition 2 Let P be a program and S € P a statement.

USE(S) = {v:v € VAR(S) A v used in S}
DEF(S) = {v:v € VAR(S) Av defined in S}
USE(S), = {n:n is the name of v A v € USE(S)}

DEF(S), = {n:n is the name of v A v € DEF(S)}

Here the sets DEF(S) and USE(S) contain all the occurrences of vari-
ables defined and of variables used in S, respectively. The sets DEF(S),
and USE(S). contain just the names of the variables that occur in DEF(S)
and USE(S). DEF(S), and USE(S), are the name projections of the corre-
sponding sets.

We have not given a precise meaning of the term ‘defined’. For now, we
will avoid a giving this term a precise meaning other than to suggest that it
refers to variables modified in a statement. After some important notation
and results are introduced, we will return to this issue.

We use the following lemma in our proof of the Commutativity Theorem.
The lemma says that we have captured all the variables in S with the USE
and DEF sets.

Lemma 1 If P is a program and S € P a statement then,
USE(S). U DEF(S). = {n: nis the name of a variable in S}

Proof In our language model, as in most programming languages, all vari-
ables that occur in a statement occur either in a USE context or in a DEF

context, or both. Hence, all variables in S are in either USE(S), or DEF(S),.
O

Now with the sets USE(S), and DEF(S), and Lemma 1, we are able to
state the following sufficient condition for commutativity.

Theorem 1 (Commutativity) Let S;, S; € P be statements of program
P. Then a sufficient condition for commutativity 1s:

(1) (DEF(S1)n N USE(Sz)n) U
(USE(S1)a N DEF(S,).) U
(DEF(S:)a N DEF(S;)) =0

5

Proof Our aim here is to show that if (1) holds, then the execution of S;
followed by S, is semantically equivalent to the execution of S; followed by
S;. That is, the state of the variables mentioned in S; and S, are the same
after the pair of statements have been executed in either order.

If (1) holds, then it follows that each of the clauses is). We take each
clause in turn.

First, (DEF(S;)s N USE(S2)s) = 0 implies that no variable defined in S
is used in S3. Hence, execution order will not affect members of USE(S,).

Likewise, (USE(S;)n N DEF(Ss)s) = 0 implies that no variable defined
in S; is used in S; and again, execution order will not affect members of
USE(S:).

Finally, (DEF(S;), N DEF(S:).) = 0 implies that S; and S; do not
define common variables, so the state of variables in (DEF(S;) U DEF(S,))
after the execution of the statements in either order is the same.

These cases account for all variables in the USE and DEF sets of each
statement, and by Lemma 1 account for all variables in the statements. O

Notice that Theorem 1 does not provide us with a necessary condition
for commutativity, only a sufficient one. In fact, it has been shown that the
more general problem is undecidable [4].

The clauses in (1) present three different conditions that cause S; and S,
to fail the sufficient condition for commutativity. If any of the clauses is not
0, then the statements would not meet the sufficient condition. We define a
relation for each clause.

Definition 3 Let S;, S; € P be statements of program P.

315152 — DEF(S]_),-; N USE(S:;)“ 7£ 0
516°S2, < USE(Si)n N DEF(S:). # 0
$518°S, < DEF(S1). N DEF(S:), # 0

If two statements are in the relations 8%, §%, or §°, there is said to exist
a true depedence, anti-dependence, or output dependence, respectively,
from the first statement to the second. There is an implied direction in
the dependence. Expressions like, S; §° S; are read as: “There is an output
dependence from S; to S;” or “S; is output dependent on S;.”

We would like to define a relation for the one remaining combination of

the sets DEF and USE, namely, (USE(S1)n N USE(S,),) # 0, even though

6

this clause does not appear in (1). This is the relation we need to express
factorability.

Definition 4 Let Si, S; € P be statements of program P.
51(5"32 — USE(SI),, N USE(Sz)n 7£ 0

Definition 5 Let 51, S; € P be statements of program P, then we say that
S1 and S, are factorable if and only if S; 6* S,.

When S; 6 S, holds we say that there is an input dependence between
S: and S,. There is not an implied direction associated with §* as there is
with the other é relations.

Notice that the &' relation does not suggest any restrictions on the seman-
tic validity of executing S; and S, in either order. Rather, it might suggest
some underlying benefits or costs in their parallel execution depending on
the architectural model of the computer on which they are executed.

Among the four relations, there is an important distinction between the
true dependence ¢, and the two relations, §% and §°. The §° and 6° relations
arise because our model allows variables to be re-used. If our model prohib-
ited such re-use, as is the case in functional languages, we could reduce our
discussion of dependence relations to §* and §*. This also suggests dependen-
cies that arise from 6 or §° can be eliminated from programs by introducing
new variables in places where variables are re-used.

The & relation is, on the other hand, an altogether different sort of de-
pendence. It does not participate in Theorem 1, but certainly how code for
parallel machines is restructured. Like &%, &' is a more fundamental relation
which cannot be eliminated by a simple transformation.

Theorem 1 along with the dependence relations are a fundamental result
for our work. But in order to apply Theorem 1 we need to examine the USE
and DEF sets more closely.

For any statement S € P, we might have |[DEF(S)| > 1or [USE(S)| > 1.
We cannot simply refer to the statements themselves as the discrete objects
of a dependence. Although we do this when we speak of a dependence from
one statement to another. The object of the dependence must involve the
variable which causes the dependence. Likewise, we cannot refer to a par-
ticular variable as the discrete object of a dependence because the same
variable may occur more than once in a statement possibly giving rise to

7

more than one dependence. Since the same variable my appear more than
once in a statement, perhaps both in DEF(S) and in USE(S), we need to
distinguish between occurrences of the same variable in a statement. Each
of these occurrences, of course, could participate in a dependence relation.

Fortunately, our definition of VAR(S) allows USE(S) and DEF(S) to
have the property such that each occurrence of a variable is represented. The
following definitions allow us to speak of individual instances of variables in
a program.

Definition 6 Let P be a program with only scalar variables and S € P a
statement. Define,

v = wv,v'E (U VAR(S)) A v has same name and scope as v/

D = {(S,v):veDEF(S)AS¢€ P}
U = {(S,v):veUSE(S)AS € P}
Ds = A{(s,v):(s,v) eDAs=S5}
Us = {(s,v):(s,v)EUANs =S5}

We say that (S,v) is an instance of a variable v in statement S.

