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Abstract

If there is one thing that linguists and laymen agree on, it is the central role of

words in human languages. Yet there have been relatively few computational studies

in understanding words themselves. How do we know how to say a word when we

intend to utter something? What allows us understand the meaning of a word when

we hear it? What is it that facilitates the association of a word with its meaning?

This thesis describes how a connectionist network can learn to perceive and produce

words.

Most traditional linguistic theories presuppose abstract underlying representations

and a set of rules to obtain the surface realization. There are, however, a number

uestions that can be raised regarding this approach: Where do underlying rep-

of q
me from? How are rules formed and how are they related to each

resentations co

other? In this thesis, it is hypothesized that rules would emerge as the generaliza-

tions the network abstracts in the process of learning to associate forms (sequences of

phonological segments comprising words) with meanings of the words and underlying

representations could emerge as a pattern on the hidden layer.

Employing a simple recurrent network in which the hidden layer serves as a short-

term memory that associates forms with meanings, a series of simulations on different
types of morphological processes was ru. The results of the simulations show that

vil
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1

Introduction

Being able to use natural languages® for the purpose of communication is one
of the major characteristics that separate human beings from animals. The goal of

achieving a computational account of perceiving and producing human language has

n a major focus within Artificial Intelligence (AI) and cognitive science. Com-

bee
ks they do until they

t be able to help people perform many of the tas

puters will no
Although a three-year-old child can

can share the ability to use natural languages.
speak and understand human language with relative ease, we have still not produced

uter program that can match this performance. Understanding language is

a comp
ot only language—speciﬁc knowledge, but also knowledge about the

hard. It requires n

surrounding environment.

Spoken language is more basic than written language. Compared to speaking
)
en characters to communicate 1s a relatively new invention. But for

employing writt
computers, understanding written language is much easier than understanding spoken

guage refers to human language such as English and Korean, in contrast to

1The term natural lan,
computer language such as Pascal and C.




1. Introduction

language, since the latter requires the former as a prerequisite plus other factors:
digitizing the raw speech signal, smoothing the data, segmenting small chunks into
larger chunks, labeling the segment, and analyzing the segment. This thesis addresses

the problem of perception and production of words, a major part of language, from

both spoken and written perspectives.

In this introductory chapter, I will discuss the problem, overview symbolic natural

language processing (NLP) and connectionist NLP, draw the boundaries of the current

research, and outline the contents of the thesis.

1.1 The Problem

In this thesis, I will pursue the problem of perceiving and producing words. A

word is a minimal free form in language, that is, it is the smallest element that

symbolizes and communicates a meaning, can occur in isolation and whose position

with respect to neighboring elements is not entirely fixed. Even though it is the

minimal free form, it is not the minimal meaningful unit of language, since it can

often be broken into smaller units. For example, pitchers is a word since it can occur

in isolation and can occur in different positions within the sentence. Nontheless it

consists of three meaningful parts: pitch, -er, and -s. These minimal meaningful units

are called morphemes (O’Grady et al., 1989). Studying words and their component

morphemes is important and also very interesting, since the word is the central unit in

language where the phonological and semantic components come together. Words are

the dividing line between phonology /morphology and syntax /semantics/pragmatics.

There are a lot of research efforts directed to recognizing raw speech data in the
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| name of speech recognition. Much of NLP research has been dedicated to under-
standing written text. Yet there have not been enough studies in understanding
words themselves. How do we know how to say a word when we intend to utter some-
thing? What makes us understand the meaning of a word when we hear it? What is

it that facilitates associating a word with its meaning? There certainly is linguistic

knowledge in our brains that makes these processes possible. Some involve phonology,

i some morphology, and some require an interaction between the two to explain the

| phenomena. We should be able to develop a computational device that can accom-

modate them. Without this middle ground our efforts to build a computer system

that can understand human languages will be futile. We must develop a system that

fills the gap between speech recognition and higher-level NLP in order to produce a

reasonable speech understanding system. My thesis is a small, but hopefully a right

step in this direction.

For my purposes, a word is not just a written piece of text such as job, or top, but

a series of phonetic segments associated with a meaning, for example, the word with

the meaning of the highest point is represented as

(1.1) /t/ TOP
(1.2) Ja/ TOP
(1.3) /p/ TOP

where the items in uppercase represent meaning and the expressions with phonetic

characters surrounded by slashes refer to the word. My stimuli in the experiments

were presegmented signals labeled with phonetic features. This was necessary to

bridge the gap between two related, yet firmly divided fields of study: speech recog-
nition with raw speech signals and high-

words in my study is higher than the raw speech signal, yet lower than the written

level NLP with written text. The level of
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text, thus taking advantage of the ease of processing associated with written lan-
guage understanding and not falling into the trap of ignoring real speech signals.?
Even though I am not using real speech data, what I am dealing with here is spoken

language; written language does not reflect the phonology that is one of my concerns.

Nonetheless, the current study is also close to the domain of NLP that focuses on

understanding written text, using lexical, syntactic, and semantic knowledge as well

as required world knowledge. Thus what I am doing in this thesis is basically NLP,

rather than precisely between NLP and speech.

In this thesis I concentrate on the issue of learning to perceive and produce words

in terms of morphological processes. Morphological processes are generally regarded

as symbolic, and rule-governed. Most traditional theories presuppose abstract un-

derlying representations and a set of rules to obtain surface realizations. Modern

generative grammar is based on the notion of “deriving” forms through the appli-

cation of a series of rules, each of which takes a linguistic representation as input

and yields one which is in some sense closer to the “surface”. The idea is that be-

hind surface forms are underlying representations, abstractions within which each

morpheme has an invariant form. There are, however, a number of questions that

have been raised regarding this approach: Where do underlying representations come
from? How are rules formed and how are they related to each other? In this the-

sis, it was hypothesized that rules would emerge as the generalizations the network

abstracts in the process of learning to associate forms (sequences of phonological seg-

ments comprising words) with meanings of the words and underlying representations

would emerge as a pattern on the hidden layer. Through a series of experiments on

different types of morphological processes, I will show how a recurrent connectionist

network can prove this hypothesis.

2This point will be discussed in more detail in Chapter 2.




1 1. Introduction

1.2 Symbolic and Connectionist Processing

A model based on a connectionist network is employed to achieve the goal of

perception and production of words without the benefit of underlying representations

and explicit rules. What, then, makes the two approaches to NLP, symbolic NLP

and connectionist NLP, different? Why did I choose the connectionist model over the

symbolic one? This section briefly overviews symbolic NLP, points out its weaknesses,

describes connectionist NLP models, and emphasizes the advantages of connectionism

for NLP.

ubject of study here is representational mental states and the principles of

The s

organization of computational systems. Over the last several years, there have been

many discussions of the foundations of cognitive science. Is intelligence “the result

of the manipulation of structured symbolic expressions”? Or is it “the result of the

transmission of activation Jevels in large networks of densely interconnected simple
units” (Pinker and Mehler, 1988, Introduction)?

While both classical symbolic and connectionist subsymbolic systems postulate

mental representations, they differ in many ways. Fodor and Pylyshyn (1988) ar-

gue that only classical systems are committed to a “language of thought”: that is,

to representational states that have combinatorial syntactic and semantic structure.

These systems are based on the productivity of thought, the systematicity of cognitive

representation, the compositionality of representations, and the systematicity of in-

ference. Cognitive capacities always exhibit certain symmetries, so that the ability to

entertain a given thought implies the ability to entertain a thought with semantically

related content. For example, from

P AQ@ — P

2
]
y
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we can infer

(AVBVC)ADVEVF) - (AVBVO)
In a word, the basic building blocks of language are discrete symbolic entities that

are manipulated by a set of rules.

Even though these seem to be good reasons for the symbolic postulate, there are

several compelling deficits of rule interpretation when taken literally as a model of

mind (Pollack, 1990):

1. New rules are not easily learned in symbolic systems. In symbolic systems all
rules are hard wired into the system; hence making changes in the rules is

difficult. In most cases, whenever a new rule is introduced, it has to be added

explicitly to the code of the system.

ic systems do not easily scale up to real problems. Most symbolic systems

2. Symbol
are for the toy

than a thousand rules to solve real problems.

problems with less than a thousand rules. It may require more

3. Symbolic systems do not exhibit plausible behavioral profile. Symbolic systems

exhibit no temporal behavior that is psychologically plausible. Being able to

accommodate temporal processing is very important, since language is inher-

ently of a temporal nature. Language is not a static entity, but a dynamic one

that must be processed continuously in real time. In symbolic systems this kind

of temporal processing is very difficult.

4. Symbolic systems are not generally capable of parallel processing. Some de-

cisions in human language processing are made by parallel constraint satisfac-

tion. When a person hears an ambiguous word, he might use all the information
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he has, lexical, syntactic, semantic, and contextual, to decide on its meaning.

There is no easy way to create distributed memory and process according to
parallel constraints in symbolic models.

5. Symbolic systems do not show biological plausibility. Symbolic systems have not

been evolutionarily or neurally justified.

Connectionism can be viewed as a systematic attack on these problems, although any

single connectionist model today only addresses one or two of them at a time.

1.2.1 Symbolic Natural Language Processing

t computational approaches to NLP to date have come from the traditional

Mos
symbolic perspectiv

thought are discrete symbolic en

e. In this view, the basic building blocks of the language and

tities that are manipulated by a set of rules inter-

ed by a central control mechanism. This thesis is well manifested in the physical

pret
Newell and Simon, 1976) and the language of thought hy-

symbol system hypothesis (
pothesis (Fodor, 1976).

1.2.1.1 Ezamples of Symbolic NLP. Perhaps the prototype of symbolic models

' the logic-based system, whereby a proposition is expressed discretely by a predicate

and inference defines manipulations of predicate structures, in a manner that preserves

lues. A wide variety of alternative knowledge representations exist modeled

truth va
after this prototype.’

hesis to overview the past thirty odd years’ collection of NLP
d survey of symbolic NLP. Since symbolic

representation techniques, I will briefly
loped in the context of natural language

3]t is not the intention of this t
arch. Gazdar and Mellish (1989) gives a very goo
rstanding systems rely heavily on knowledge
ues which were originally deve

rese
language-unde
introduce some of the techniq

research.




1. Introduction

The logical formalism is appealing because it immediately suggests a powerful
way of deriving new knowledge from old — mathematical deduction, while preserving

combinatorial syntactic and semantic structure. In predicate logic, real-world facts

are represented as statements, written as well-formed formulas.* A simple procedure

is to use the basic rules of inference. A more powerful proof procedure is resolution

which produces proofs by showing that the negation of the statement produces a

contradiction with the known statements. For example, given the following sentences:

John likes all kinds of food.
Anything anyone eats and isn’t killed by is food.

Bill eats peanuts and is still alive.

we can prove that John likes peanuts as shown in Figure 1.1. The logic-based system

has been an indispensable tool for symbolic NLP for over thirty years.

Even though logical formalisms are very useful and easy to use, there often are

cases when it is useful to collect properties

n of a complex object. Conceptual Dependency (CD) (Schank, 1975; Schank

of objects together to form a single de-

scriptio
and Abelson,

meanings of sentences in a way that f
ndependent of the language in which the sentence was originally stated. Its

1977) provides a good example. CD is a theory of how to represent the

acilitates drawing inferences from the sentences

and is 1
building blocks are a group of primitive actions, out of which higher-level actions

corresponding to words can be built, and a set of allowable dependencies among

e conceptualizations, which correspond to semantic relations among the underlying

th

concepts.

S.

is an expression that is formed according to predicate logic rule
— mortal(z) are wif’s, but b- and Jymortal(y) « man(y)

1) well-formed formula (wff)
For example, P A Q and Yyman(z)

are not.
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Axioms in clause form:

. ~food(x1) v likes(John, x1)

. ~eats(y, x2) v killedby(y, x2) v food(x2)
. eats(Bill, peanut)

. ~killedby(Bill, peanut)

AW —

Prove: likes(John, peanut)
~likes(John, peanut) 1

peanut/x1

2 ~food(peanut)

Manuﬂx2

~eats(y, peanut) v killedby(y, peanut)

Bill/y
| 4\;(“)}’(]%11’ e
‘ (]

A resolution proof. In the figure, v denotes ‘logical or’, ” ‘not’, and /

Figure 1.1:

‘substitution’.
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An example of a simple conceptual dependency representation is shown below

John é PROPEL «> cart

This CD represents the sentence John pushed the cart. In the figure, arrows
)

indicate direction of dependency, the double arrow a two-way link between actor and

action, p past tense, PROPEL a primitive act that implies the application of physical

force to an object, and o object case relation.

There are other ways of representing structured knowledge. In a semantic net

ation is represented as a set of nodes connected to each other

(Quillian, 1968) inform
by labeled arcs, which represent relationships among nodes. Frame (Minsky, 1975)

s been used to maintain in memory a large collection of structures (slots) repre-

ha
senting the

Cullingford, 1981) i

general characteristics of an object. A script (Schank and Abelson, 1977;

s a structure that describes a stereotyped sequence of events in a

particular context.

1.2.1.2 Weaknesses of Symbolic Approaches. Despite some success, especially

concerning knowledge representation, inference and syntactic parsing (Woods, 1970;
) )

Marcus, 1980), S
study. The reasons for this

ymbolic NLP has not fulfilled its promise, even after 30 years of

failure are summarized below.

First, human language processing is extremely robust. Given enough context, lis-
)

teners can understand novel well-formed words without much difficulty. Yet symbolic
S )

models are notoriously brittle when presented with noisy or faulty input. There is no

general mechanism in symbolic NLP that can deal with this problem.

When a

Second, some decisions are made by parallel constraint satisfaction.
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person hears an ambiguous word, he might use all the information he has, lexical,
syntactic, semantic, and pragmatic (contextual), to decide the appropriate meaning of
the word. It is difficult, if not impossible, to distribute memory and process in parallel
in symbolic models. Most connectionist networks rely on distributed representations,
where a large scale entity is represented by a pattern of activation over a set of units
that themselves have conceptual representations composed of microfeatures.® But

this is not easy in symbolic models where unitary symbols encode words.

Third, symbolic NLP does not give learning much attention. Most symbolic mod-
elers follow Chomsky’s (1965) thesis that a child is equipped with the biologically
programmed innate capacity to acquire and utilize a linguistic system. The task of
language acquisition is thus simply to fix upon the particular aspects of the linguistic
system to which the child is exposed. The basic assumption is that language is not
rnable. It requires a knowledge engineer who translates all the rules and surround-

lea

ing environments into a system. Since rules are hard wired into the system, it is not

environmentally adaptable. Whenever new rules are introduced, they must be wired

into the system directly.

5T his is not the only definition of “distributed representation”. There are many coexisting defi-
nitions of this term. Two of the most common definitions are (1) the notion of simple extendedness
just mentioned, i.e., using “many” units to represent a given item and (2) superimposition of rep-
resentations (van Gelder, 1991). We have superimposition when there are multiple items being
represented at the same time, but no way of pointing to the discrete part of the representation
which is responsible for item A, the discrete part which is responsible for item B, and so forth. As
shown in Chapter 5, the representation developed for a “plural” UR is a distributed one according

to the “superimposition” definition .
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1.2.2 Connectionist Natural Language Processing

Connectionism offers an alternative to symbolic processing. Even though it re-
mains to be seen whether subsymbolic paradigm should replace the symbolic para-
digm, at least connectionist representations show that the former succeeds in the area
where the latter fails, especially “for studying how a cognitive system can possess
knowledge which is fundamentally, soft, but at the same time, under ideal circum-

stances, admit good higher-level descriptions that are undeniably hard.” (Smolensky,

1988, p.31)

1.2.2.1 Connectionism. Connectionism, or parallel distributed processing (Ru-
melhart and McClelland, 1986a; McClelland and Rumelhart, 1986), is an approach
to cognitive modeling which assumes that knowledge is represented by weighted con-

nections, spreading activations over large numbers of densely interconnected units.