The intent here is that D represents instances of variable definitions in
P, while U represents instances of variable uses in P. The sets Dg and Usg
represent the instances in a particular statement, S. It should be clear that
for any program P and statement S € P, Ds C D and Us C U.

We promised a more concrete definition of the term ‘defined’ in the re-
marks following Definition 2. We are now in a position to fulfill that promise.
Consider the following statements:

S1:z=x+y
Sy:a =

Earlier we suggested that S; and S; are not commutative and Defini-
tion 2 along Theorem 1 provided us with the insight. Definition 3 allowed
us to categorize the dependence as S16°S,. A problem arises when another
statement is introduced between S; and S,.

8

Sitz=x+y
S':z=c+d
Syra=z+b

Now does S §* S, still hold? The answer is no. The definition of z in S;
does not reach S;, hence S; and S, are commutative. However, notice that
S'6% S, holds. S’ and S, are not commutative. This does not present us with
as much of an insurmountable problem as one might think. We simply need
to refine the meaning of ‘defined’ to include only the reaching definitions of
a variable.

2.1 Reaching Definitions

The problem of determining the reaching definitions is vital in determining
the data dependence in a program. We briefly look a one algorithm to deter-
mine reaching definitions in order to make clear what a reaching definition
is. '

Definition 7 Let S € P be a statement in program P.
GEN|[S] = Ds

KILL[S] = |J{(S',v'):v = v"Ave DEF(S)}
S'#S
IN[S] = | {(8,v): 3 a path from S' to S where v is not KILLed}

OUT[S) = ggN[S] U (IN[S] — KILL[S))

These four sets denote the new definitions that are generated (GEN) by
this statement, the definitions which mask previous definitions (KILL), the
definitions which reach this statement (IN), and the definitions which survive
this statement (OUT).

Figure 2 is an iterative algorithm from [1] which computes the reaching
definitions, the set IN[S], for each statement. The algorithm starts by initial-
izing the sets GEN[S], KILL[S], and OUT][S] to the set of variables defined in
S, for each S € P. Until no changes are made to OUT(S] for any statement S,
IN[S] is assigned the union of its predecessor’s OUT set. OUT(S] is assigned

9

GEN(S] plus the difference between the set of variables that reach S and the
set of variables that are KILLed by S.

/* initialize KILL[S], GEN[S], IN[S], and PRED[S] =/
for S in P
OUT[S] = KILL[S] = GEN[S] = the set of variables defined in S
IN[S] = 0
PRED[S] =
end
/* iterate through P until no changes are made */
change = TRUE
while(change)
change = FALSE
for S in P
IN[S] = US’EPRED[S] DUT[S"]
OLD = OUT[S]
OUT[S] = GEN[S] U (IN[S] - KILL[S])
if OUT[S] != OLD then change = TRUE
end
end

the set of predecessors of S

Figure 2: Iterative algorithm to compute reaching definitions.

One particularly efficient way to implement this algorithm is to represent
the sets with bit vectors. We number each instance Ds and record the pres-
ence or absence of the #* instance in the set with the ** bit. The resulting
representation consumes far less space than a list-oriented representation and
set operations in the algorithm become simple bitwise logical operations.

Along with reaching definitions, we need to consider uses that live until
a particular statement. That is, we need also consider reaching uses: uses
of a variable with no intervening definition until some statement S € P.
The algorithm for computing reaching uses is similar to the one for reaching
definitions.

Now that reaching definitions and reaching uses have been introduced,
we can modify our previous definition of the § relations as follows.

10

Definition 8 Let 51, S; € P be statements of program P. Let REACHD(S)
be the set of instances of variable definitions that reach statement S with
no intervening definition. Let REACHD(S), be the name projection of
REACHD(S). Let REACHU/(S) be the set of instances of variable uses that
reach statement S with no intervening definition. Let REACHU(S),, be the
name projection of REACHU(S).

58Sy <= (DEF(5:)aN REACHD(S,),) N USE(Sy)n # 0
5,6°S; <= (USE(S1)aN REACHU(S,),) N DEF(Sy)n # 0
5,6°S; <= (DEF(S1)aN REACHD(S,),) N DEF(Sy)n # 0

This definition of the § relations is more precise, yet somewhat more
complex than our previous definition. Throughout the remaining part of this
paper, whenever we refer to a § relation, we implicitly refer to this definition.

3 Subscript Analysis

In the previous section we restricted our attention to scalar variables. Here
we shift the focus to dependence analysis in the presence of vectors, especially
in the context of loops. Vectors, often called subscripted variables or arrays,
are used extensively in loops. Loops offer a great potential source for speedup
in parallel systems[10, 2, 11]. However, vectors used in the context of loops
complicate the analysis considerably [16, 17, 18].

In this section we introduce some additional dependence notation along
with a few new concepts. We derive one well known dependence test, the
GCD Test, that can be used to disprove the existence of a dependence. The
general problem of proving the existence of a dependence based on arbitrary
subscript expressions is undecidable.

Consider the following loop.

do i=1,10

S1:2z(i) = 2 % x(i)
Sp:y(i) = z(i) + 1
enddo

11

Intuitively we see that S; &* S3, and indeed if we simply assumed that
z was a scalar variable using the results of the previous section we would
conclude that S, is dependent on S;. However, consider following slightly
different loop.

doi= 1,10

S1:z2(i%x2) = 2 * x(i)
Sp:y(i) = z(ix2+1) + 1
enddo

Here we would again conclude S; §* S, but we see that S; defines the
even elements of z while S, uses the odd elements of z. Qur scalar analysis
fails because we are forced to treat the entire array z as a single variable.

What we need to look at is not simply which variables are used or defined,
an approach that was sufficient for scalars, but which positions within the
vectors are used or defined. Since these positions are referenced by subscript
expressions, the fundamental problem is to determine when these subscript
expressions refer to the same element in an array. Since the subscript expres-
sions can be functions of values computed at run-time the general problem
is of course, undecidable.

3.1 Definitions

In our language model as in most programming languages, loops may be
nested to virtually any depth. In practice, nesting to several levels is quite
common so our approach should be general enough to handle loop nesting to
an arbitrary depth.

Definition 9 Let L,,..., L, be loops nested to depth n in program P. We
define an iteration vector for L1,..., L, to bei = (i1,...,1,) where each i; in
1 < j < n is the value of the induction variable of loop L; for some iteration
of the loop.

We say that {i :iis a vector inL,,...,L,} is the iteration space of the
loop Lq,...,L,.

12

An iteration vector describes the state of each induction variable in any
particular iteration of the loop. There is a different iteration vector for each
possible value of each induction variable. For example, in the following loop
we have {i} = 10 x 20 x 5.

Li:do i=1,10
Ly: do j=1,20
L3: do k=1,5

Loops need not be, and often are not, perfectly nested. We might have a
nesting similar to the loop below. Here the length of the iteration vector for
L, is 1, but the length of the iteration vector for L;, L, and Ly, L3 is 2.

ledo i=1,25

Ly: do j=1,4

S1: a(j,i) = ¢ * b(4,j)
enddo
c = e(i)

L3: do j=1,4
a(j,i) = c * d(i,j)
enddo
enddo

The association of an iteration vector with a statement is written as S(i)
and denotes a particular instance of the statement in an iteration of a loop.
For example, 51((1,3)) is the statement instance: a(3,1) = ¢ * b(1,3).

As in the previous section, the central problem is to determine when two
statements are in a 4 relation. We say that two statements S, S, € P are
dependent if and only if there exists some pair of iterations vectors (i,i') such
that Sy(i) 8* Sa(i’) or S1(i) 6* S»(i') or Si(i) 6° Sz(i’) holds. In addition, we
say that two statements are input dependent if and only if there exists some
pair of iteration vectors (i,i') such that S;(i) 6* S3(i’) holds.

13

Definition 10 Let S;, Sk € P be two statements in loop L,..., L, and let
S;i(1), Sk(i') be a pair of statement instances where (1,1') is in the iteration
space of the loop. Define,

; —-

B = i; ?;5
> pi<0
0, = (= ui=0
< p;>0
= (p1,...,Hm), where m = min([i|, ||
7 (61,-..,0m), where m = min([i], |i’|)

We call p the distance vector and 8 the direction vector between i and i'.

Definition 11 Let * refer to an arbitrary direction § € {<,>,=}. We
define the set of plausible direction vectors, 1(S;, Si), between two statements
S;, Sk € P where S; occurs teztually before Sy in P as,

P55 8k) ={=,.. }U{=...,<,%x.. JU{<,%,.. .}

We will use the direction vector in stating the GCD Test. The direction
vector is useful in categorizing a dependence between two statements. If the
distance vector between two statment instances S;(¢) and Si(3') is non-zero
and S;(z) & Sk(3'), then we say that the dependence is loop-carried. We
denote a loop-carried dependence by §, where c is the distance p between the
iteration vectors. If the distance vector is zero, we say that the dependence
is loop-independent and denote this by 6.

3.2 The GCD Test

Our present challenge is to determine if two statements are dependent given
the possible set of iteration vectors and the subscript expressions contained
in the array references of the statements. The following loop illustrates the
problem.

14

do i=1,10
S1:a(8xi-2) = 4
So:c = a(2%i)
enddo

We would like to know if there exists iteration vectors (i,i’) such that
51(1) 8 S2(1'). In other words, we would like to know it there is a solution® to
the following dependence equation, 8z — 2y = 2 where 1 < z,y < 10.

Recall that we limit subscript expressions to simple linear functions. In
general, we can write the dependence equation as,

s+ D aii=bot+ 3 b

1<5<n 1<5<n

which we may write in a more familiar form as,

Y. ajij— Y bt = (b — ao)

1<i<n 1<i<n

which is a linear diophantine equation.

If there is a solution within the bounds of our induction variables then
we know that a dependence exists. On the other hand, if we can prove that
no solution exists, then no dependence exists. In order to develop this idea
further, we need the following results.

Lemma 2 Let

E a;T; = C

1<i<n
be a linear diophantine equation and g = gcd(ay, .. .,a,), then

gy gy E av; =g
iCitn

Proof Let C = {X;<icnai:v; € Z} and ¢ = min{c € C A ¢ # 0}. First,
we claim that ¢’ divides each a;, 1 <2 < n. Assume that ¢’ does not divide

1Let i=(2) and i’ = (7).

15

a; for some jin 1 < j < n, then

a; = cdq+r
r = a;j—Ccq
a; —() awi)g
1<i<n
= aj(l —v;)g+ Z —a;v;q
i#
1<:<n

Hence r € C, but this contradicts the definition of ¢’. Since a; was chosen
arbitrarily, it follows that ¢’ divides each a;.

Next, we claim that g = ged(ay,...,a,) = ¢'. If g < ¢ then ¢’ is a greater
common divisor of a,,...,a, which contradicts the definition of g.

If g > ¢’ then g does not divide ¢’. But, from the previous claim, ¢’ divides
ay,...,a, so g must divide ¢’. Hence, g = ¢’ and

g,y Y aw; =ged(ay,...,a.) =g

1<i<n
O
Theorem 2 Let
Z a;T; = C
1<i<n
be a linear diophantine equation, and g = gcd(ay, ..., a,). The equation has
a solution if and only if g divides c.
Proof If g divides c¢ then gk = c and from Lemma 2 there exists vq,...,v,
such that 37, <,<, a;v; = g. Hence,
gk =c=k Z a;v;
1<i<n
and the solutions are (vic/g,...,vnc/g).
If the equation has a solution (u1,...,u,) and g divideseach g¢; 1 <i < n,
then clearly g divides ¢ O

16

Corollary 1 Let

z a;T; = C
1<i<n
be a linear diophantine dependence equation associated with S,,, S, € P. If
the equation has no solution then S,, § S, does not hold.

Theorem 2 provides us with a simple way to prove that no solution exists,
and by Corollary 1 that no dependence exists. But when gcd(as,. .., a,) does
divide ¢, the theorem does not tell us where the solution is. In particular, it
does not tell us if the solution exists within the iteration space of the loop.
This problem is rather fundamental when dealing with vectors. The iteration
space of a loop is not always known at compile time because the loop bounds
may depend on values computed at run time. Using only the corollary, we
are forced to take the conservative approach and assume a dependence exists
whenever the equation has a solution, even though the solution may not fall
within the iteration space of the loop.