A connectionist network consists of input units, which respond to stimuli from
the outside world, and output units, which represent the system’s response to that
input. There may be one or more “hidden” units. Each unit has an activation value,
which is updated by multiplying each incoming signal by the connection weight along
which it is received, summing these inputs, and passing them through some function,

thus obtaining a new value. A typical output function looks like the following:

1
) + e~ (2 wijopit6;)

OpJ'

where O,; is the jth element of the actual output pattern produced by the presenta-
tion of input pattern p, w;; is the weight from the jth to the ¢th unit, o, is the output
of ith unit for pattern p, and 6; is a bias similar in function to a threshold. Process-

ing involves activating input units; this activation spreads through the connections
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to produce a pattern of activations on the output level. This is where the similar-
ity among connectionist networks ends and differences come into play among many
different network types and learning rules (see Hinton, 1989, for extensive overview

of different learning procedures). A more detailed overview of connectionism will be

given in Chapter 3.

1.2.2.2 Advantages of Connectionism for NLP. The weaknesses of the symbolic
approach to NLP can be remedied by employing a connectionist approach. First, con-
nectionist models are much more robust with regard to noise. Even with noisy or
faulty inputs, the models can closely approximate the desired output, thus allowing
the network to degrade gracefully. Content addressable memory and pattern comple-

tion arise naturally, making them ideal for filling in missing information.

Second, distributed connectionist networks use distributed representations rather
than unitary symbols to encode words, allowing sometimes blending or blurring of the

representations. Distributed representations allow the possibility of a fixed memory

size. Adding a new rule does not require an increase of memory; all that needs to be

done is to readjust connection weights.

Third, connectionist networks work as parallel constraint satisfaction; processing
in connectionist models involves attempts to satisfy as many constraints as possible.
This is what is required for language comprehension. Connectionist networks use

massively parallel computation and have very powerful generalization capabilities.

Fourth, learning is fundamental to connectionist models. They can learn from
exposures to examples, thus eliminating the need for the use of a priori rules. Also
the network can learn to map one representation onto another. The network develops

an internal representation on the hidden layer that approximates the relationship

between two given representations.
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Fifth, it can handle the temporal nature of language more easily. Language is not
a static entity, but a dynamic one that must be processed sequentially in time. In
symbolic processing temporal processing is very difficult, while any kind of sequential

connectionist model can process temporal sequences, as will be shown in Chapter 3.

Sixth, the integration of representation and learning may provide a new theory.
Connectionist networks are very good at extracting regularities, yielding new repre-
sentations: it is the nature of the representation, uninfluenced by any theories, that
holds the most promise for connectionist NLP. As most scholars would agree, one of
the goals of studying NLP is to test a new theory and connectionism appears to point

in the right direction for pursuing this rather ambitious goal.

1.2.3 Connectionism for Word Perception and Production

So far, symbolic NLP and connectionist NLP have been briefly overviewed and the
differences highlighted. At this point, the question concerning both approaches and
thus the problem at hand has to be answered. What made me choose connectionism
over symbolic processing? Some might say, “Sure, connectionism may be a better
way to handle lexical semantics, but why do you want to use it for word perception
and production?” They might also suggest the feasibility of using a hybrid sort of
approach (e.g. Kwasny and Faisal, 1991, use a hybrid system for syntactic parsing).

But I am not seeking an engineering solution; this is meant to make a contribution
to cognitive science. The subject of study is the mind, and the mind is not a steam
engine, or a stored program computer. The key issue here is that of representation
and learning; symbolic models do not tell us where underlying representations come
from nor how rules are found and related to each other. In addition, symbolic models

do not exhibit the temporal behavior that is fundamental in language processing.
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1.3 Scope of the Project

In this thesis I report on a connectionist approach to the acquisition of morpho-
logical rules. There are several points to be made before going any further to make
clear what can be expected from this project. I will try to draw the boundaries of

my study by talking basically about what my model is not.

First, my model is not a purely psychological model. The overall objective of this
study is for a connectionist network to learn to perceive and produce words. I am
interested in how a connectionist approach can be used for both perceiving and pro-
ducing words. But this study is not about language acquisition; I am not making any
claims about children’s acquisition of language skills, and my study is not concerned
with developmental stages in language acquisition such as the U-curve, overregular-
ization, etc. (Rumelhart and McClelland, 1986b; Chauvin, 1988; Marchman and
Plunkett, 1989; Marcus et al., 1990). What, then, is my model trying to do? It might
be possible for us to divide the types of models into “psychological models”, “(com-
putational) linguistic models”, and “(purely) computational models”. The last would
be concerned only with particular categories of problems, independent of whether
they have anything to do with human cognition. The second would be concerned
with phenomena that are known to happen in natural language. The first would be
concerned with modeling details of psychological processes. My model is mainly of
the second type. It may also belong to some extent in the first, since one of the
motivations of the current study is to shed some light on how a particular type of
cognitive phenomenon can be accounted for without reference to explicit symbols or

rules, though I obviously am not trying to model everything about this phenomenon.

Second, the learning task is somewhat artificial. As explained before, my primary

concern in this study is words represented as phonetic segments, along with their
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meanings. This falls into the category of NLP research, not into that of speech recog-
nition, even though I am interested in the latter also. In the linguistic sense I will
touch upon phonology and morphology. Input words were coded in such a way that
they were presegmented and the segments were fed into the network one at a time.
The network was given only the noiseless input data and a priori word boundaries.
The model employed both meaning and form in a network to perform both the per-
ception and the production task. The network was given both meaning and form from
the beginning and was trained on both the production and the perception task from
the onset. But it is quite possible that a person can hear words without perceiving

their definite meanings at all; deriving the meaning from context and a knowledge of

which aspects are relevant.

Third, only fized network architectures were used. Even though one of my long-
term goals is to have a network which evolves naturally by either dynamic node
creation or some sort of skeletonization, in the project reported in this thesis only
hand designed network architectures were considered. In particular, the number of
hidden units was decided upon empirically, depending upon the tasks at hand. But

note that it is not an uncommon practice among connectionists to design a network
manually.

Fourth, only one particular learning rule was used to train the network. There are
many different kinds of training procedures for connectionist models, among which
the back-propagation learning algorithm is most commonly used. For reasons that

will be explained in Chapter 3, I used the standard back-propagation rule to train

the model.
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1.4 Outline of the Thesis

This thesis describes how a connectionist network can learn to perceive and pro-
duce words. The next chapter raises the problem of words and computation. Related
work is reviewed, similarities with the approaches that are taken in this thesis are
pointed out, and drawbacks are singled out. Some theoretical background as man-
ifested in the work of Langacker (1987) is summarized. The new approach called

“performance grammar” employed in this thesis will be introduced. Hypotheses that

motivated the current project are listed.

Chapter 3 explains connectionism in detail. It demonstrates connectionist learning

procedures and describes how different connectionist models can achieve the task of
learning temporal processes.

Chapter 4 describes the model in detail, including the network architecture used
)

and why this particular architecture was chosen.

Chapter 5 describes the experiments performed. It shows the stimuli used and
explains how the system was trained. It provides detailed descriptions of the exper-
iments: affixation, deletion, and mutation. Extensive analyses of the hidden layer
are performed in an attempt to discover how the network encodes underlying rep-

resentations on the hidden layer. The network is tested if it can exhibit knowledge
transfer.

Chapter 6 discusses the results of the experiments. It examines the research
hypotheses. It shows how the behavior of the model reflects some language universals:
why does affixation task easier than deletion task? How does the network manage to
generate affixes? What is it that makes the reversal rule so difficult for the network?

The limitations of the current study are criticized and are related to directions for
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future research.

Finally, Chapter 7 discusses the achievement made by this research and outline of

future research problems suggested by this project.




2

The Problem

In this chapter, the problem of learning to perceive and produce words will be

brought up, relevant literature will be reviewed, the approach taken in this project

will be discussed, and hypotheses that motivated the current study will be listed

2.1 Raising the Problem

Using language to communicate with others is one of the prominent characteristics
that distinguish human beings from other animals. The goal of building a computer

system that can exhibit the capability of understanding human language has been a

long pursued Al project; yet we have not seen much success. What are the problems?
It is time for us to go back to the drawing board and examine the causes of past failures
and come up with new approaches to mend the old problems. The problem might lie

ck of the cooperation needed to bring various theoretical subcomponents of

in the la
language (such as syllable, morphemes, sentences and so on) together into a unified
picture. Studying computational accounts of phonology and morphology has not

19
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attracted many Al researchers, largely due to the fact that the apparent rule-like
patterns exhibited by phonology and morphology did not appeal to the practitioners
in traditional symbolic AI as an interesting problem. Since most work has been on
English, which does not have much in the way of interesting morphology (unlike
Finnish) most problems seem too easy to implement. The other reason might be the
position of phonology and morphology as in between NLP and speech recognition.
NLP researchers have used words as their tools and did not bother to go down a step
further. Phonology is not relevant in written language, the focus of NLP. On the
other hand, researchers in speech recognition have concentrated only on real low-level
signals. Yet, it should be noted that an NLP system that deals with a language like
Finnish, Russian, Turkish, Japanese, or Korean must pay attention to morphology;
it is simply too expensive to store all the variant forms in the lexicon. It is always
possible to have very language-specific hacks that know where to look for inflections?
in a given language; but this is not interesting theoretically. As for phonology, if the
language in addition involves complex morphophonemic processes at the boundaries
between morphemes (as in Finnish, which has very extensive inflections), then the
system also needs to handle these processes. Studying phonology and morphology is
also interesting because of the parallel between syntax and sentence semantics and
morphology and word semantics. Both involve compositionality and the problem of

segmenting the input. But morphophonemics is perhaps simpler to study; for one

thing, it seems not to involve recursion.

The unsuitability of approaches taken and tools used might have contributed to
the cul-de-sac of NLP research. As discussed in Chapter 1, the traditional sym-
bolic approaches to NLP lack many of the important features that are essential to

a successful NLP system. In this thesis I study morphological processes with the

1 Inflection is a morphological process that modifies a word’s form in order to mark the grammat-
ical subclass to which it belongs such as case, gender, number, tense, person, mood, or voice.
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aid of a connectionist network, hoping to bring forward enough convincing results
to bring some new insights into the NLP research community. In this section, I will

show (1) what the problem is, (2) why it is important and interesting to study, and

(3) why it is challenging.

2.1.1 Words and Computation

Among linguists of different schools of thoughts, one thing that is generally agreed
upon is that a word is not an unanalyzable atom. A word is composed of smaller
units and there is a hierarchy from more abstract units to less abstract units as shown
in Figure 2.1. Of all the linguistic units shown in the figure, the word is the most
familiar and it plays the major role in comprehending and generating spoken language.
A word is a minimal free form. A very central part of comprehension is picking out
the words in a stream of speech sounds, and a very central part of production is
selecting lexical entries and grammatical features and then turning those abstract
combinations into pronounceable forms. Studying words is important and also very
interesting, since the word is the central unit in language where the phonological
and semantic poles? come together. Words are the smallest unit in the hierarchy
that embrace both meaning (semantic pole) and speech sounds (phonological pole)
and can stand alone. Words are also the dividing line between low-level linguistic
studies in phonology and morphology and higher-level studies in syntax, semantics,

and pragmatics as can be easily seen from Figure 2.1.

2These concepts will be explained in Section 2.3.
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Figure 2.1: Hierarchical relationship among units that constitutes an utterance and

components of linguistic study.
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2.1.2 Phonology

Phonology is the study of the systems underlying the selection and use of sounds
in the languages of the world. It focuses on the internal representation of sound
units and tries to explain the nature of phonological phenomena. It deals with the

sequential and phonetically conditioned patterning of sounds in language.

Phonology is represented as a dynamic process that makes use of underlying

representations, phonological rules, and derivations to formally represent allophonic

variation.3

One example of a phonological process is that of aspiration in English: English

voiceless stops are sometimes aspirated and sometimes not.*

For example pain and tone are pronounced with aspiration as [phéyn] and [théwn]
respectively, while Spain and stone are pronounced without aspiration as [spéyn] and

[stéwn]. The rule which governs English aspiration is that voiceless stops in English

are aspirated syllable-initially before a stressed vowel.

Phonology plays a very important role in the perception and production of a word.
For example, in order to recognize a novel plural noun as such, an English listener

presumably needs to “know” the assimilation® rule as well as the plural rule. The

3Predictable phonetic variants that are phonetically similar and in complementary distribution

are called allophones.
4Stops are sounds made with a complete and momentary closure of airflow through the oral

cavity. Examples of English stop consonants are as following:

span [p] stun [t] scar [K]
ban [b] dot [d] gap [g]
man [m] not [n] wing [g].

After the release of some voiceless stops in English, we can sometimes hear a brief delay before the
next vowel. Since this delay is accompanied by the release of air, it is called aspiration.
5 Assimilation is a phonological process that involves the modification of one or more features of
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same applies to speech production. Without knowing the assimilation rule a speaker
could not possibly add the right suffix to a novel noun, and would fail to produce the

right plural form. This point will be brought up again in Section 2.4.

2.1.3 Morphology

Morphology is the study of word structures. How is it that we can use and
understand effortlessly words that we have never encountered before? It is because
many words consist of smaller components called morphemes which can be classified

in a variety of ways and can be combined in different ways to create new words.

Even though the processes of word formation may vary from one language to

another, all languages have the means to create new words and therefore exhibit the

rule-governed creativity that is typical of human languages.

When we hear a reporter saying in a television news program that many of the
homeless in American cities are former mental patients who were released because
of a policy of deinstitutionalization, we understand quite effortlessly that it refers
to the practices of releasing patients from hospitals for the mentally ill. We know

this because we know what the word institution means, and we have unconscious

command of English morphology.®

Once I had a friend from Singapore. While talking about him with another friend
of mine, I found myself referring him as a Singaporean. Even though I did not
know this word, I could easily make it up, since I have known that suffixing -an to

a geographical name turns the word into a noun that means the inhabitant in the

a sound under the influence of neighboring elements (e.g., in code is often pronounced [nghéwd])'
6This example is from O’Grady et al., 1989.
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place, for example European from Europe.

2.1.4 Phonology and Morphology: Morphophonemics

The interaction between the phonological and the morphological components of
grammar is reflected by the presence of allomorphs. One example of allomorphic
variation is the pronunciation of the English plural suffix. The English regular plural
morpheme has three variants: /s/, /z/, and /1z/, depending on the final segment in
the noun stem. For example, the plural of hat is pronounced /hets/ and that of zone
is /zonz/, whereas page has the plural form /pedsiz/. To account for these variants in
traditional phonology, one must posit an underlying abstract representation, and one
or more rules have to be invoked which transform the underlying representation into
either /s/, /z/ or [1z/ given the correct environment. The derivation of a form like
hats begins with the underlying representation of the morphemes HAT and PLURAL,
and the rules turn these into the surface form /heets/. As in the case of allophonic

variation, the use of underlying representations and derivation by morphophonemic

rule accounts for the morphophonemic alternations.

2.1.5 Morphological Constructions

All words consists of several smaller elements, that is, morphemes, and these can
be classified in a variety of ways (e.g. prefix vs. suffix) and can be combined in
different ways to create new words. Although the processes may differ, all languages

have the means of creating new words and thus exhibit rule-governed behavior. Mor-

phological processes can be classified according to two main criteria as the following:
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1. Method of change
Addition Affixation and reduplication are examples of addition found in hu-

man languages.

Deletion Elision is the omission of an unstressed vowel or syllable to avoid
certain phoneme clusters.

Mutation Substitution is an example of mutation.

2. Place of change
beginning (by addition: prefixation)
middle (by addition: infixation)

end (by addition: suffixation)

suprasegmental7 (tone changes; stress changes)

We can combine these two modes and make up many logically possible morphological

rules, most of which I will list here. Where any natural language exhibits the kind

of rules mentioned, I will give an example. Finally, I will explain which rules were

chosen for the current study and why they were selected.

Affixation is a type of simple word construction that involves

2.1.5.1 Affization.

an affix, a bound morpheme which occurs only in a particular position. Furthermore
)

cach affix attaches only to a particular lexical category (either noun, verb, or adjec-

tive) and results in a word of another particular lexical category or inflection. We

can further classify affixation into the following according to the place of affixation.
Prefixation A prefix is an affix that occurs in front of its stem.

Example. Sierra Popoluca (Mexico). (from Elson and Pickett, 1962, p.10)

7 Suprasegmental refers to the intrinsic aspects of phones, such as pitch, loudness, and duration.

Ry
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/kama/ ‘cornfield’ /ikama/ ‘his cornfield’ /agkama/ ‘my cornfield’;
[way/ ‘hair’ /iway/ ‘his hair’ /agway/ ‘my hair’
Infixation An infix is an affix that occurs within another morpheme.

Example. Tagalog (The Philippines). (from O’Grady et al., 1989, p.96)

/takbuh/ ‘run’ /tumakbuh/ ‘run + past’;
/lakad/ ‘walk’ /lumakad/ ‘walk + past’

Suffixation A suffix is an affix that occurs after its stem.

Example. (from Bergenholtz and Mugdan, 1979, p.59)

English.  /hant/ ‘hunt’ /hantid/ ‘hunt + past’;
German. /bet/ ‘bed’ /beton/  ‘bed + plural’;

Circumfixation A circumfix is an affix that surrounds its stem.
Example. (from Bergenholtz and Mugdan, 1979, p.59)

Tioko (North Togo). /bara/ ‘woman’ /mbaram/ ‘woman + plural’;

German. /frak/ ‘ask (stem)’ /gefrakt/ ‘ask + perfect participle’

Transfixation A transfix is an affix that occurs side by side with its stem.
Example. Hebrew. (from Bergenholtz and Mugdan, 1979, p.59)

/tifel/ ‘boy + singular’  /tfal/  ‘boy + plural’;
/ktieb/  ‘book + singular’  /kotba/ ‘book + plural’

2.1.5.2 Reduplication. A reduplicative affix is an affix that repeats all (full redu-
plication) or part (partial reduplication) of the stem to which it is attached.
Example. (from Bergenholtz and Mugdan, 1979, p.60)

Ilokano (Philippine).  /talon/ ‘field’ /taltalon/  ‘fields’;

Indonesian /anak/ ‘child’ /anakanak/ ‘all sorts of children’
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2.1.5.8 Deletion. Deletion is a process that removes a segment from the stem
to avoid a certain phoneme cluster. We can further classify deletion process into the
following classes.
Initial Deletion A segment is deleted from the beginning of a word. To my knowl-
edge, there exists no human language which undergoes this type of rule as a morpho-
logical process.
Medial Deletion A segment is deleted from the middle of a word.
Example. Zoque (Mexico). (from Bergenholtz and Mugdan, 1979, p.98)

/nahp/ ‘tread (stem)’ /nahpa/ ‘he treads’;
/sihk/  ‘laugh (stem)’ /sikpa/  ‘he laughs’
In order to account for the above data where the suffix /pa/ signals the third person

singular, two rules are needed:

(1) /pp/ — /p/ and
(2) /XYZ/ — [YZ/, where X, Y, and Z are arbitrary consonants.

Rule (1) (degemination) changes */nahppa/® into /nahpa/; Rule (2) */sihkpa/ to
/sikpa/.
Final Deletion A segment is deleted from the end of a word.

Example. French. (from Bergenholtz and Mugdan, 1979, p.99)

/kurt/ ‘short (stem)’ /kur/  ‘short (masculine)’;
/kurta/ ‘short + feminine suffix’ /kurt/ ‘short (feminine)’

We need the following two rules to account for the above data:
(1) /C/ — 0 and

(2) fof = 0.
The first rule changes */kurt/ to /kur/, while the second rule changes */kurta/ to

[kurt/.

8In linguistic notation, the asterisk denotes ill-formedness.
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2.1.5.4 Mutation. Mutation is a type of process where a segment is substituted
by another segment. Mutation can occur:
{ in the middle (e.g. Yiddish. /kop/ ‘head’ — /kep/ ‘heads’),
" at the beginning (e.g. Mazahua (Mexico). /t'i?i/ ‘boy’ - /c’i?i/ ‘boys’), and
‘ at the end (e.g. English /bilitv/ ‘believe’ — /bili:f/ ‘belief’).
“ (from Bergenholtz and Mugdan, 1979, p.61)
|
!
\

Several different subclasses of mutation are possible, as shown below.

Ablaut Ablaut is the replacement of a vowel with a different vowel.
I Example. English. (from Bergenholtz and Mugdan, 1979, p.61)
| drink — drank — drunk.
Stress Shift Stress shift is a suprasegmental mutation which marks the difference

between related grammatical categories.

Example. English. (from Bergenholtz and Mugdan, 1979, p.62)

/im'poxt/ ‘import (verb)’ - /'tmpo1t/ ‘import (noun)’.

Tone Change Tone change is another type of suprasegmental mutation.
Example. Mongbandi (Congo). (from Bergenholtz and Mugdan, 1979, p.62)
/gwe/ ‘(he) went’ /gwé/ ‘(they) went’;

/ygbod/ ‘(he) swam’ /ngbé/ ‘(they) swam’

Metathesis Metathesis is a change in the relative positioning of segments. Me-

tathesis often results in a sequence of phones that is easier to articulate.

| Example. Zoque. (from Bergenholtz and Mugdan, 1979, p.101)

/poj/ ‘run (stem)’ /popja/ ‘he runs’;

/camcamnaju/ ‘enjoy (stem)’ /camcamnapja/ ‘he enjoys’

As shown earlier, the affix /pa/ signals the third person singular. Here the metathesis

rule /jp/ — /pj/ changes */pojpa/ into /popja/ and */camcamnajpa/ to /camcam-

napja/.
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Reversal Thisis a special case of metathesis that reverses a whole word to construct

a new word, which does not occur in any human language.

2.1.5.5 Complex Constructions. So far we have only seen simple constructions.
It is quite possible to combine one or more simple construction types to yield a new
word. I will list only three complex construction types among the very large number
of possibilities.
Prefixation and Suffixation
Example. Tlingit (Alaska). (from Bergenholtz and Mugdan, 1979, p.73)
/ih1t1/ ‘your house’ = /i/ ‘2. person’ + /hit/ ‘house’ + /1/ ‘“from’.

Suffixation and Mutation

Example. German. (from Bergenholtz and Mugdan, 1979, p.73)

/menor/ ‘men’ = /man/ ‘man’ + /a—eg,ar/ ‘plural’.

Pig Latin Pig Latin is a language game that combines suffixation and mutation
where “the word-initial consonant of the English word is moved to the end and the

vowel [e] is added after it. For example, the way one would say Pig Latin in Pig Latin

would be [1gpe etinle].” (Davis, 1991).

2.1.5.6 Summary. Inthissubsection, I survey possible word construction types.

Most of these processes can be found in human languages. It would be difficult, if
)

not impossible, to include all of the above possible cases in the current study. I

selected a few that are typical construction types and are also easy to implement

For addition cases, only prefixation, infixation, and suffixation processes that involve

a single segment were used in the experiments. Prefixes and suffixes were limited to

assimilatory affixes. The infixation example involves the gemination process

For the deletion cases, all three (initial, medial, and final) deletion rules were 1
|
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tested. Like addition cases, only those that involve a single segment were included in

the experiment.

There are many possible rules that can be classified as mutation rules. Among
them tone change and reversal were used in the experiments. The reversal process
was specially selected, because it does not occur in any human language, although

some models are capable of simulating it.

Only one complex construction, Pig Latin, was considered in the current study.

2.1.6 The Challenge

In this thesis I concentrate on the issue of learning to perceive and produce words
in terms of morphological processes. In some cases I am also looking at words which

involve allomorphs. Morphophonemic processes involve both phonology and morphol-
ogy.

Morphological processes are generally regarded as symbolic, and rule-governed.
Accounting for such processes using connectionist networks presents many challenges
that have been noted by researchers who subscribe to classical symbolic tenets, in-
cluding Pinker and Prince (1988) and Fodor and Pylyshyn (1988). According to their
arguments, connectionist models cannot command the compositional semantics that
is supposedly essential to NLP. There have been a number of papers in connectionism
refuting this argument (Elman, 1989a; van Gelder, 1989; van Gelder, 1990; Chalmers,
1990). My study is another attempt to show that connectionist networks are indeed
capable of dealing with compositionality. The networks were taught to map combina-

tions of meanings onto combinations of forms, and then decide which part goes with

which. They had to discover how to map constituents of form onto constituents of
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meaning and to use this knowledge to interpret and generate novel forms.

In classical symbolic systems the acquisition of underlying representations has

been difficult to account for, and this fact has in part motivated the idea of innate

predispositions for certain linguistic structures. The very existence of underlying

representations that can be manipulated by rules was one of the points Pinker and

Prince (1988) and Fodor and Pylyshyn (1988) made against the adequacy of con-

nectionist systems in explaining morphological processes. If we can overcome these

difficulties by explaining some morphological rules without the benefit of any ezplicit

rules,® or underlying representations, it will strongly support the appropriateness of

connectionist networks to the task of NLP.

Questions for a connectionist approach include the following: Are the underlying

representations worth studying, those assumed by the symbolic account? Why are

there certain morphological phenomena? And why are there not certain kinds of phe-

nomena? If we assume that morphological phenomena are related to some form of

cognitive processing, then the representations best suited to deal with these phenom-

ena, whether they be symbolic or subsymbolic, might lead to an initial hypothesis as

to what mental representations in general are like.

2.2 Related Work

Computational accounts of phonology and morphology were mostly ignored by

researchers in cognitive science and artificial intelligence until the early 1980’s, when

Koskenniemi (1983) noticed the usefulness of finite state transducers and developed

9For the purpose of our discussion, a rule is a function which maps one representation onto
another. By without the benefil of explicit rules I mean that in my system rules are not directly

represented.




2. The Problem 33

a two-level morphology model. His work influenced later research in computational
morphology. Since 1988, when George Lakoff (1988a, 1988b) called the attention of
the connectionist community to phonology as a challenging problem, there has been
some fruitful research directed towards the problem of phonology. In this section

a brief overview of some of related work both in phonology and morphology, be it

symbolic or connectionist, will be presented.

9291 Models of Past-tense Morphology

Rumelhart and McClelland (1986b) (hereafter referred to as “RM”) showed that

a simple two-layer pattern associator can acquire the marking of the past tense in

English. Their model maps rep

onto their past tense versions, that is, it employs direct mapping:

resentations of present tense forms of English verbs

Unin flected — PatternAssociator — Past,

without any involvement of semantic characterization. The RM model has been

thoroughly scrutinized and criticized by Pinker and Prince (1988). The conclusion of

their analysis includes the following criticisms:

1. It easily models many kinds of rules that are not found in any human languages.

It is as easy to represent and learn a quintessentially nonlinguistic map, such

as mirror-reversal of phonetic strings (e.g. pit to tip), in the RM model as it is

to learn the identity map.

9. It fails to capture central generalizations about English sound patterns. Elabo-
ration tolerance (McCarthy, 1988) is the ability of a model to be extended to

additional problems. One example of this is the problem of knowledge transfer,




2. The Problem 34

that is, how a pattern of activity learned by one network becomes interpretable
by another. The RM model cannot be elaborated to explain the commonality
between the /t/-/d/-/1d/ alternations found in regular past tense forms and

the /s/-/z/-/1z/ alternations found in the third person singular, regular plural

nouns, possessive and so on.

3. It cannot handle the elementary problem of homophony. Since distinct lexical
items may share the same phonological composition, the notion of lexical repre-
sentation distinguishes phonologically ambiguous words such as wring and ring.

The RM model represents individual objects as sets of their features. Noth-

ing, however, represents the fact that a collection of features corresponds to an

existing individual.

Yet, contrary to what Pinker and Prince seem to argue, these weaknesses turn out

to be specific to the RM model, rather than inherent to all connectionist accounts.
Redefining the task to be one of perception and production results in constraints on
be learned, permits homophonous words to be distinguished

the kind of rules that can

from one another, and makes possible generalizations across the sound system of the

language.

Plunkett and Marchman (Marchman and Plunkett, 1989; Plunkett and March-

man, 1989; Plunkett and Marchman, 1990) modified the original RM model and

answered some of the questions raised above by employing a three-layer network
rather than the two-layer pattern associator used by RM. Each verb in their sim-

ulations consists of a Consonant-Vowel-Consonant (CVC) string, a CCV string, or
a VCC string. Each string is phonologically well-formed, even though it may not
correspond to an actual English word. Each vowel and consonant is represented by

a set of phonological contrasts, such as voiced /unvoiced, front/center/back. This is
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done with a set of 6 units by turning on the appropriate unit. After initial training
on a subset of 20 verb stems, the vocabulary is gradually expanded until it reaches a
size of 500 verbs. They report that the network undergoes reorganizations that result
in a shift from a mode of rote learning to a systematic treatment of the verbs. Their
findings are important because they give an indication of what is a learnable language
and what is a learnable distribution of forms in the input. My approach in this thesis
is similar in a way. That is, I investigate logically possible morphological processes

to determine which are learnable and therefore likely to occur in real language.

However, neither Rumelhart and MecClelland nor Plunkett and Marchman models
actual language processing as it occurs in human beings: their models merely map
representations of present tense forms of English verbs onto their past tense versions
nvolvement of semantic characterization at all, whereas human beings

without any i
accomplish the task of turning a form to meaning and meaning to form. In this
thesis, I offer an alternative to the RM model which deals with two fundamental
problems that are overlooked by classical accounts of morphological processes as well

as the RM model: the relationship of production and perception and learning of

underlying representations and rules. In doing so, I answer many of Pinker and

Prince’s criticisms.

2.2.2 Cognitive Phonology

Goldsmith (1991) departs from the psychological implausibility of current gener-
ative accounts of phonology and proposes phonology as a cognitive system, a system
of contrasts and constructs that exhibits goal-directedness, which he calls harmonic

phonology. This reflects some suggestions made in Goldsmith (1989) and Goldsmith

(1990).
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An intelligent system should modify its representations in such a way that the
structures better satisfy conditions of maximal coherence and simplicity. A phono-
logical description includes two things: a set of rules which describe the permitted

(and unordered) transitions which a language permits, and a set of statements re-

garding well-formedness of various phonological structures, which Goldsmith calls

phonotactics. The role of phonotactics is to interact with the rules so as to form

better output. In such a system, a representation will always seek the position where
it satisfies the phonotactics best. A representation of a given utterance Uon a level L
is a path from a starting point R; to a final resting point R,.. The final resting point
R, is that representation which is the best-formed of all points accessible to R; via

the paths made available by the rules of the language on that level.