Although the following theorem does not tell us if a solution exists within
the iteration space, the GCD Test can indicate if the dependence is loop-
carried or loop-independent.

Theorem 3 (GCD Test) Let ay,...,a, and by,...,b, be the coefficients
of a dependence equation, 8 be a direction vector between two statement in-
stances S(i) and S'(1'), and g = ged({a;—b; : 0; = ="}, {a; : 6; # ="}, {b; :

0; # ‘='}).
IfS65’, then g divides (b — ao).

Proof We may write the dependence equation as,

2) > {(aj—b)i;:6;="="} + 3 {(aji;:6; # ="}

1<j<n 1<j<n

— Y (b 054 =7} = bo— ao

1<5<n

Since (2) is a linear diophantine dependence equation associated with S
and §’, if S(i) § S’(i') then by corollary 1 g divides (bo — ao). O

To illustrate how Theorem 3 might be used to distinguish between loop-
carried and loop-independent dependencies, consider the following loop.

17

L;:do i=1,10
Ly: do j=1,10
Si: a(2%i+3%j+2) = d
S2: ¢ = a(5*i+9%j+4)
enddo
enddo

The dependence equation is 2 + 2z, + 3z, = 4 + 5y; + 9y;. Which by
theorem 2 has a solution since gcd(5,9, —2, —3) = 1 which divides 2.

If we choose 8 = (=,=) we have gcd(5 — 2,9 — 3) = gcd(3,6) = 3 which
does not divide 2. By theorem 3 there is no dependence between S;(i), Sa(i)
and if a dependence exists within the iteration space it is a loop-carried
dependence.

Another dependence test called the Separability Test [16] is based on
the explicit representation of the solution space of the dependence equation.
The Separability Test can be applied only if the dependence equation has
exactly one induction variable. However, the test yields both a necessary
and sufficient condition for dependence.

Finally, the Banerjee Test [3] can be used to determine of a solution
exists within the iteration space but can not be used to determine if the
solution is integer or real. Since we require that the solutions be integer, the
Banerjee Test can only be used to disprove a dependence.

4 The Data-Dependence Graph

A data dependence graph (DDG) [9] is a digraph G = (V, E) where V =
{S:|8; € P} and E = {(S;,5;) | S: § S;}. Edge direction in G corresponds
to the implied direction of the dependence. We label each edge with the
corresponding dependence relation: &*, §%, §°, or §° (see Figure 3).

The DDG serves as the abstract representation of the data-dependencies
in the program. As such, the DDG represents the absence of commutativity
and the presence of factorability among statements in a program. Three of
the relations represented in the DDG namely, &%, §%, §°, characterize the cause
of non-commutativity. The §* relation represents factorability. The problem
of finding the correct sequence of program transformations that result in

18

do i=1i,n @

Sy:a(i+2) = b(i) &
Syt c(i+3) = a(i) o @
S3:b(i+1) = (i) 8

enddo @

Figure 3: A data dependence graph.

some desired goal is essentially one of finding isomorphisms to a subgraph of
the DDG. In this section we develop a concise set of rules for deriving the
DDG from simple variable, data flow, and textual order information.

This approach is unique in many respects. On the practical side, it al-
lows us to treat changes to the DDG in a uniform, well defined manner. This
uniformity greatly simplifies the otherwise complex program dependence in-
formation and makes updating the dependences, especially after a series of
program transformations, not only possible, but relatively easy.

A more fundamentally unique and advantageous feature of this approach
is that it provides a clear, syntactic, and even executable definition of pre-
cisely what the DDG represents. The rules presented here to derive the
DDG are analogous to the formal syntax rules presented when one describes
a programming language.

Finally, an equally important advantage is that the representation pre-
sented here allows us to exploit the powerful pattern matching facilities in-
herent in rule-based languages to find the graph isomorphisms that are the
essence of the restructuring process.

4.1 Preliminaries

The rules presented in this section are written in an experimental program-
ming language developed specifically for this project. The language, called
Rex-UPSL [14], supports both a traditional Scheme [13] environment as well
as a tuple space similar to the tuple space of a relational database[5]. The
tuple space is called working memory and denoted by M. The individual
tuples in M, called working memory elements, are denoted by M..

19

Definition 12 A working memory element M., is an ordered tuple of the
form
(class obj obj...)

where class is a Scheme symbol and obj is a Scheme object.

Working memory, M, is the collection of all working memory elements.

A particular rule in a Rex-UPSL program is applicable when the precon-
ditions specified in the rule are satisfied by one or more tuples, M, € M.

Definition 13 A rule is an ezpression of the following form.

(rule name pattern pattern...--> expression)
LHS RHS
The left hand side (LHS) is a conjunction of patterns and the right hand
side (RHS) is an arbitrary Rez-UPSL ezpression.

Essentially, a rule consists of two parts: a left-hand side and a right-hand
side. The left-hand side is a conjunction of patterns similar to a prototypical
M., but may contain variables or relational operators. The right-hand side
is an expression that is a candidate for evaluation when the left-hand side
patterns are consistently matched by some subset of M.

It is important to note here that rules in Rex-UPSL are declarative objects
in much the same sense as clauses in Prolog. Rules do not “check” M when
first encountered by the Rex-UPSL interpreter. Rather, the set of satisfied
rules is determined after each change to M using an efficient, state saving,
many pattern, many object matching algorithm [7].

The syntax and semantics of our rule-based language will be illustrated
here by way of example and discussion. A formal syntactic description is
presented in the appendix. See [14] for a full discussion of the language.

4.2 Variables, Data Flow, and Textual Order

Programs contain variables. Edges in a DDG represent data dependencies
that arise from the use and re-use of variables in a program. We begin our
discussion by defining a representation for variables, data flow, and textual
order in a program.

20

Definition 14 Recall that a variable instance is the pair (S;,v;) where S; €
P and v; is an occurrence of variable v in S;. For each variable instance
(S;,v:), let i(s;v:) be a unique integer. We will use i(s;0:) as a tag to refer to
the instance (S;,v;). Likewise, let t, and ts; be integers such that Vo v =
v e t, =ty and Vig; ts; # ts,. We will use t, and ts; as tags to refer to
variables and statements.