The model has three levels: the M-level (essentially the underlying, or morpho-

phonemic, level), the W-level (the level at which pure syllable structure is established),

and the P-level (phonetic level). Each level consists of the statement of tactics at its
plus a set of intralevel rules. Hence, there are five classes of phonological rules:

(M,M), (W,W), and (P,P), and two cross-level

level,

three sets of intra-level rules, that is,

rule sets: (M,W), and (W,P).1°

To summarize his hypothesis, Goldsmith proposes that the dynamic character

of a phonological analysis be split into a number of subsections, corresponding to

the individual linguistic levels, in such a way that we can identify the phonological

dynamic in each case as an instance of maximally satisfying the constraints of the

particular level in question. As a result, his theory does away with complicated

rule ordering. As noted, this view parallels the basic tenets of connectionism. It is

certainly within the realm of the conceivable that the types of generalizations that

emerge from connectionist models may be closer to the sort that are needed in a new

10Gince there is a hierarchy of levels in phonology, the (M,P) level rule is unnecessary.
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model of phonology.

Goldsmith has made some concrete proposals along the lines of harmonic phonol-

ogy for the treatment of stress in Goldsmith (to appear) and for the treatment of

syllabification in Goldsmith and Larson (1990).

In both papers, he develops a formal model that allows for a simple and direct
account of the facts within a specific language, and that is neither static nor deriva-
tional. His model does not have any hidden representations and computations happen
locally as the results of establishing simple arithmetic relations for the activation of

neighboring units. The network is trained using Formula 2.1 until it reaches an equi-

librium.
si(t + 1) = tanh(zi(t) — azana() = Boi-a(t) 1)
where z;(t) is the activation level of the t* element at time ¢, @ is a parameter which

affects the activation level of the left-hand neighbor, 3 affects the right-hand neighbor.

ibition in which each element inhibits its two neighbors:

This is a kind of lateral inh

the 5th element sends an inhibitory signal of strength az; to the preceding element,
and it sends an inhibitory signal of strength Bz; to the element to the right. Each

of these elements is a segment and is given a integer value between 0 and 8 following

Qoldsmith and Larson’s sonority hierarchy (Goldsmith and Larson, 1990); when the

elements under consideration are syllable, they are given the value 0 or 1 for the

treatment of stress (Goldsmith, to appear). In Formula 2.1, the hyperbolic tangent
(tanh) is needed to avoid the explosive nonconvergent properties of the formula inside

the parentheses, since tanh is a function which smoothly squashes all values into the
interval (—1,1).

He compares his model with traditional grammars as follows:
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Architecture of the network Universal grammar
Pattern of connection weights  Language-specific grammar
Activation vector Representation of a specific expression

He reports that his model derives the correct results for stress rules and syllab-
ification in certain languages, though with a good deal less machinery than most
connectionist networks, and no intermediate hidden representations. The forces at

work affect each other simultaneously, and seek a stable resolution of their require-

ments.

Lakoff’s cognitive phonology (Lakoff, 1988a; Lakoff, 1988b), a development of

the ideas of Goldsmith described above, is another effort to eliminate the need for

rule orderings. Ordered-rule interaction is a necessary foundation for conventional

generative phonology. For example, consider the pronunciation of writing /'ialtiy/
and riding /'1a1diy/. In some dialects of English, these two words differ phonetically

only in that the stressed vowel of the former is shorter than the stressed vowel of the

ases being a voiced flap /t/. To account for this

fied below:

latter, the medial consonant in both ¢

phenomenon, two rules are applied in the order speci

1. Vowel Lengthening. Make vowel long before voiced consonant.

9. Flapping. Change /t/ or /d/ to flap /r/ between vowel, if the first vowel is

stressed.

If we apply Rule 2 before Rule 1, we have the same incorrect pronunciation /'aliriy/

for both writing and riding, as shown in Table 2.1.

Cognitive phonology, as Lakoff termed his theory, is free of the rule ordering con-

straints that make generative rules computationally awkward. It uses a multilevel
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Table 2.1: Derivations of the pronunciation of writing and riding. The left half shows
a wrong derivation due to the incorrect rule ordering. The right half shows the correct
derivation. In the table, UR denotes the underlying representation, Flap the Flapping
rule, VL the Vowel Lengthening rule, and PR the surface phonetic representation.

wrong “writing” “riding” correct “writing”  “riding”
UR /'zattip/ /'zaidip/ UR /'zattig/ /'zaldip/
Flap /'zaltig/ /'zaltip/ VL = /'1anidip/

VL /'zaneig/ /'saliip/ Flap /'zaltip/ /'zalirin/

PR [sanrip] ['1akrip] PR [alrig]  ['zalirip)

representation for the utterance, to which multiple rules may apply in parallel. The

M (morphophonemic) level represents the underlying form of an utterance, the P

(phonemic) level is an intermediate level, and the F (phonetic) level is the derived

surface form. Note that Lakoff’s three levels are basically the same as Goldsmith’s,
but with different names. Phonological processes expressed as rules in standard the-

ories are instead treated as “constructions” of two types:

1. Cross-level M-P and P-F constructions, which state the allowable correlations

between levels.

9. Intra-level P and F constructions, which state the well-formedness constraints

within a level.

There are no explicit rule orderings; all constructions at a given level apply simulta-

neously. However, by allowing both inter- and intra-level constructions, the theory
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M: o BT b2 e udd 'y
i 'taltipg 'ral1rdip
I |
F: 'ralriy 'ral1rinpy

derivations of writing and riding. The lines indi-

Figure 2.2: Cognitive phonology
The rest is identical and is sanctioned by default

cate sanctioned correspondences.

associations.

achieves the effect of extrinsic rule orderings. Figure 2.2 shows the cognitive phonol-

ogy derivations of the words writing and riding. The effect of the P-level constraint
can be seen in the middle line of the figure: the penultimate vowel has been length-

ened for /1aldip/ since dis voiced, but no change has been made to /1altin/. A second

mapping takes P-level representations to F-level representations. At F-level we see

that both /t/ and /d/ has been changed to flap /r/ since the first syllable [1al/ is
stressed.

Even though cognitive phonology is founded on connectionist principles, Lakoff
does not specify how it should be modeled. Touretzky and Wheeler (Touretzky,

1989; Touretzky and Wheeler, 1990a; Touretzky and Wheeler, 1990b; Touretzky and

Wheeler, 1990c; Touretzky et al., 1990; Wheeler and Touretzky, 1989; Wheeler and

Touretzky, 1990) have developed a connectionist implementation of Lakoff’s ideas,
making some modifications along the way. This implementation utilizes a “many

maps” architecture to manipulate sequences of phonemes at multiple levels. Basi-

cally this model, M®P as they call it, uses many maps, such as M-P map and P-F
map to account for inter-level mappings. It uses a higher level buffer and inter-level

constructions to accompany the mapping matrix and this matrix in turn produces
the correct lower level representations. An example is shown in Figure 2.3. In this

example, the derivation involves three changes to the string: a mutation, a deletion,
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and an insertion. The changes are described in a “change buffer” called P-deriv. The
M-level goes through P-deriv and feeds into M-P mapping after required changes: /i/
is inserted at the end, /k/ is deleted (as marked by 1 in the buffer), and /a/ is changed
into /e/ (as indicated -low. /a/ is a low vowel, /e/ is not). M-P mapping matrix

derives the phonemic representation, right-justified in the P-level output buffer, in

one parallel step. The mapping matrix makes sure that there are no gaps or collisions

in the output caused by simultaneous insertions and deletions.

To explain intra-level constraints such as vowel harmony, Touretzky and Wheeler

use a clustering mechanism. It is controlled by a small number of language-specific

parameters. They include the type of the cluster, the trigger which lists the precon-
ditions of the rule and the elements which can undergo a change, which is the last

of the parameters to be specified. The clustering mechanism is implemented by an

additional mapping matrix. Figure 2.4 shows an example of a clustering rule. In the

example, round vowels are triggers and the ‘element’ bit is turned on if a vowel agrees

with the trigger in its specification for the feature [high]. Sequences of vowels in which

the ‘element’ bit is activated form a cluster and are changed into round vowels. In

owels, /uCiCiCa/ becomes /uCuCuCa/ where C

a hypothetical example with four v

denotes any consonant. Here /u/ is a trigger and subsequent two /i/’s are elements,

since both /u/ and /i/ are high vowels.

Despite of its powerful mechanisms that can deal with complex rule interactions,

Touretzky and Wheeler’s model still shares several points with standard models:

(1) the assumption of abstract levels and underlying forms, (2) the presence of hard

111

wired rules, (3) and the nature of the model as a competence mode

11They are aware of that their program is not a realistic model of human language acquisition.
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a k g -+—— Input
mut -low
P-Deriv:  del 1 _—
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P-level -
M-P Mapping
Matrix

Figure 2.3: Example of M®P’s M-P map. This figure shows how an M level repre-
sentation of an utterance, /akg/, is mapped to a P level representation, /egi/. This

figure was adapted from Touretzky and Wheeler, 1990b.

Yawelmani vowel harmony — P-F mapping:

Cluster type:  [+syllabic]

Trigger: [+round, ahigh]
Element: [ahigh]
Change: [+round]

Figure 2.4: An example of a clustering rule. The trigger of a cluster is a round vowel
of a given height, and the elements are the subsequent adjacent vowels of mapping
heights (o notation is used to mark the same pole for a feature. For example, an «
may be read as ‘+’. If it is, all other as in the same rule are to be read as ‘+.).
Application of the rule causes elements to become round. This figure is taken from

Wheeler and Touretzky, 1989.
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2.2.3 Production Models

Hare’s work (Hare, 1990a; Hare, 1990b; Hare et al., 1990), Chauvin (1988), and

Dorffner (1990) are very similar to my work reported in this thesis.

Hare’s work is mainly concerned with well-formedness conditions on different kinds

of representations such as the mora, the syllable, and the foot, as well as the rules
that maintain well-formedness structure. Her view is that prosodic structure, such as

vowel harmony, is the sum of the generalizations a speaker abstracts in the process of

learning, without the benefit of the rules. Her work addresses, for the first time, the

issue of the acquisition of phonological regularity in the context of the production of

words. The networks are able in one case (Hare et al., 1990) to discover properties
of Turkish syllable structure and in the other (Hare, 1990a; Hare, 1990b) to discover

detailed features of Hungarian vowel harmony. My work is similar to Hare’s work,

but it differs in two ways. First, I investigate the power of a somewhat different type

of network. Second, I am concerned with both production and perception as achieved

by a single network that can accommodate both processes.

Chauvin (1988) examines empirical results related to first-word acquisition in

infants and explores how and why similar phenomena occur in a PDP model. During

learning, a neural network is exposed to a micro-world composed of categories made of

clusters of “images” and of labels attached to these clusters. The basic architecture of

the network allows encoding of labels and images in a common level of representation

and subsequent extraction of labels from images and images from labels. This task
of comprehension and production applied to a neural network is very similar to my
approach presented in this thesis. The difference lies in the representation of linguistic
forms. Chauvin concentrates on semantics ignoring phonology, and so does not need

a dynamic representation of words, while the particular problem domain I have been
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exploring, that is, morphology and phonology, requires a dynamic network.

Dorffner (1990) shows how the interpretation and generation of words can be
modeled in a connectionist model. His model has an architecture that learns words
by categorizing sensory input from two channels, ‘phonetic’ and ‘visual’, into concepts,
and then associates co-occurring concepts from the two realms into arbitrary words

or symbols. Like Chauvin, he also is not concerned with phonology.

2.9.4 Parametric Stress Model

So far I have reviewed some related work in connectionist processing of phonology

and morphology. There is more work done in symbolic paradigm, among them I will

cite just two prominent works.

Chomsky (1965) argues that a child is equipped with biologically programmed

innate capacity to acquire and utilize a linguistic system. The task of language
acquisition is thus simply to finetune the particular aspects of the linguistic system
to which the child is exposed. The nature of the problem can be represented by the
diagram illustrated in Figure 2.5. Based on this theory, Dresher and Kaye (1990)
constructed a parameterized, symbolic model for the acquisition of stress systems.
This model assumes the existence of 11 preset parameters as a part of universal

grammar; the task of the model is to fix the value of each parameter to come up with

LT. So much given information'? makes us wonder whether a child really learns a

stress system this way.

120byiously, they do not think they have started with too much information.




2. The Problem 45

LT

-
\
\
8
A
Y
Q

Figure 2.5: The Projection Problem. Given D, the data of language L, and a grammar,
G, which is the grammar of L, G is acquired via UG, a set of innate and universal

cognitive principles. If UG is construed as a set of rather abstract universal principles,
then a learning theory, LT, relates D to UG.

2.2.5 Two-level Morphology

Koskenniemi (1983a, 1983b, 1984) puts forward a morphology in which all rules

apply simultaneously, and in which each rule can be compiled into a finite state trans-

ducer (FST). An FST is a special kind of finite state automaton that inspects two

(or more) symbols at a time and proceeds accordingly.’® His theory posits a “two-

level” model for morphological analysis (recognition) and synthesis (production). The

model differs from generative morphology in that it proposes parallel rules instead of

successive ones, thus avoiding complicated and often troublesome rule interactions.

The name “two-level morphology” reflects the setup where only the underlying lex-
ical and the surface levels ever “exist”. All two-level rules express correspondences
between lexical and surface forms and involve a surrounding context. The basic struc-
ture of two-level rules is:

OPmOP: ‘LGe 2. RCE

Here CP refers to a lexical /surface correspondence, LC and RC refer to the left and

13Regular finite state automata inspect only one symbol at a time.
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right context, respectively, and OP an operator indicating what kind of a relation is

stated between the pair in the LC and RC. An example of a rule is

5 : = “+7) .
g V

1

(Koskenniemi, 1983b, p.78).

This says that a plural /i/ is realized as [j] between elements that are realized as

vowels (the ‘=’ means, roughly speaking, ‘don’t care’, and the ‘+’** has the effect,

in this context, of flagging plurality). Such a rule gets compiled into the automaton

shown as a matrix in Table 2.2.  Here the rows correspond to the state and the

columns to the symbols (for the particular input alphabet of the automaton). Final

states have a colon after the state number whereas nonfinal states have a period. This

FST can be diagrammed as in Figure 2.6. Below is a demonstration of the procession

of the automaton in a configuration:
Input: i a 1 o & + i
t a 1 o G 8 ] s

Qtate: 1 1 2 1 g 92: 8 4 2\ 1

The other alternative, taloien, would have failed, because the transition on column 1

in state 5 is zero.
d and evaluated in Gazdar (1985).
KIMMO system by

The Koskenniemi-style approach is describe

Koskenniemi’s work directly influenced the implementation of

Karttunen and his students (Karttunen, 1983). Finite-state morphology or phonol-

ogy analyses exist for many languages, including English (Karttunen and Witten-

burg, 1983) and Semitic (Kataja and Kos
Ristad (1987) have shown the method to be NP-hard, to wh

kenniemi, 1988). Barton, Berwick, and

ich Koskenniemi and

14 ig a boundary in front of case endings, one of eight morpheme boundary symbols Koskenniemi

uses.
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Table 2.2: An example of FST in a tabular form for a plural rule in Finnish. From
Koskenniemi, 1983a, p.96.

o

ATl o e
ORRNN L
S
o N Tt N
OO OO =
mthHOx
b= ekl

X +
o O
Figure 2.6: An example of FST for a plural rule in Finnish. From Koskenniemi,
1983a, p.96.
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Church (1988) reply that theoretically Barton et al.’s analysis is correct, but in natu-
ral languages there are many constraints which block computational explosion. There

are further theoretical developments that try to mend some of the problems posed by

Koskenniemi’s original approach; Bear (1988) explains how phonological rules may

be employed instead of transition tables that are cumbersome to develop and refine;

Carson (1988) shows that both unification and FST can be applied to phonological
parsing.

Two-level morphology avoids rule interactions, since rules (the automata) work

together in parallel; a configuration is accepted if all rules pass. One contradicting

rule is enough to ruin the correspondence. The main idea is that rules can make

explicit reference to levels in their environments. This makes them more powerful in

a sense than standard generative rules. Since the 1960’s, linguists have widely used

the formalism of generative phonology, which does not provide a realistic framework

for describing dynamic processes of word perception and production. Two-level mor-

phology is one of the first attempts to satisfy the general need for an alternative to

the standard generative approach that says nothing about processing, especially in

regard to perception and parsing.

Although two-level morphology succeeds in avoiding rule interactions, it still lacks

two fundamental elements of a realistic model: (1) rules have to be hand-coded and

supplied by a designer and thus (2) no learning takes place in the model.

2.2.6 Summary

So far, some of the models that deal with computational phonology and mor-

phology have been surveyed. Some of the models lack learning, while others are not
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psychologically plausible.

My model is an attempt to overcome many of the problems raised by the models
mentioned above by having both segmental and semantic inputs and outputs in the

network, thus performing the more psychologically plausible process of the produc-

tion of a sequence of segments given a meaning or the selection of a meaning given

a sequence of segments. My model is a dynamic model. The model is given one seg-

ment at a time as input. Furthermore, my model does not presuppose any linguistic

parameters, abstract underlying representations, or rules. These points will be made

clear in the next few chapters.

2.3 Theoretical Background

1987) provides a useful terminological

Langacker’s cognitive grammar (Langacker,
model described in this

framework. His theory is compatible with the connectionist
thesis.

His grammar posits just three basic types of structures: semantic, phonologi-

cal, and symbolic. Symbolic structures ar

combine the two. A symbolic structure is bipolar,
and the association between them. He assumes that one can

e not distinct from the others, but rather

consisting of a semantic pole,

a phonological pole,
validly postulate semantic space and phonological space as two broad aspects
of human cognitive organization. We might think of semantic space as “the mul-
tifaceted field of conceptual potential within which thought and conceptualization
unfold” (Langacker, 1987, p.77); @ semantic structure can then be characterized as
a location or a configuration within the semantic space. Phonological space is our

range of capacity to deal with sounds, with speech sounds as a special case.
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When the formation of a grammatical construction is regular to any substantial
degree, this regularity is expressed in the grammar by a schematic symbolic unit. The
noun pins, for example, is a symbolically complex expression formed by integrating

the two symbolic units pin and -s: [[PIN]/[pIn]-{[PL]/ [z]]]. This expression instantiates

a pattern of plural noun formation embodied in the schematic unit [[THING]/[...]l-

[[PL]/[z]]], where the integration between the two components is exactly analogous

to that between the components of pins (and of other plural nouns). The schema

therefore captures whatever generalization can be made about the nature of the syn-

tactic combination defining the grammatical construction. Figure 2.7 shows the rela-

tionship between a schema and an instantiation of a schema.

(as meanings of words) and phono-

which include both

My model incorporates both semantic units

logical units (as series of phonetic segments comprising words),

specific plural forms and schematic units. The model has the capacity to memorize

specific forms and to develop schemata that capture the generalizations among the

specific forms. Where, then, do these schemata, rules, come from? I hoped to have

them fall out naturally by giving the model enough exemplars, that is, I wanted to

train & network without the benefit of explicit rules and wanted to have the schemata

represented by the generalizations the network would abstract in the process of learn-
ing to produce example words. In a connectionist network schemata are determined

by the connection weights between units, which the network develops while trying to
produce correct outputs. That is, the rules are built into the associations between
forms and meanings. The weights are thus to be learned, not to be presupposed. It
is gratuitous to assume that mastery of a rule like N + -s, and mastery of forms like

chips that accord with this rule, are mutually exclusive facets of a speaker’s knowl-
edge of his language; it 1s perfectly plausible that the two might sometimes coexist.

We do not lose a generalization by including both the rule and specific plural forms
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nship between a particular composite symbolic

structure, pins, and the categorizing schema whif:h i't instar.lti?}tes. The 'int'ernal struc-
fure of the schema is exactly parallel to that of its instantiations, specifying hovxf' ?he
component morphemes are integrated at the two ‘poles. The _scherpa characterizing
the formation of plural nouns with the suffix [z] is therefore 1dent1ca.1' to the struc-
ture for pins except that the noun schema replaces the morpheme pin as the first

component. From Langacker, 1987, p.85.

Figure 2.7: The elaborative relatio
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in the grammar of English, since the rule itself expresses generalization. To claim on

an a priori basis that the rule precludes the list, or the converse, is simply to embrace

what Langacker calls the ezclusionary fallacy (Langacker, 1987, p.25).

In my approach, the network and the learning rule are the only a priori structures

provided, and over the presentation of many exemplars, the connection weights are

adjusted and generalizations are made to yield the schemata. We can have many

generalizations on a single network, since different exemplars generalize to different

schemata. As the network develops a set of weights which allows it to produce correct

outputs, these sets of weights act as constraints on the future outputs. The prediction

here is that these constraints will result in the correct phonological alternations that

correspond to real phonological processes in the language.

2.4 “Performance” Grammar

There are various theories about how and why some observed morphological phe-

nomena occur in the way they do. However, most traditional theories presuppose

abstract underlying representations and a set of rules to obtain their surface realiza-
tions. Modern generative grammar is based on the notion of “deriving” forms through
the application of a series of rules, each of which takes a linguistic representation as

input and yields one which is in some sense closer to the “surface”. Thus, behind sur-

face forms are underlying representations, abstractions within which each morpheme

has an invariant form.
Consider again, as an example, the English plural. The regular plural morpheme
takes three different forms, /s/, /z/, and /1z/. To account for them in traditional

phonology, two rules are invoked:
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1. Voicing Assimilation. Spread the value of voicing from one phoneme to the

next in word final position.

9. Vowel Insertion. Word-finally, separate with the vowel /1/ adjacent consonants

that are similar in place and manner of articulation.

The first rule is invoked to add /s/ to the nouns which end with voiceless consonants,

for example, hat, or /z/ to those with voiced final phoneme as with the case of zone,

while the plural suffix of page calls for
and /z/.

the second rule due to the similarity of /ds/

Most classical symbolists believe that surface forms are really derived from un-

derlying representations with the application of rules. Lachter and Bever (1988) say,

“The generality of the application of such rules highlights the fact that they apply

to abstract subsets of features, not to actual phonetic or acoustic objects” (Lachter

and Bever, 1988, p.202). Pinker and Prince’s (1988) critical analysis of the Rumel-

hart and McClelland (1986) past tense model is crucially based on the claim that

the linguistic and developmental facts provide good evidence for rules and underlying

representations.

In this thesis, I approach two fundamental problems which are overlooked in both

the classical accounts of morphological processes and the RM model (as well as several

other approaches that try to overcome the RM model’s difficulties), thus answering

some of Pinker and Prince’s criticisms of connectionist models, as mentioned above.

First, how does knowledge about rules and underlying representations relate to

the psycholinguistic processes of production and perception, which relate form and
meaning, rather than form to form? The linguistic knowledge implicit in rules and

underlying representations is meant to belong to linguistic “competence” and should
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thus be shared by both production and perception. Production might to some extent

parallel morphological derivations, but perception would be the reverse process. Thus

we are confronted with the familiar problem of using rules in one direction when they

were designed for another.

A more serious problem, however, occurs in imagining how knowledge about rules

and underlying representations might ever be learned. That is, given only surface in-

put forms together with meanings inferrable from context, how is a learner to figure

out how the form-meaning relation gets mediated by abstract underlying represen-

tations? Where do underlying representations come from? How are rules found and

related to each other?

It is customary to assume that a language learner is helped by having certain

predispositions about language wired in; however, I begin with an approach which is

far more constrained. I assume that the basic building blocks of language acquisition

and processing are the simple, neuron-like processing units that connectionist models

start out with. What gives such a system its intelligence is its architecture. First, we

need some means of representing patterns that take place in time, that is, we need my

model to have the capacity to develop a kind of short-term memory that preserves

past history.

Second, we need a means of handling both meanings and forms. Throughout

this theSiS, by “form” I mean a series of phonemes, while by “meaning” I mean the
gether with relevant grammatical features.

he meaning HAT + PLURAL. What

lexical entry of the word in question, to

For example, the word pronounced / heets/ has ¢
we need is a mechanism that can incorporate both form (a series of phonemes) and
meaning in such a way that the knowledge that is learned is potentially usable in

both perception and production tasks.
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What I am describing in this section is a rudimentary sort of “performance” gram-
mar; its goals are different from the goals of generative grammar, which is “compe-
tence” grammar. I am arguing not against rules and underlying representations per se,

but against generative/ transformational competence rules and underlying representa-

tions; I argue for the performance rules and underlying representations modeled in a

connectionist architecture. For example, the fact that the plural of top is pronounced

as [taps] can be explained in competence grammar as:

/tapz/ Underlying representation®
/taps/ Rule 1 as stated above

[taps] Surface Form

In contrast, performance grammar does not require any explicit rules and underlying

representations. These are to be learned in the process of generalizing over a set of

training instances that exhibit the alternations between English singular and plural

nouns, for example,

TOP + SINGULAR --> /tap/
TOP + PLURAL --> /taps/

where the items in capitals represent meanings.

I think my approach is more psychologically plausible; and if such an approach
oduction, and acquisition, then generative grammar would

can handle perception, pr
e that each underlying segment goes through a

become superfluous. I do not believ
derivation employing morphological rules to produce a “surface” segment. More im-
portant is the fact that for speakers meanings trigger the correct phonological /phonetic

productions, while for listeners phonetic/phonological material directly evokes the

15Here the underlying representation of plural is assumed to be /z/.
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correct word meanings. An important research question is concerned with the exis-

tence of the plausible ways in which people might acquire words by integrating both

meaning and form; notably, at what point meaning actually plays its critical role

in word acquisition is not clear. It might be the case that both meaning and form

should be present from the beginning. Or it might be the case that meaning does not

play any critical role at all; its main function is to aid in the understanding of words.

Between these two opposite ends of the spectrum, there lie infinite possibilities as to

when to introduce meaning. In my model meanings are presented from the beginning

ms, partly because it was easy

d form should be

without any reservations along with the phonetic for
to implement, and partly because I believe that both meaning an

present from the beginning. This issue will be brought up again in Chapter 6.

Through a series of experiments, I will show that (1) the rules in this system are

determined via the connection weights between the units, which the network develops

while trying to produce the correct outputs and (2) underlying representations are

learned as patterns on the hidden layer, which mediate the relationship between form

and meaning.

2.5 Hypotheses

Three hypotheses motivated this project:

Hypothesis 1 A desirable model should accommodate both production and percep-

tion in a single network, thus performing the more psychologically plausible
task of relating form and meaning, rather than simply associating form to form.

Linguistic knowledge is meant to belong to “competence” and should thus be

shared by both production and perception.
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Hypothesis 2 The model should learn morphological processes without the benefit

of underlying representations or ezplicit rules. Given only surface input forms,

together with their meanings, the model should discover how the form-meaning

relation is mediated. Specifically, rules are to be determined by the connection

weights and underlying representations should be reflected in the hidden layer

representations. Among the many rule types encountered by the network, it

should succeed on rule types which are common in human languages and fail

on those which are rare or non-existent.

Hypothesis 3 The model should capture some central generalizations about sound

model is trained on a given task involving similar allomor-

patterns. When the

phic variation, it should be able to more casily learn another task involving

allomorphic variation. This model should be able to learn rules which are simi-

lar to the learned rule more easily than ones which are different from the learned

rule. Since hidden representations encode the relationship between form and

activity learned by one network should be interpretable

meaning, a pattern of

by another network.

2.6 Summary

In this chapter, the issues surrounding how words can be perceived and produced

have been addressed. Even though a word s
] unit of language, since a gl

mes. All words consist of one or more morphemes,

a minimal free form in language, it is

not the minimal meaningfu ven word can often be broken

into smaller units called morphe

which can be classified in 2 variety of ways or combined in different ways to create

ough the processes of word formation may vary from one language

new words. Even th
to another, all languages have the means 0 create new words and therefore exhibit
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the rule-governed creativity that is typical of human languages. Classical symbolic

systems postulate explicit rules, as well as innate predispositions in human beings

for certain linguistic structures. The study reported here is an attempt to explain

morphological processes using a connectionist network and without resorting to any

predetermined structure.

nal accounts for word perception and production have been at-

Some computatio
processing. Dresher and Kaye’s (1990) model for the

tempted, mostly using symbolic

acquisition of stress systems assumes the existence of preset parameters as a part of

the universal grammar where the task of the model is to fix upon the exact value of

each parameter. Koskenniemi’s two-level morphology is a finite state transducer that

processes all rules simultaneously.

It was the Rumelhart and McClelland (1986b) model that opened up connectionist

ple two-layer pattern associator that

Goldsmith (1991) and Lakoft

ed for rule ordering.

research in word acquisition. The model is a sim

can acquire the markings of the past tense in English.

(1988a) developed a theory which attempts to eliminate the ne

Touretzky and Wheeler have deve
(1988), and Dorffner (

loped a connectionist implementation of Lakoff’s

ideas. Hare's work, Chauvin 1990) are very similar to my work,

reported here. Hare’s work addresses, for the first time, the issue of acquisition of
phonological regularity in the context of word production. Chauvin (1988) examines

d acquisition in infants and explores how and

empirical results related to first-wor
model. Dorffner (1990) shows how the

why similar phenomena occur in @ PDF
interpretation and generation of words can be modeled in a connectionist model.
Both Chauvin and Dorffner address both comprehension and production of words,

Very similar to my approach in this thesis.

While most traditional theories presuppose abstract underlying representations

and a set of rules to obtain surface realizations, my approach does not presuppose
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any underlying representations or rules. The rules are to be learned by the network.

By accommodating both production and perce

1), the model should learn morphological processes with

(Hypothesis 2) and can capture so

ption in a single network (Hypothesis
out the benefit of underlying

representations or ezplicit rules me of the central

generalizations about sound patterns (Hypothesis 3).
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3

Connectionist Models

In the last chapter, the problem of perceiving and producing words was addressed.

jonist model, I will take

Also different

Since the model I used in this project was based on a connect

a closer look at connectionist learning procedures in this chapter.

approaches to temporal processing will be reviewed.

3.1 Connectionist Learning Procedures

In Chapter 1, a brief introduction to connectionism was given. Connectionism is

deling which assumes that knowledge is represented by

an approach to cognitive mo
a parallel, distributed information processing structure consisting of processing units
densely interconnected via unidirectional weights. Each unit has a single output

which fans out into many other units through its connections. Typically there are

ceive input signals from the outside wor

There may be one or

both input units, which re 1d, and output
m’s response to that input.

units, which represent the syste
ut units and the output units. Processing

more “hidden” unit layers between the inp

60
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involves activating the input units; this activation is spread through the connections

to produce a pattern of activation on the output level. This pattern is compared to

a “desired” output and the discrepancy is calculated to adjust the weights.