Initially, M is empty. A parse of the program results in, among other
things, a set of variable instances (S}, v;), the corresponding tags #(s; v), and
a set of statement tags ts;. We define M., as follows for variables used in P,

M., = {(var use t, t(s;.;) ts;) | S; € P Av e USE(S;)}
and M., as follows for variables defined in P.
Me, = {(var def t, t(s;.) ts;) | Sj € PAv e DEF(S;)}

Each M. € M is a tuple with a class of var, a reference designator,
use or def, a variable instance tag, and a statement tag. By Lemma 1, all
variable instances in P are represented in M by M., U M.,.

As discussed in Section 2, data flow is vital in determining data depen-
dence and ultimately in building the DDG. Four types of data flow are im-
portant for our discussion. We represent a definition of a variable followed
by a use without any intervening definition (see Figure 2) by the following
working memory element,

M., = (flow def-use t, ts, ts,)

The class is flow and the remaining objects indicate the type of data flow
(see Table 1), the variable, and the two statements associated with the flow.

With the program components represented in M, most of the data de-
pendencies in a program can be derived. However, without textual order
information, we cannot distinguish between some loop-independent and loop-
carried dependencies. Consider the following loop.

do i=1,100
Si1:a(i) =d
Ss:c = a(i)
enddo

21

Clearly S; 6* Sz holds while S; §* S; does not. Before subscript analysis,
data flow analysis finds both the definition of a in S; followed by the use of
a in Sz and, because of the loop, the use of a in S, followed by the definition
of a in §;. This would imply both S; § S, and S; 6% S; hold. After
subscript analysis we know that the dependence is loop-independent, but we
still cannot conclude which of the dependencies hold.

The textual ordering of S; and S is the missing link. If we can prove
that S; textually occurs before S5, we can establish S; &% 5.

We represent textual ordering in which S, follows S; with the following
working memory element.

M., = (order tg, tis,)

Notice that we have already established that there is a definition-free
execution path from S; to S, and a similar path from S, to Sj.

Textual ordering is a weaker notion than execution ordering. Execution
ordering is essential in determining the reaching definitions and reaching uses
of a variable. The weaker textual order is sufficient to distinguish between
loop-independent and loop-carried dependencies.

In the next section we show how the DDG can be derived from this rep-
resentation of variable occurrences, flow information, and textual ordering
(see Table 1). This is not the only representational set, nor is it the small-
est. There are disadvantages in using this set. Most notably, we sacrifice
the ability to handle variable aliases by not explicitly representing execution
paths. The set we have chosen does allow us to use a much smaller collection
of rules to derive the DDG. Essentially, we have pushed much of the com-
plexity of the derivation into the builtin flow analysis at the price of reducing
the number of things we can reason about.

4.3 Deriving the DDG

With a uniform representation in M for the variables, data flow, and textual
ordering, in this section we introduce several rules for deriving the DDG.
Deriving a particular dependence edge in the DDG is a two step process.
First, a tentative dependence edge is built if and only if the preconditions
for the edge are present in M. Next, the set of tentative dependence edges
become the preconditions for the formation of the final dependence edges.

22

M., Description

(var use t, i(s;) ts) v € USE(S)

(var def i, t(s:) ts) v € DEF(S)
(flow def-use t, ts, ts,) | v € DEF(S1) A v € USE(S;)
(flow def-def t, ts, ts,) | v € DEF(S1) A v € DEF(S,)
(flow use-def t, ts, ts,) | v € USE(S;) A v € DEF(S,)
(flow use-use t, ts, ts,) | v € USE(S:) A v € USE(S,)

(order ts; ts;) S; textually follows S;

Table 1: Summary of M, representations of variables, data flow, and control.

We begin with a rule that builds tentative true dependence edges. The
preconditions for a tentative true dependence are as follows. Variable v is
defined in some statement S; and used in some statement S;. It may or
may not be the case that i = j. Also, there exists an execution path free of
definitions to variable » from S; to Sj.

In Rex-UPSL, these preconditions are expressed in the following rule.

Rule 1

(rule true
(var def <v> <vti> <sti1>)
(var use <v> <vt2> <st2>)
(flow def-use <v> <sti> <st2>)

-—>
(make tentative-dependence true (characterize <vtl> <vt2> <sti> <st2>)
<vtl> <vt2> <stil> <st2>))

First, a note on syntax. The patterns on the left-hand side that are the
preconditions for the application of the rule, look like memory elements ex-
cept for the brackets < > surrounding some of the identifiers. These brackets
denote variables in the pattern. Variables mentioned more than once on the
left-hand side must match the same value. Once matched consistently, these
variables are available for use in the right-hand side expression.

Here the left-hand side has three patterns. The first and second match
any pair of instances of a particular variable in which the variable occurs in

23

Characterization Description
scalar scalar variable
loop-independent 0= (=,...)
positive oc {(=,...,>,*)}U{(>,*,...)}
negative dc {(=i S Ul %000}
non-linear non-linear subscript expression
unknown dependence unknown
no-dependence no dependence

Table 2: Characterization of dependence directions.

a def context and a use context, respectively. The third pattern matches
any of our flow memory elements involving the definition of the variable in
one statement <st1>, followed by a use of the variable in another statement
<st2>, with no intermediate definition.

Because multiple occurrences of a pattern variable must match the same
value, the first two patterns match instances of the same variable. The inte-
ger tags representing the instances are bound to the pattern variables, <vt1>
and <vt2>. Likewise, because the pattern variable <v> must be bound consis-
tently, the third pattern restricts which memory elements the first and second
patterns can match. These involve a definition of <v> in statement <st1>
followed by a use of <v> in statement <st2> with no intervening definition
along any execution path from <sti1> to <st2>.

On the right hand side, the special form make builds a memory element
from its arguments. The function characterize determines if the variable
reference is scalar or vector. If vector, the GCD Test is applied to the corre-
sponding dependence equation. If a dependence is found it is characterized
based on the direction vector of the dependence (see Table 2).

The following rules for tentative anti, output, and input dependencies
have a similar structure.