Consider a network that has input units which are directly connected to output

units. By minimizing the error measure (mean squares) between actual outputs and

we are guaranteed to find the set of weigh

“least mean squares” (LMS) procedure

“desired” outputs, ts that gives the de-

sired output. This learning procedure is the

(Widrow and Hoff, 1960; Rosenblatt, 1962).

The “back-propagation” learning rule (Rumelhart, Hinton, and Williams, 1986),

one of the most commonly used weight updating rules, is a generalization of the
LMS rule that works for networks with hidden units. A variant of this procedure
was discovered independently by Werbos (1974), Le Cun (1985) , and Parker (1985).

In this learning procedure discrepancy is back propagated to adjust the weights as

following:
g
Apwij = 16piOps

where Ajw;; is the amount of change t0 be made on the connection weight wy; for
pattern p,  is a proportionality constant, called the learning rate, op; denotes the
output of the jth unit for the pattern p, and 6,; represents the error signal for the
unit j given pattern p, which is computed recursively starting from the output units.

If a unit is an output unit, its error signal is computed as

dpj = (tpj i opj)f ;’(netpj)

where f “(netp;) is the derivative of the activation function which maps the total
input to the unit to an output value. The error signal for the hidden units, for which
10 specified targets exist, 15 Jetermined in terms of the error signals of the units
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to which it directly connects as well as the weights of those connections with the

following formula:

5pj = f ;-(netp,-) 2 5pkwk,-.
k

In order to use this learning rule, we need to know the derivative of the activation

function of unit uj, f 'j(netj). For the most commonly used logistic output function

given in Chapter 1, the derivative is computed as

60,,,-

Bnet,; = opj(l s Opj)-

Thus, the error signal for an output unit is given by
bpi = (o — 0p )0pi(1 — Opi )s
and the error for an arbitrary hidden unit is given by

b5 = 0pi(1 = 0pj) Y Spk Wi
k

utput pattern for pattern p.

put for jth component of the o
/0w where Ej

hanges in weight be proportional to 0E,

pattern p. The constant of proportionality is

where t,; is the target in
This rule requires only that ¢

is the error measure on input/output
the learning rate in the equation. The larger the constant, the larger the changes in
the weights. For all practical purposes, we want this learning rate to be as large as is

to oscillation. One way of achieving this is to introduce a

possible without it leading

new term, called momentum, in the equation, yielding a new rule:

Aw.-j(n + 1) = 77(5;7]'0?.1') o aAwiJ'(n)
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where the subscripts n indexes the presentation number and « is a constant which de-

termines how much past weight changes will contribute to the current weight change.

3.2 Learning Temporal Processes

g the model, I considered its capability to accommodate temporal

since the morphological processes

When designin

processing as one of the most important criteria,

that T am studying in this thesis are temporal ones. Would a simple feed-forward

network be sufficient for the tasks in this research? Or would it be absolutely necessary
to use a recurrent network? If a recurrent network was not indispensable, a simple

feed- ;
ed-forward network would be preferable, since recurrent networks are much more

compli ; :
mplicated and in general take more time and space to run. However, a recurrent

since without some form of short-term memory (STM) to

network could not distinguish two ide

r example, the two /b/’s in Bob, and it would

n
etwork was necessary,
ntical phonemes

store the previous events, the

that might appear in the same word, fo
be impossible for the network to decide when to apply a morphological rule to the

ath the network takes to encod
The system cannot know how to behave

word in question. The p e the internal representations

nt study.

is very important to the curre
only on the basis of the current input; the previous context is essential in perception

and production of words. In other words, the network has to have some way of

he temporal sequence (see Port, 1990, on the issue of

knowing “where” it is in
representation of temporal patterns). In this section, I will briefly review some of the
techniques in connectionist framework that address the learning of time sequences.
Hertz, Krogh, and Palmer (1991) classify the learning of sequences into three distinct
tasks: sequence recognition, where a particular output is sought given a specific input
where the network must be able to generate the rest

Sequence, sequence reproduction,
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of the sequence when it sees only parts of it, and temporal association, in which a

particular output sequence must be produced in response to a specific input sequence.

My task is very much in the domain of temporal association. Each of the approaches

discussed below can learn one or more of these tasks.

3.2.1 Simple Feed-forward Networks

The simplest way to perform sequence recognition is to turn the temporal sequence

plicitly coding discrete states

into a spatial pattern. One way of achieving this is by ex
ldman and Ballard

into the unit functions which can change over time such as did Fe

(1982). In their network,

each unit will be characterized by a small number of discrete states [italics

added] plus:

p—a continuous value in [-10,10], called potential (accuracy of several

digits)
v—an output value, integers 0<v<h
i—a vector of inputs i1, -+, n (p.211).

achieving sequence recognition using a simple feed-forward net-

Another way of
formation as part of the input. For example, Rumelhart

work is to encode temporal in
and McClelland’s (1986b) past tense m

1969, for context-sensitive coding) to allow for tem

odel adopts Wickelfeatures (see Wickelgren,
poral context sensitivity. Accord-

ing to this scheme, a string is represented as a set of three-character-sequences which

grams Wickelphones. For example, a word like net trans-

proach, a ‘word-boundary (#)’ is a character, too.

] scheme is that distinct lexical items

it locates. RM call such tri
lates to {a1tdy neti ct#}. In this ap

A serious problem with this representationa.
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may be associated with identical representations’ as illustrated in Pinker and Prince

(1988):

For example, the Australian language Oykangand (Sommer, 1980) distin-

guishes between algal ‘straight’ and algalgal ‘ramrod straight’, different

strings which share the Wickelphone set alg, al#, gal, 1ga, #al, as can be

seen from the analysis in (5):

(6) a algal b. algalgal
#al #al
alg alg
lga lga
gal gal
al# alg
Iga
gal

al#

(p.97)

The multilayer feed-forward networks of type as shown above cannot perform such

ks as the recognition of thea

onary state and thus produce static mappings.

temporally extended tas bove two distinct sequences, since

they necessarily go to 2 stati

onist network that discovers faithful ‘Wickelfeature’ rep-

s on & connecti b
cal information about the sequence to be encoded, thus

'Mozer (1990) report o
do not lose critt

resentations — ones that
Overcoming this problem.
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3.2.2 Moving Window Systems

Most connectionist models of sequence recognition use the “moving window” par-

1988; Lang et al., 1990; Sejnowski and Rosenberg, 1987;

adigm (Elman and Zipser,
Tank and Hopfield, 1987; Waibel et al., 1088). Typically,

me t, another pool for the event at £+1, an

these models use one pool of

input units for the event at t1 d so on. The

basic idea is to have a separate set of nodes to represent the set of raw inputs from

each time slice. For example, Elman and Zipser’s (1988) model was presented with 64

ms speech samples in 20 slices. For each slice, 16 normalized spectral energy measures

network with 320 input nodes.
ned to successfully categorize stop-vo

ds of tokens that were taken from a single

were provided, yielding a Elman and Zipser showed
wel syllables

that this sort of network can be trai

despite the variation inherent in the hundre
speaker. At first glance, networks of this type appear to capture useful information

hin the window. But from

a s _sal ol " . A .
bout location in time, in terms of spatial organization wit

the standpoint of the network, the nodes representing cach time slice are just parallel

i R .
nput channels. They do not even have an intrinsic gerial order.

A variant of the time window approach described above has inputs that arrive
at different places in the network through time-delay connections: only one event is

put unit has a set of connect

n Figure 3.1, making it possible for a higher layer

Presented at a time, but each in ions coming out of it all

with different time delays as shown i
eared on an earlier time step. This type of

of units to have access to inputs that app
eural networks. In Waibel et al.’s

architecture is sometimes called time-delay n
6 input units which serve a

ives input (via 48 weighted connections, that is, 16

(1988) network, there are 1 s spectral coefficients. Each

unit in the first hidden layer rece
e delay 0, 1, and 2) from the coeflicients in the

coefficients over three frames with tim
work performed very well on the task of

3 frame window. They report that their net
/b/, /d/, and /g/, extracted from

Speaker-dependent recognition of the voiced stops
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Figure 3.1: A Time Delay Neural Network unit. The J inputs of delay units are
multiplied by several weights, one for each delay and one for the undelayed input.

various phonetic contexts. Because the time delays are fixed in the network and the

ed input events, this approach is quite similar to the window

STM consists of unanalyz

approach.

There are several drawbacks to the moving window approaches. First, a moving
window approach is not psychologically plausible, since “it requires that there be

orld, which puffers the input, s
). Another problem with such an app

o that it can be presented

some interface with the w
all at once” (Elman, 1990, p.181 roach is that
it imposes a rigid limit on the duration of the input window. The size of the window
must be chosen in advance to accommodate the longest possible sequence. As aresult,

asted, since some of the unused pools of units must be kept

computing resources are W
available for the rare occasions when the longest sequences are presented. Finally,
the input signal must be aligned properly and must arrive at exactly the correct
rate. Therefore, the recognition task and the generation of sequential patterns are

not easily handled using simple tapped delay lines.
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3.2.3 Partially Recurrent Networks

An alternative approach for temporal processing is to have recurrence in the net-

work, so that states are reflected in the activations of units. This results in dynamic

memory and therefore in network that can recognize and reproduce sequences. Pop-

ular architectures that have been used for temporal processing are partially recur-

rent networks, sometimes referred to as sequential networks (Hertz et al., 1991,

pp.179-182) . In this type of network, there is a set of context units that receive feed-

back signals. The feed-forward connections are learned, but the feedback c

onnections

are fixed, that is, not trainable, thus making it possible to use the standard back-

propagation learning rule. In this type of network the feedback connections serve the

purpose of STM. STM is held by the context units, which are copies of a particular

s time step. Thus at any given time step,
lso some memory of its previous stat

f the previous STM pattern, the network

ps. Another advantage of recurrent

layer from the previou the network receives
e. But because

not only the current input but a
the previous input was also a function o

encodes information over many previous time ste
networks over simple feed-forward networks is that they avoid the difficulty of a fixed-

ble-length patterns, since the length of input patterns

length representation of varia
is not explicitly represented in the network architecture. In a window representation,
the size of the input layer dictates the size of the window; but in a dynamic network
events are processed one at a time, thus eliminating the difficulty of representing a

variable-length input within a fixed-length input layer.

Decay-based Recurrent Networks

In Jordan’s (1986a, 1986b) approach (see Figure 3.2), the output vector of the
network is linearly averaged into @ context vector, which is given to the network as a

s T
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Output

Hidden

Input State

Figure 3.2: A Decay-based Recurrent Network.

based recurrent

beled

part of the input. We will refer to this type of networks as decay-

networks. In this type of network, input consists of two parts. The first part, la
the plan, is an arbitrary representation of the sequence to be produced and remains
constant throughout the processing. The second part of the input is a bank of context
he context vector at time t is some proportion (u) of its value

units called the state. T

o the same unit in the figure), plus the output vector

at time ¢ — 1 (arrows pointing t
| context and aids the system in determining

at time ¢ — 1. This serves as a tempora
what part of the sequence is the next to be produced. As a result, the network has

g representation of its history. This kind of network can be

an exponentially decayin

trained to produce nearly arbitrary sequences.

Simple Recurrent Networks

eloped an architecture where, in addition to the usual input,

s, there is @ set of context units that hold a copy of the

Elman (1990) dev
hidden, and output unit
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next event

Hidden @

current event

short-term memory

Figure 3.3: A Simple Recurrent Network.

hidden layer activations from the prior time step. These networks have been called

The basic structure of an SRN is shown in

simple recurrent networks (SRNs).
based recurrent networks by h

layer (instead of the output layer) and by

Figure 3.3. SRNs differ from decay- aving input to

the context units fed from the hidden

lacking of self-recurrency. The hidden units have the task of mapping the input to
the input now :ncludes their own prior states, they must

the output, and because
develop representations which serve as some form of STM. Note that the context
units are part of the input layer and thus there is no need to calculate 0Ck / Qw;; to
nit, making it possible to apply

adjust the weights, where C, is the k-th context u
he network. SRNs

standard back-propagation without any modifications in training t
sks: given an input event, the network 1s to

are usually trained on prediction ta

2 GRNs maintain past history in their context units, which

indicate the next event.

20f course, this does not mean SRNs cannot be used for other tasks, including autoassociation
and sequence recognition (Stolcke, 1990), simply that SRNs have mostly been used for prediction

tasks.
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are copies of the hidden layer from the previous time step. Since the input layer

includes the context units, the network receives not only the current input but also

some memory of the previous inputs. The real question with SRNs is whether the

contribution to the error from the past history is significant or not (Pearlmutter,

1990), that is, whether or not the task at hand is benefitted from having past history

as part of input. This question can be only be answered relative to a particular task.

For instance, Cleeremans et al. (1989) found a regular language token prediction task

that is difficult for SRNs when the transition probabilities are equal due to a small

contribution from the history, but found that breaking this symmetry allowed the

networks to learn the task.

An SRN is particularly suitable for language study, since it allows for the process-

ing of serial inputs. Thus, language can be processed naturally, element by element.
Furthermore, an SRN makes minimal assumptions about special knowledge required
asks such as those examined in this thesis,

for training. When used for prediction t

SRNs provide a teacher which is readily available in the environment on the next

time slice, that is, the teacher and the input are of the same form. Thus there are no

itment as to what type of output th
bias the outcome. This is different from the kind of

a priori theoretical comm e model is expected to

produce, which might otherwise
uage input onto non-sequential feature-based

architecture which maps sequential lang

semantics (Stolcke, 1990).

Elman and others (Cleeremans et al., 1989; Cottrell and Tsung, 1989; Harris and

Elman, 1989; Servan-Schreiber et al., 1988; Servan-Schreiber et al., 1989; Small, 1990;

ious tasks, mostly training them on prediction.

Stolcke, 1990) have used SRNs for var
s, representation of vocabulary, discover-

Exclusive-OR, structure in letter sequences,

word order, and pronoun resolution are the experiments re-

ing lexical classes from

ported in Elman (1990). Elman (1989) addresses the nature of representations in
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connectionist models by simulating problems in the distinction of type and token, the

representation of lezical categories, and the representation of grammatical structure.

Servan-Schreiber, Cleeremans, and McClelland (1988, 1989) used an SRN to pre-

dict successive elements of sequences in finite state automata. They found that when

the network was trained with strings from 2 particular finite-state grammar, it could
learn to be a perfect finite state automaton for the grammar in question. They re-
nt information about the path on the

port that the network encodes prediction-releva

hidden layer and illustrate the phases of learning by the network.

address the issues of how an SRN might represent co-

Harris and Elman (1989)
ose holding between a script setting (e.g., “clothing

occurrence relationships, such as th
ationships that specify the feature match

store”) and a script item (“shirt”), or the rel

between the gender of a pronoun and its antecedent.

based recurrent network

89) trained an SRN and a decay-

Cottrell and Tsung (19
f adding two multi-digit numbers. T

hey found that

and compared them on the task o
networks of this type can learn simple programming constructs that are not nested.
They also report that a decay-based recurrent network cannot “remember” things

re not reflected in its output, since it has access to only current

about its input that a

input and the output history and keeps no record of previous inputs or the internal

states of the system.

Small (1990) studied lexical ambiguity resolution and semantic parsing. Hereports
that the network learned to interpret correctly the intended meaning of the words

lso reports that the network predicted a pronoun of the

“take out” in context. He a
correct gender in the appropriate contexts. Furthermore, analysis of the hidden layer
revealed that the network acquired a representation of the contextual information;

the syntactic and semantic structures of language, such as the linguistic notion of
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“noun”, or the interesting and useful notion of “the word outin the context of a female

ted non-symbolic form. This work is relevant to

agent”, are represented in a distribu

my study, since Small showed that SRNs can learn to perform linguistic tasks without

any explicitly coded pre-existing linguistic knowledge and also demonstrated that the
y useful

network can create a distributed internal representation of various heuristicall

concepts.

Stolcke (1990) investigated the possibilities of using SRNs as transducers to map
sequential natural language input onto non-sequential feature-based semantics. The

ate and multiple-

networks performed well on sentences containing a single main predic

k was also able to process multiple levels of sentence-

feature objects. The networ
final embedding but only one level of center-embedding due to its inability to retain

information that is not reflected in the outputs over intermediate phases of processing.

rs used SRNs to inves-

In preceding paragraphs, I sketched how other researche

ess in various language studies without any explicit

tigate their power and usefuln
My model differs from

e in the form of rules.

representation of linguistic knowledg
sociation as well as prediction. That is,

other SRNs in that it is trained on autoas
rent event and another for the next

there are two sets of output units, one for the cur

rce the network to distinguish t

y Servan-Schreiber et al. (1989).

event. This is one way to fo he different input patterns

on the hidden layer as suggested b

3.2.4 Back-propagation Through Time

We have just discussed networks that were partially recurrent. Now let us turn to

fully recurrent netw

orks, where any unit can connect to any other unit including



3. Connectionist Models 74

d

Figure 3.4: A simple iterative network in which stimulation for different time frames
is supplied to different input nodes. The single kernel network on the left is repeated
for each time slice. The flow of activations through the network simulates recurrent
activity through time. Reproduced from Port, 1990, with the permission of the

author.

itself. Fully recurrent networks are most general and can perform temporal associ-
ction. If we are interested in

gh time (BPTT). As

ation tasks including sequence recognition and reprodu
T, we can use back-propagation throu

sequences of a finite length
, the back-propagation learning algorithm can be

described in Rumelhart et al. (1986)
used to train a recurrent network, since any recurrent nefwork can be “unrolled” in
time to yield a feed-forward network that has a layer for each time step, as illustrated

in Figure 3.4.

non-fixpoint attractors and to produce the desired

BPTT is a technique to learn
rval in fully recurrent networks. This can be

temporal behavior over a bounded inte

done with minor modifications to the standard
n would normally yield different increments Aw;; for each

back-propagation algorithm. While

standard back-propagatio
time step, BPTT must retain identical w;;’s. Note that the SRN’s learning algorithm
)
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is a version of discrete BPTT in which the temporal history is cut off. This makes

the SRN’s learning algorithm an online algorithm, since back-propagation is done at

each point in time, unlike regular BPTT where the weight update is done offline;

that is, individual Aw;;’s are added together, and all copies of w;; are changed at the

same time. BPTT has been used to train both discrete time networks (Nowlan, 1988;

Rumelhart et al., 1986) and continuous time networks (Pearlmutter, 1989).

3.2.5 Real-time Recurrent Learning

y recurrent networks (see Pearlmut-

There are other learning algorithms for full

ter, 1990, and Williams and Zipser, 1990, for excellent overviews). For example, an

(1988, 1989a, 1989b) performs the task

algorithm proposed by Williams and Zipser
backward-propagation

of encoding STM better than BPTT. While BPTT uses the

pute the error gradient, their algorithm, called real-time

ard. The

of error information to com
recurrent learning (RTRL) propagates activity gradient information forw

algorithm is stated as follows:

[The algorithm] create[s] a dynamical system with variables {p;} for all

keUicU,andjeUUL and dynamics given by

Pf-‘j(t+1)=f/c(3k(t)) 3 wiph;(t) + 623 (8)] |
leU

with initial conditions

P?j(to) =0,
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and it follows that

Byk(t)

6w,v,-

Pfj(t) =

for every time step ¢ and all appropriate 1, j, and k (Williams and Zipser,

1989, p.273).

e network, I denotes

In this algorithm, U denotes the set of indices for outputs in th
the

fr indicates the squashing function, sk is
weight from the Ith to the kth unit, z; is the

e output of the units. Thus we may

the set of indices for external inputs,
net input to the kth unit, w is the

concatenation of input and output, and yy is th
use the above two equations to compute the quantities pfj(t) at each time step in

terms of their prior values and other information, depending on the activity in the

network at that time. Combining these values with the error vector e(t) for that time

step via the equation
aJ(t) k
gV o ex(t)ps;(t)
Owij k§€;f ’
re available at

: k
yields the negative error gradient vw/(t). Because the pj; values a

time ¢, the computation of this gradient can occur in real time.

Williams and Zipser propose a hybrid strategy involving both RTRL and back-
d for an SRN (Williams and Zip
e stored and updated for the hidden units, with back-

propagation to be use ser, 1990). In this approach,
the p¥ values need only b
Propagation used to determine other necessary quantities. The error gradient is com-

puted by means of the following equation,

aJ(t) _ 8:(t)z4(t) if 1 € Uo

Owi; SeUn e,(t)pfj(t) if 1 € Uy,
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where Uy denotes the set of indices of units in the output layer and Uy is the set

of indices of units in the hidden layer; &(t) is obtained by back-propagation entirely

within the hidden layer. The pfj values, for k € Un, are updated by means of the

equation

ph(t) = frlse(t )| S wpl;(t —1) + bnzi(t—1)]|
leUng

which is just the RTRL equation specialized to take into account the fact that wy is

0ifl € Up.

The problem of RTRL is that it is computationally expensive and that it requires

. . . . k
non-loca) information. In general, the “minimal number of pf; values needed to store

and update for a general network having n units and 7 adjustable weights is nr. For

a fully interconnected network of n units and m external input lines in which each
connection has one adaptable weight, there are m? + mn? such pfj values” (Williams
and Zipser, 1989, p.275). For the hybrid system described above, the average time
required per time step is ©(nwy +nwa +nwy), where wu denotes number of nonzero
weights between units, wa number of adjustable weights, and n denotes the number

y shows that it requires O(n®+n
erage time per time step of only O((wv +wa)/2)

and in the worst case, the order of magnitude of time required for the BPTT is ©(n?)

4). On the other hand,

of units. Worst-case complexit

BPTT used in an SRN requires an av

(see Figures 1 and 2 in Williams and Zipser, 1990, p:37).

terms of performance, since

Overall, the RTRL algorithm is probably the best in
an any other learning algorithms. But

sks explored in this thesis, partially recurrent ar-

it can encode STM better th for many temporal

Processing tasks, including the ta
nd are much less costly computationally. The

chitectures with context units suffice, &
ystem is critical to my experiments. The

ability to represent the internal state of the s
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model should be able to encode the path taken to achieve the given output. With-

out this information, the model cannot encode a morphological rule: it must know,

for example, which suffixes can follow which phonemes. Simply preservin
based recurrent network may not

g the past

history of the outputs as can be done in any decay-

be enough to sufficiently encode path information critical to encoding morphological

rules.? Since decay-based recurrent networks cannot represent the internal states of

the system (Cottrell and Tsung, 1989), I decided to use an SRN in this thesis.

3.3 Summary

In the study reported in this thesis, a recurrent connectionist network was used
to conduct experiments on the perception and production of words. A connectionist

uted information processing structure ¢

d via unidirectional weights. Each unit typically

network is a parallel, distrib onsisting of pro-

cessing units which are interconnecte
has many input signals which calculate a single output signal, which then fans out

to many other units via connections. There are three different types of units: in-

sing involves activating input units; this activation

put, hidden, and output. Proces

spreads through the connections to produce a pattern of activation on the output

level. This pattern is compared to a «desired” output and the discrepancy between

e weights adjusted accordingly.

e of a learning procedure that minimizes mean

the two is calculated and th The back-propagation

learning rule is a typical representativ

squares between actual outputs and “desired” outputs.

since I have not tested a decay-based recurrent network to

As will be shown in Chapter 5, Gasser (personal
other types of networks in learning the

T 3

4 This is still a working hypothesis,
etermine its inadequacy for my experiments.
Communication) showed that SRNs perform better than

43 )
Tote” aspects of the processes.
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When designing the model, I considered the capability to accommodate temporal
processing to be one of its most important features. Since the morphological processes
that I am studying in this thesis are temporal, I need to have some form of short-

term memory in which to store the previous events. There are many techniques

in the connectionist framework that address the learning of time sequences. Most

connectionist models of sequence recognition use the “moving window” paradigm.
These models use a pool of input units for the event at time ¢, another pool for the

event at ¢+ 1, and so on. A variant of the time window approach employs inputs that
arrive at different places in the network via time-delay connections. An alternative
o the network, so that

approach for temporal processing is to build recurrence int
6a) and

Previous states are reflected in the activations of certain units. Jordan (198

Elman (1990) have developed partially recu
The feed-forward connectio

rrent networks, where a set of contexzt units

receives feedback signals. ns are learned, but the feedback

connections are fixed, thus making it possible to use the standar
s, there 1s the fully recurrent network, in which

d back-propagation

learning rule. For more general task
uding itself. Back-propagation through

any unit can connect to any other unit incl
training algorithms for this type

time and real-time recurrent learning are examples of

of network.
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The Model

I . . . .
n this chapter, a detailed description of the system used for the project will be

re '
ported. I will also argue that the model chosen here is appropriate for and capable

of the tasks reported in this research.

4.1 System Overview

I used a relatively constrained three-layer network, one in which feed-forward
connections are supplemented by limited feedback connections. Figure 4.1 shows the

network architecture used for all of the experiments.

nsists of three cliques® of units: the Form clique, the Meaning

The input layer co
clique, and the Context clique. Depending on the task, the Form clique in the input
and output layers consists of 8 or 13 units representing a phonological segment. Each
of which represent a stem meaning (hereafter

Meaning clique consists of 7 units, 6

1 :
A clique is a collection of units with a common function.

80
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Autoassociation Prediction

form meaning

Hidden

Context

Figure 4.1: Architecture of the network used in the morphological rules study.

and 1 of which represents the grammatical “number”? (here-
P g

referred to as s-meaning
number together) of the word.

r to s-meaning and g-

after g-number; by meaning, I refe
1 units and an equal number of Context

The network has a variable number of hidde
units. Each of the first two cliques receives input from the outside, while the Context

activations on the hidden layer from the

om the input layer, feeding the output layer. In

units receive a copy of the previous time step.

The hidden units receive activations fr
addition, the activations on the hidden layer are fed back to the Context units. The
output layer receives activations from the hidden layer. The output layer produces
outputs in accordance with the current form and meaning and predicts the next input
form. Given the current form and meaning, the network is trained to replicate them
on one part of the output layer (autoassociation) and to predict what comes next
in the sequence (prediction)- My concern 18 with the arbitrary relationship between
form and meaning; hence we need not concern ourselves in this thesis with genuine

unit can be used for any grammatical feature, including tense and

*This grammatical feature
that I call it number.

number, It is for convenience
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semantics. The solid arrows denote the learnable one-to-many connections from the

units on the lower levels to those on the higher levels. For example, any given unit on

the input layer connects to all the on the hidden layer. The dashed arrow denotes the

fixed one-to-one connections, on which no learning takes place with only one connec-

tion from a given higher level unit to a single lower level unit. There are no intra-level

connections in the units in any clique or between cliques. The number of units on a

layer can be varied depending on the task and the number of input data.

This network has the capacity to associate form with meaning and meaning with

form, as well as form with form and meaning with meaning. Thus it is hypothesized

that the model can perform the task of production of a sequence of segments given a

given a sequence of segments. It has the potential to make

meaning, or of a meaning

generalizations across morphologically related words.

4.2 Why This Architecture?

modified version of the SRNs

The model employed in this project is a slightly

There are many different network architectures

discussed in the previous chapter.
r use, as shown in Chapter 3. Why then did I

and learning algorithms available fo
choose this particular architecture? There are theoretical as well as practical reasons.

4.2.1 Experiments on Different Architectures of the Network

Gasser (personal communication) ran experiments on the best network types for

In each case, he tried out various architectures

Perception and production tasks.
based on the network used in this thesis, using the same problem with the same
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t architectures of networks for a percep-

Table 4.1: Results of experiments on differen
f correct output. From Gasser (personal

tion task. Numbers indicates the percentage o

communication).
Autoassociation No Autoassociation
Prediction | No Prediction Prediction | No Prediction
No meaning copy .24 31 17 .20
Copy, =0 22 32 13 15
Copy, p = .5 .26 32 N ]

hidden layer size but obviously not the same number of connections. Each network
was run for 40 epochs and then tested on the training set, which consisted of words
of only one morpheme, so only the ability of the networks to learn the “rote” aspects

of the processes was tested. In ecach run, there were 30 words, in which number

) varied from 5 to 7. 3-segment,

of phonetic features (and hence possible segments
ere distributed equally in

4-segment, and 5-segment words (+ word boundaries) Wi

groups of 10, which were otherwise randomly generated.

Results for the perception task are summarized in Table 4.1. For the perception

task, all the networks had context layers with copies of the hidden layer activations

from the prior time step. There were three variants. The first variant, dealing with

s: no copy of meaning output, me
and copy with g =.5. In the second

meaning, had three case aning output copied with
Jast output)’,

# =0 (no memory except for the
ompared with and without the task of autoas-

variant, the network performance was C

). In the t

hird variant, the network performance

sociation (output current segment
nd without prediction (output next segment).

was compared with a

The results for the production task are shown in Table 4.2. For this task, all

ant is the decay factor that tells how much the previous output value

*This proportionality const :
t activation value.

should contribute to the curren
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Table 4.2: Results of experiments on different architectures of networks for a produc-

tion task. From Gasser (personal communication).

Autoassociation No Autoassociation
Context | No Context Context | No Context
A AD .46 AT 43
=D .78 Bl .80 .58

the networks copied output via connections from the prediction output to the input

0 and g = .5, (2) with and

segment layer. There were three variables: (1) p =
and (3) with and

without context layer for the copy of previous hidden activations,

without autoassociation.

Two things seem clear: (1) For production, having a context layer helps, and
results, I can safely say

(2) for perception, autoassociation helps. By looking at these

for the studies conducted in this thesis is justified. In

that the architecture chosen
(SRN, autoas-

what follows, I will describe why integrating all of these architectures

sociation, and prediction) helps the network learn to perceive and produce words.

4.2.2 Advantages of Simple Recurrent Networks

It has already been shown in Chapter 3 why SRNs were used as the basis for
my model. SRNs have the ability to Jearn the kind of temporal processing that is a
ion of words by storing the past network

Prerequisite to the perception and product

t units. Computationally,
ithm. The version of STM overcomes the disadvantage

history on the contex this is much less costly than the net-

works employing RTRL algor
network. In a decay-based recurrent network, the

of using a decay-based recurrent

state to be retained by the network across time must be present in the output, since
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the network cannot remember about its input that is not reflected in its output. The

SRN, on the other hand, stores a copy of the transformed version of the input which

is available at the hidden layer on the context layer. This copy is recycled on each

time step, whereby the SRN should be able to remember input that is not necessarily

reflected in its output.

4.2.3 The Role of Autoassociation

As noted in the previous section, my model differs from other SRNs in that it is

trained on autoassociation as well as prediction. This is a way to force the network

put patterns on the hidden layer, a prerequisite to the system’s

distinguish different in
(1989) report that

making use of the hidden layer as an GTM. Servan-Schreiber et al.