Rule 2
(rule anti
(var use <v> <vti> <sti1>)
(var def <v> <vt2> <st2>)
(flow use-def <v> <sti> <st2>)

24

-->
(make tentative-dependence anti (characterize <vti1> <vt2> <sti1> <st2>)
<vti> <vt2> <stl> <st2>))

Rule 3

(rule output .
(var def <v> <vti> <sti>)
(var def <v> <vt2> <st2>)
(flow def-def <v> <stil> <st2>)

-->
(make tentative-dependence output (characterize <vti> <vt2> <sti> <st2>)

<vti> <vt2> <stl> <st2>))

Rule 4

(rule input
(var use <v> <vti> <sti>)
(var use <v> <vt2> <st2>)
(flow use-use <v> <sti> <st2>)

-->
(make tentative-dependence input (characterize <vti> <vt2> <sti> <st2>)

<vtil> <vt2> <sti> <st2>))

The rules we have stated are rather general. A specific example of a
rule match resulting in the creation of a tentative anti-dependence edge is as
follows.

Suppose we have two statement nodes with tags ts, and g, that reference
a variable ¢,. Statement ¢s, assigns to ¢, some value (i.e. v € DEF(S;)), while
ts, reads from ¢, (i.e. v € USE(S;)). M would then contain the following
three memory elements,

M., = (var use t, i, ts,)

M., = (var def t, t,; ts,)
MB! — (flow use—def tu t51 tS;)

The first two preconditions of the anti rule are satisfied by the two ele-
ments, M., and M,,. These represent the two instances of the variable ¢,

25

M, Description
(order ts; ts;) §; follows S;
(var t, t(s.;) ezprs ts) v € DEF(S) Uv € USE(S)
(flow def-use t, ts ts,) v € DEF(S1) A v € USE(S,)
(flow def-def t, ts, ts,) v € DEF(S;) A v € DEF(S,)
(flow use-def t, ts, ts,) v € USE(S1) A v € DEF(S,)
(flow use-use %, t5 ts,) v € USE(S1) A v € USE(S,)
(dependence true ts, ts, ty; ty;) S; 6t S,
(dependence anti ts, ts, ty; tv;) S1 6% 5,
(dependence output ts, ts, ty; ty;) S1 5‘_’ Sa
(dependence input ts, s, ty; tu;) S16* S,
(dependence* true ts, ts, ty; tu;) S1 6° Sz (conditional)
(dependence* anti ts, ts, ty; tu;) 51 6% S, (conditional)
(dependence* output ts, ts, tu; tu;) S1 é'f S (conditional)
(dependence* input ts, ts, ty; tu;) S 6* S3 (conditional)

Table 3: Summary of dependence-related M, types.

that occur in statements tg, and tg,. The pattern variables <vt1> and <vt2>
are bound to the tags for use instance and the defining instance, respectively.
The third precondition is satisfied by M,,. This element represents a
reaching use of ¢, between statements t5, and tg,.
Symbolically, the rule satisfaction is,

M, AM, N M., — tentative-dependence anti...

Input dependencies do not inhibit parallelization or vectorization, but
their representation is important in the analysis of secondary memory effects.

The characterize procedure applies the GCD Test to subscript expres-
sions to characterize the dependence. Constant subscript expressions or the
absence of subscript expressions altogether imply scalar reference. But when
subscript expressions are involved, the GCD Test along with some simple
heuristics can, in many cases, determine the direction vector of a dependence
if a dependence exists. This characterization of the dependence is used to
determine the veracity of tentative dependence edges produced by the rules
presented above. To see why this is important, consider the following loop.

26

do i=1,100
S;:a(i) = 3
Sg :b = a(i-1)
enddo

Data flow analysis provides us with the following two £1low working mem-
ory elements.

(flow def-use i, s, ts,)
(flow use-def t, ts, tg,)

And in the context of the previous rules, the following tentative depen-
dence edges are added to M.

(tentative-dependence true negative t,; t.; ts, ts,)
(tentative-dependence anti positive t,; to; ts, ts,)

Both tentative dependencies cannot hold. We know from Definition 11
that dependence direction vectors of the form {=,...,>,...} or {>,%,...}
are not in (S, S2) hence are not plausible. We conclude that the anti-
dependence does not exist. The following rule captures this notion.

Rule 5
(rule loop-carried
(tentative-dependence <type> negative <vti> <vt2> <sti> <st2>)
-->
(make dependence <type> <vti> <vt2> <s1> <st2>))

For tentative dependencies that are scalar or loop-independent, we need
not consider the plausibility of the direction vector since the dependence is
among statements in the same iteration of the loop. However, we do need
consider the textual order of the statements for two reasons.

We need to remove the tentative self-dependencies. Self-dependencies
arise from data flow analysis entering the flow elements into M for multiple
references of a variable within a statment. Such references are significant

27

if they result in loop-carried dependencies, but not if they would result in
loop-independent dependencies.

As mentioned above, the textual order of two statements involved in a
tentative dependence is crucial in choosing between two possible dependence
types. In M the execution order of each pair of neighboring statements is
represented by,

M., = (order tg ts,)

Just textual neighbors are represented and not all possible statement
pairs. Notice that the order relation is transitive. That is,

(order S; S2) A(order S, S3) — S;follows S;

To prove an textual ordering between two arbitrary statements S; and
S;, we form the transitive closure over the order relation from S; to S;.

Rule 6

(rule transitive-closure
(prove-order <sti> <st2>)
(order <sti> <st>)
(order <st> <st3> <> <st2>)
-(order <stl1> <st3>)

-->
(make order <sti> <st3>))

Rule 6 has four preconditions. First, the current subgoal must be to prove
an ordering between two statements, S; and S;. Next, there must exist an
ordering between S; and S,, and between S,, and S, where n # j. This last
condition precludes rule satisfaction when the desired order relation already
exists. This last precondition requires that the derived order relation does
not already exist in M. Syntactically, this negated pattern is signaled by the
proceeding -.

For the transitive-closure rule to become active, M must contain the
subgoal prove-order. The first rule of the following rule pair establishes
this subgoal when a tentative loop-independent dependence arises.

28

Rule 7
(rule possible-loop-independent
(tentative-dependence <type> loop-independent <vtil> <vt2> <sti> <st2>)
-->
(make prove-order <sti> <st2>))

If an execution ordering between two statements involved in a tentative
loop-independent dependence has been established, the following rule adds
the appropriate dependence edge to the DDG.

Rule 8
(rule loop-independent
(tentative-dependence <type> loop-independent <vti> <vt2> <stl1> <st2>)
(order <sti> <st2>)
-—>
(make dependence <type> <vti> <vt2> <sti1> <st2>))

For scalar variables we need not consider execution order because both
tentative dependencies hold.

Rule 9
(rule scalar
(tentative-dependence <type> scalar <vtil> <vt2> <sti> <st2>)
-=>
(make dependence <type> <vtil> <vt2> <sti> <st2>))

As discussed above, the essential problem in determining a dependence
between array references is finding the solution to the linear diophantine
equation corresponding to the subscript expressions used in the array ref-
erences. Often, however, it is not possible to determine if the dependence
equation has a solution within the iteration space of a loop. In order to
guarantee that the program transformations based on the DDG preserve the
semantics of the program, we are forced to error on the conservative side and
create a dependence edge.

This gives rise to two distinct kinds of edges in our dependence graph.
One edge represents a proven dependence, that is, we can prove that the
dependence equation has a solution and that a solution lies within the iter-
ation space. The second type of edge represents a suspected, yet unproven

29

dependence. We can show that the dependence equation has a solution, but
cannot prove or disprove a solution within the iteration space. Traditional
data dependence analysis does not distinguish between these two types of
edges.

If the GCD Test is unable to prove or disprove a dependence either be-
cause the subscript expression is non-linear or because the loop bounds are
not known at compile time, the dependence is characterized as either unknown
or non-linear. The following rule creates the conditional dependence.

Rule 10
(rule conditional
(tentative-dependence <type> << unknown non-linear >>
<vtl> <vt2> <sti> <st2>)
-->
(make dependence* <type> <vtl> <vt2> <stl1> <st2>))

Note the use of the or predicate << >> in the left hand side. The pat-
tern matches any tentative dependence edge characterized as unknown or
non-linear.

4.4 An Example

In this section we present a brief sketch of the DDG derivation for the fol-
lowing loop.

do i=1,100

Si:a(i) = a(i+1)
Sa:b(2%1) = a(i)
S3:¢c = b(2%i+1)

S4: a(i+l) = b(2%i)+c
enddo

We assume that a parse tree has been constructed and the necessary in-
formation such as statement, variable, and instance tags, is readily available.
Further, we assume that the variable and data analysis has been performed

30

(2)

Figure 4: Derivation of the Data Dependence Graph.

and the appropriate var, flow, and order elements are in M. In what fol-
lows, we present the derivation of each type of dependence edge separately.
For brevity we do not present the derivation of input dependence edges.

We begin with the true dependence edges (Figure 4a). The definition
of a(i) in S; and the use of a(i) in S, along with the assertion from flow
analysis that the definition in §; of a reaches the use of a in S, satisfies the
preconditions of Rule 1.

The characterize function performs the subscript analysis and con-
cludes that if a dependence exists, it is loop-independent. The following
tentative-dependence element is added to M.

M., = (tentative-dependence true loop-independent t,; t.; ts, is,)

In a similar manner, the preconditions for tentative dependencies from S, to
Sy, from S3 to S4, and from S; to S3 are satisfied resulting in,

M., = (tentative-dependence true loop-independent t, ts; ts, ts,)
and,

M., = (tentative-dependence true scalar i le; s, t&)
and,

M., = (tentative-dependence true no-dependence %y, iy, is, ts,)

31

respectively.

Both M., and M., satisfy the preconditions for Rule 7 and the subgoals
to prove that S, follows S; and Sy follows S, in a textual ordering are entered
into M. In both cases, Rule 6 finds the ordering and enters the appropriate
order elements into M.

Finally, the preconditions for Rule 8 are satisfied and the true dependence
edges are added to the DDG.

Determining the veracity of M., is not so arduous. Rule 9 does not
require the ordering assertion. It simply adds the true dependence edge to
the DDG.

For M.,, subscript analysis was sufficient to determine that no depen-
dence exists.

The anti-dependence edges (Figure 4b) are derived in a similar way.
Rule 2 enters the following elements into M.

M., = (tentative-dependence anti negative i, ta; ts, ts,)

M., = (tentative-dependence anti scalar it i; ts, ts,)
M., = (tentative-dependence anti loop-independent t,; ta; ts, ts,)
M., = (tentative-dependence anti loop-independent i, la; ts, tsl)

Rule 5 is satisfied by M., because subscript analysis characterized the di-
rection of the dependence as negative, hence plausible for a loop-carried
dependence.

Rule 7 along with Rule 6 attempt to establish an that S, follows S; and
that S; follows S,. Only the first of these succeeds.

The two output dependence edges (Figure 4c) are derived by the satis-
faction of Rule 3 and Rule 5 for the loop-carried edge, and by Rules 3 and
Rule 9 for the self-dependence edge.

5 Summary

In this paper we discussed scalar and vector data dependence analysis and
derived one well known dependence test, the GCD Test. We described a
rule-based approach to deriving a data dependence graph and presented a
set of rules that formally describe the meaning of dependence through the

32

use of pre- and post-conditions. During our discussion, we illustrated the
syntax and semantics of the experimental rule-based language Rex-UPSL.

33

Appendix: Rex-UPSL Syntax

Rex-UPSL is a programming language primarily designed for building
large systems of rules, usually called production systems. The left-hand
side patterns for rules in Rex are written using a syntax very similar to
OPS5 [6]. The right-hand side actions of rules are written in Scheme [13]. In
this appendix we present an extended Backus-Naur Form (BNF) syntax for
Rex. The syntax for Scheme expressions is adapted from the offical Scheme
report [13] and is integrated into the sytactic description of Rex-UPSL where

appropriate.

An in depth discussion of the language and its uses can be found in [14].
The BNF presented here is extended with the following notation.

e Terminals are written in boldface type

e Descriptive terminals are written in italics.

e Items followed by + occur one or more times.

e Items followed by * occur zero or more times.

Syntax

program
statement
declaration

system
lit-del

tl-ce
tl-lhs-term
tl-lhs-value
rule

lhs

ce
positive-ce
negative-ce

—
—
—

PELLLLEL DL

statement*

rule | expression | declaration

(literal lit-dcl+)

| (literalize symbol symbol+)

| (vector-attribute symbol+)

(ps statement+)| (named-ps symbol statement+)
symbol = number

(symbol tl-lhs-term*)

= symbol tl-lhs-value | ~ number tl-lhs-value | tl-lhs-value
symbol | num

(rule symbol lhs --> rhs)

positive-ce cex

positive-ce | negative-ce

form | { element-var form } | { form element-var }

- form

34

form — (symbol lhs-term*)

lhs-term — ~ symbol lhs-value | ~ number lhs-value | lhs-value

lhs-value — { restriction*} | restriction

restriction — << any-atom* >> | predicate atomic-value | atomic-value

atomic-value —> ? symbol | var-or-const

var-or-const — symbol | number | variable

predicate — O =]l <] <=]>=]>] <=

rhs — expression

token — identifier | boolean | number | character | string
LCEY T #(1° 0.

deliminator — whitespace | (|)| " | ;

whitespace — space, newline, or tab

comment — 5 characters up to newline

atomsphere —> whitespace | comment

intertoken-space n —— atomspherex

identifier — initial subsequent* | perculiar-identifier

initial — letter | special-initial

letter — albl...|2Z

special-initial — Y| S Dl &I *] /l:l<]l=>]2]"~|_1"-

subsequent — initial | digit | special-subsequent

digit — 0111231415161 718189

special-subsequent — . | 4 | -

expresison-keyword — quote | lambda | if | set! | begin | cond

| and | or | let | let* | letrec
| literalize | vector-attribute

variable — any identifier that is not a keyword
boolean — F#t| #1

character — F#\any-character

any-character —> any character

number —— <+ unumber | - unumber

unumber — digit digit*| digit . digit*

string — 7 any-character*”

symbol — identifier

datum — simple-datum | compound-datum
simple-datum —> Dboolean | number | character | string | symbol
compound-datum —— list | vector

35

list
vector
expression

literal
self-evaluating
quotation
procedure-call
operator
operand
lambda-expr
formals
conditional
assignment

derived-expression

cond-clause
binding-spec

PLLLLLELLL

(datum#*)| (datum datum*. datum)| ’ datum

#(datum=*)

variable | literal | procedure-call | lambda-expr
| conditional | assignment | derived-expr | system

quotation | self-evaluating

boolean | number | character | string
> datum | (quote datam)

(operator operand*)

expression
expression

(lambda formals expression*)

(variablex)| variable |

(variable variable*. variable)

(if expression expression expression)
(set! variable expression)

(cond cond-clause+)

(cond cond-clause*(else expression+))

(and expression*)
(or expression*)

(let (binding-spec) expression*)
(let* (binding-spec) expression*)

(begin expression*)

expression*)

variable expression)

36

|
I
|
|
|
| (letrec (binding-spec) expression*)
|
(
(

References

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers Principles,
Techniques, and Tools. Addison Wesley, 1985.

[2] ANDSHYH CHING CHEN, U. B., Kuck, D., AND TowEL, R. Tiume
and parallel processor bounds for fortran-like loops. IEEE Trans. Com-
put. C-28, 9 (1979).

[3] BANERJEE, U. Data dependence in ordinary programs. Master’s thesis,
University of Illinios at Urbana-Champaign, 1976.

[4] BERNSTEIN, A. Analysis of programs for parallel processing. IEEE
Trans. Electronic Computers 15 (1966), 757—62.

[5] DATE, C. An introduction to database systems. Addison-Wesley, 1983.

[6] Foray, C. Opsb user’s manual. Tech. Rep. CMU-CS-81-135, Depart-
ment of Computer Science, Carnegie-Mellon University, july 1981.

[7] ForgY, C. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence 19 (1982), 17-37.

[8] HAGHIGHAT, M. R. Symbolic dependence analysis for high performance
parallelizing compilers. Tech. Rep. 995, CSRD, May 1990.

[9] Kuck, D., KunN, R., PADuA, D., LEASURE, B., AND WOLFE, M.
Dependence graphs and compiler optimizations. In Conference Record
of the 8th Annual ACM Symposium on Principles of Programming Lan-
guages (1981), pp. 207-218.

[10] Kuck, D., MURAOKA, Y., AND CHEN, S.-C. On the number of
operations simultaneously executable in fortran-like programs and their

resulting speedup. IEEE Trans. Comput. C-21 (1972), 1293-1310.

[11] Kuck, D. J., SAMEB, A. H., CyTrON, R., VEIDENBAUM, A. V.,
PoLycHRONOPOULOS, C. D., LEE, G., MCDANIEL, T., LEASURE,
B. R., BEckmaN, C., Davies, J. R. B., aAND KruskaL, C. P.
The effects of program restructuring, algorithm change, and architecture
choice on program performance. In 1984 International Conference on

Parallel Processing (1984), pp. 129-138.

37

[12] Papua, D. A., AND WOLFE, M. J. Advanced compiler optimizations
for supercomputers. Communications of the ACM 29, 12 (December

1986).

[13] REES, J., AND CLINGER, W. Revised?® report on the algorithmic lan-
guage scheme. Tech. Rep. 174, Department of Computer Science, Indi-
ana University, December 1986.

[14] TENNY, L. Upsl user’s manual. Tech. Rep. 257, Department of Com-
puter Science, Indiana University, Bloomington, Indiana, 1988.

[15] TRIOLET, R. Interprocedural analysis for program restructuring with
parafrase. Tech. Rep. 538, Center for Supercomputer Research and De-
velopment, Univ. of Illinios, Urbana, 1985.

[16] WOLFE, M. Optimizing Supercompilers for Supercomputers. PhD the-
sis, University of Illinois at Urbana-Champaign, 1982.

[17] WOLFE, M. Advaced loop interchanging. In Proc. of the 1986 In-
ternational Conference on Parallel Processing (1986), IEEE Computer
Science Press, pp. 536-543.

[18] ZmmaA, H. Supercompilers for Parallel and Vector Computers. Frontier
Series. ACM Press, 1990.

38