Encoding of sequential structure in the patterns of activation over hid-
den layers proceeds in stages. The network first develops stable hidden-

for the individual letters [italics added], and then

layer representations

he grammar. Finally, the network is able to exploit

for individual arcs in t
rns of activation which denote a specific path

slight differences in the patte
through the grammar. (p.651)

Developing stable hidden layer representations for individual input patterns is neces-

sary for my model, since my experiments call for it to have the ability to represent
b
all inputs up to a given point in time; the context is needed in order for the network

to be able to predict the next segment.
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4.2.4 The Role of Prediction

Elman (1989) has shown that, given words as input and trained on the simple,

unsupervised task of predicting the next word, SRNs can learn a great deal about

sentence structure. My current research focuses on what can be expected from such

a network, given a single phonological segment at a time and trained to predict the
gment. If a system could learn to do this successfully, it would

next phonological se
4 ot least a left-to-right sort of

ists call phonotactics,

have a version of what phonolog
edge of what phonological segments tend

phonotactics; that is, it would have knowl
to follow other phonological segments in a given context.

But what does this sort of knowledge have to do with the actual perception and

production of words? This is related to the general question of what elements the

processes of perception and production share. One could argue that what the two

isely the left-to-right phonotactics
k. In perception, knowledge about

e system could learn the representations of

hat they can get by train-

Processes share is prec
phonotactics in

ing an SRN on the prediction tas
general might provide a basis on which th

the particular words that it is to perceive. Fo
particular language: Once a /b/
thereby narrowing the set of pos

r example, suppose that every /b/ is
is perceived, the system can

sible syllables,

followed by a vowel in a

then predict a vowel with confidence,
and, eventually words, to perceive. In the case of production, the system is trying

ological forms to produce foll

s is in fact exactly how the syste

owing the current one, that is, the

to decide which phon
m was trained in both

one it has just produced. Thi

onstraints a language has in terms of which sound is allowed in the
dering (tactics) of phonemes. For example, in English there
This is due to a constraint in English preventing two
if the first consonant of the two is a stop

4Phonotactics refers to the ¢
context of other sounds, that is, the or
are no words that begin with stl- or spu--
initial consonants with the same place of articulation,

(O’Grady et al., 1989, p-56)-
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perception and production tasks. Since both word perception and production sup-

posedly obey the speaker/ listener’s phonotactic knowledge of the language (Church,

1987), training on the phoneme prediction

the two processes within a single network, allowing the network to t
restrict the set of possible syllables — and,

task might provide a way of integrating

ake advantage of

known phonotactic constraints in order to

thus, possible words.®

4.2.5 Form Units and Meaning Units

The model described in this chapter incorporates both Form units and Meaning
it

units. Since my model should perform both perception and production tasks,
should have both kinds of information available in the system. It has to have the

ing as well as meaning with form,

eaning. Thus the network will be

ability to associate form with mean in addition to

associating form with form and meaning with m

ucing a sequence of segments, given a meaning or

able to perform the task of prod

Producing a meaning, given a sequence of segments.

. ®There is a practical problem with this assumption, since I have not real.ly tested thether pre-
diction actually helps with perception. In most cases, phonotactic constraints make it Ifarder to
Perceive words because it means there is greater likelihood that the same subsequences w1.11 occur.

honotactically possible, the

That is, if words consist of random sequences within those that are p
more phonotactic constraints, the fewer possible sequences there will be and the more overlap among

Words. While phonotactics clearly helps in production, learning about phonotactics m.ight not help
Perception at all, as demonstrated by Gasser (personal communicatlolf). Onf. exce:pt.lon mlght.be
Under conditions ’of noise: if the input is corrupted, phonotactic constralnt:.s .mlght aid in percep:‘,lon
ecause they allow the network to 411 in or correct input in places where it is wrong or uncertain.
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4.3 Summary

The model employed in the current study is a relatively constrained three-layer

network, one in which feed-forward connections are supplemented by limited feedback

connections. The input layer consists of three cliques of units: Form, Meaning, and

rk’s task is that of duplicating the current input and predicting

Context. The netwo
the next form on the output layer.

There are many reasons why the particular architecture shown in this chapter
was chosen. The model employed in this thesis is a slightly modified version of the
SRN developed by Elman. It has the ability to learn the kind of temporal processing

perception and production of words, by storing the

that is a prerequisite to the
past history on context units. The model was trained on autoassociation as well as
prediction. Autoassociation was used to force the network to distinguish the different
ction exactly matches that of

input patterns on the hidden layer. The task of predi

m is trying to decide which phonological forms to produce

production, since the syste
porating both Form and Meaning units, the model

following the current one. By incor
has the ability to associate form with meaning as well as meaning with form, making

1t possible for it to learn to perceive and produce words.
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Experiments

In this chapter, the experiments performed will be described, including a descrip-

tion of the stimuli used, the training regimen employed, and the three main categories

which were learned by the networ

n layer representations and experiments i

k. Also reported will

of morphological processes
nvolving

be extensive analyses of the hidde

knowledge transfer.

5.1 Introduction

ts, networks with the architecture described in the Chap-

In a series of experimen
phological forms to test the ability of the model to

t X i m
er 4 were trained on various mor
in terms of a change from an underlying to a

learn behavior which can be described

that is, a process normally thought of as the application of a rule.

more surface form,

uestions raised earlier in Chapter 2, first, extensive analyses

To answer some of the q
e to test the system’s ability to encode underlying rep-

of the hidden layer were don

, and then the if it could achieve knowledge

resentations (URs) network was tested

89
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transfer.

The results indicate that the network used is capable of learning morphological

s on the hidden layer and using them in perception and pro-

rules by encoding UR
but not the plural of chip, the

duction tasks. That is, given training on the singular,

network was later able to generate the appropriate plural suffix following the stem or

to determine the grammatical number of /{1ps/, a form it had never seen.

For example, the network was trained on pairs like the following:

(5.1) LIP + SINGULAR -=> /1ip/
(5.2) LIP + PLURAL -=3 Jlipsf
(5.3) CHIP + SINGULAR =28 fpf

and then it was tested on pairs like the following to see if it then yielded correct

morphological forms:

(5.4) CHIP + PLURAL -—> /f1p/ + 77,

where the items in capitals represent meanings. In the testing phase, the network was

ments for the stem successively,
indicating plural and predicted the next segment

given the appropriate seg along Wlth the meaning of

that stem and the g-number unit
ve output units were then examined at that

according to its training. The predicti
point in the cycle where the plural morpheme should normally appear. This is dif-

ich no actual segments are g

e word, stem and suffix altogether:

ferent from a task in wh iven as input and the network is

trained to produce the whol
CHIP + PLURAL --> 77.

For the latter type of task, the inputs are the outputs from the previous time step.

This issue will be brought up again later.
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However, this solves the problem in only the production direction. The model

should also be able to predict meanings, given forms. The model was trained on

(5.5), (5.6), and (5.7) and tested on (5.8) to see if it was able to get the correct

grammatical number.

(5.5) /lp/ ~--> LIP # SINGULAR
(5.6) /lps/ --> LIP # PLURAL
(5.7) /{ip/ --> CHIP +# SINGULAR

(5.8) /fips/ --> CHIP + 77.

5.1.1 Types of Morphological Processes

r 2, the morphological processes used were classified into three

As shown in Chapte
3) mutation, and experiments were

different categories: (1) addition (2) deletion, and (
conducted on different types of rules; ones which are rarely found in human languages

as well as ones which are commonly found, as shown below:

1. suffix (+ assimilation): fik =2 fiks, gob —> gobz

2. prefix (+ assimilation): fik =2 sfik, gob —> 2goP
3. infix (gemination): ipa -> ippa

4. initia] deletion: fik -> ik

5. rabaasr i hion: 1ppe. s2 i bR

6. final deletion: fik > f1

7. tone change: £ik -> fik
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8. reversal: fik -> kif
9. Pig Latin: fik -> ikfe

Types 1 and 2 are common, types 3 7 are less common, type 8 is non-existent,

and type 9 is apparently encountered only in language games.!

5.1.2 Hypotheses Revisited

Three hypotheses (see Section 2.5) motivated the experiments.

Hypothesis 1 In an appropriate model, a single network should perform both per-

production. Linguistic knowledge 1s

e shared by both production and pe

meant to belong to “compe-

ception and
rception.

tence” and should thus b

Hypothesis 2 An appropriate model should be able to Jearn morphological pro-

t the benefit of a priori underlyin
s, the network should succeed o

should fail on those which are rare or non-

g representations or explicit rules.

cesses withou
n rule types which are

Among many rule type

common in human languages and

tion, the UR should be enc

i e i oded as the hidden layer represen-

tation.

Hypothesis 3 The training of the simple recurrent network should capture some of

alizations about sound patterns. Specifically, the model should

the central gener

as shown here is generally accepted as true, even
ttempt to record all the known rules in all human languages, classify
d rank them by frequency- Such a task is not feasible, because there
11 the world’s languages. Hawkins and Cutler (1988) try to explain

why suffixation is more frequent across languages than prefixation, and why both are considerably
n. Donegan and Stampe (1979) claim that insertion rules are more

more frequent than infixatio . :
fTequent than deletion rules. Dinnsen (1979) lists the general arguments against mirror-image rules.

The frequency of occurrence of different rules

though there has not been any @
them according to rule types, a
are so many different rules across &



5. Experiments
93

be able to learn rules which are similar to those it was trained on more easily

than ones which are very different from those it was trained on.

5.2 Stimuli

posed of sequences of segments. Since phonological pro-

Input words were com
unanalyzable wholes but refer instead to

cesses do not treat phonemes as atomic,

their constituent phonetic properties like voicing, tenseness for vowels, and tongue

grained information be present in the net-

position, it was necessary that such fine-

end, each segment was represented as 2

(Chomsky and Halle, 1968): 1 for the
the Chomsky-Halle

work. To meet this binary vector encoding

modified Chomsky-Halle phonetic features
¢ its absence. I chose

presence of a particular feature and 0 fo
is a well-established theory that has

feature system for the several reasons. First, it

Second, I

sustained rigorous testing over 20 years. wanted to use a binary feature
since the former is m

Third, I needed to have a small

system rather than a multi-valued one, uch easier to adopt in a
sed in this thesis.

connectionist network, such as u
portant criterion for selecting a feature sys-

set of features, since redundancy is an 1m
not to be redundant. Redundancy can

tem. The Chomsky-Halle feature system tends

 and might give an unfair advantage to the network when

only make learning easie

presented with morphological forms-

the experiment are shown in Figure 5.1. Each

The distinctive features included in
ary vector of 8 or of 13 features depending

segment type was uniquely specified as a bin
re information on feature mat

der to have as small an input layer as possible, input

on the task at hand. Mo rices and input vectors can be
found in Appendix A. Inor

patterns of 8 feature binary vector were used on most of the experiments, except
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vocalic
consonantal
high

back

low
anterior
coronal
round
tense
voiced
continuant
nasal
strident
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Figure 5.1: Chomsky-Halle Distinctive Feature Matrix.

for the English plural morpheme acquisition task, where input patterns of 13 feature

binary vector were employed.

hat is, the phonetic feature repre-

The representation scheme used in this study, t

sentation, is borrowed from standard generative theory. Feature bundle representa-

present the systematic nature of phonologic events.

tions do not in themselves fully re
exist; for example, a more recent theory,

Other kinds of representational schemes
ar phonology, departs from

t kind of representation: a “non-li

the feature matrix type of repre-

often called non-line
near” representation,

sentation and posits a differen
s of parallel symbol sequences (cf. Goldsmith,

where features are organized in tier
sirable if the inputs to the system were

1990). Of course, it would be even more de
grounded (see Harnad, 1990,

n the data would be properly

raw speech data, since the
rounding problem). The issue here is whether inputs

for a discussion of the sy mbol g

(or autosegments), as opposed to spectral slices or

should be prelabeled segments
pe of the task at hand, the decision

1. However,
type feature matrix; the use of a feature matrix seems

some other real signa given the sco

was made to utilize & generatlve—
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unproblematic for the current study, and it was assumed that the decision to borrow

from standard generative phonology would not bear on the model’s performance.

Twenty words were selected for each simulation. I could have used more words on

each experiment, but it would have made the tasks more difficult for the model, since

n the simulation, the more rote learning the network would have

ore words for the English plural task and did not

the more words used 1

to perform. Actually, I started with m

get good results until I reduced the data set to 20 Note that the generalization

words.

results I got are even more impressive given the small number of exemplars for the

rules and the large number of testing words. Ten sets of randomly generated artificial

words were used for each experiment, except for the English task, which used actual

designated “training” words; the

English data. Twelve words from each set were

For each of these basic words, there was an

remaining eight were “test” words.
nvenience, the uninflected form will be

of the word in question. The

associated inflected form. For co referred to
he “plural”

as the “singular” and the inflected form as t
network was trained on both the singular and plural forms of the training words and

s of the test words. Therefore there were 32 different input

only on the singular form
rds were presented one segment at

patterns for each simulation. Wo a time. Each

word started and ended with a word boundary pattern consisting of all zeroes.
Each “meaning” consisted of an arbitrary pattern, composed of 3 activated units

representing the meaning of the “stem” (s-meaning)

on out of a set of 6 “stem” units,
, plus a sing

0 for singular, 1 for plural).

of one of the 20 input words? le unit representing the grammatical number

(g‘number) of the input word (

2With 6 units used to represent the words where exactly 3 units are turned on at a time, we get

C(8,3) = 20 possible words.
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5.3 Training Regimen

Ten separate simulations were performed for each of the morphological rules, ex-

cept for the English plural acquisition task, in which 2 runs were conducted.? Pilot

studies were performed to estimate the optimum size of the hidden layer.

nstant throughout the

The meaning inputs and the target meaning outputs were co

1 the cases where uncertainty was involved as explained

presentation of a word, except i
below. The network was trained on autoassociation for both forms of inputs, that is,
both segments and meanings, as well on prediction for the next segment. To test the

n task, that is, the prediction of meaning, given form, the

network in the perceptio
d, and

iven the sequence of segments in the wor

Form units on the input layer were g
mediate value of 0.5. As the word was

the g-number unit was set initially to an inter

put g-number unit should begin to take on the correct activation.

presented, the out
In the production task, the Meaning units on input layer were set to the appropriate
after each

values, and the prediction Form units on the output layer were examined
layer were given the appropriate input

input segment. The Form units on the input

segments.
Initially the network was trained on basic autoassociation and a prediction task:

the network was always given noise-free segments and meanings as input; the desired

e segment, the token’s mea

arning in the prediction direct

outputs were, the sam ning, as well as the next segment.

This resulted in the desired le ion, but not in the per-

ception direction: the network could predict the correct plural morpheme given the

ing, but it failed to produce the correct g-number given phonetic
)

stem and the mean

have variation in the results on different runs; it has been shown that the
gorithm is sensitive to initial weights (Kolen and Pollack, 1990a, 1990b).

y more than one simulations were run.

31t is not unusual to
bac.k propagation learning al
This is one of the reasons Wh



5. Experiments 97

Table 5.1: Inputs for the word chip for the ‘unknown number’ case.

Segment Stem Meaning Grammatical Number
f CHIP 0.5 (target=0)
I CHIP previous NUMBER output (target=0)
p CHIP previous NUMBER output (target=0)

form of the word and its s-meaning. To help the network learn in this direction,
uncertainty was introduced in the input and the network was retrained: on 4 out of

gs as before. On

n. That is, the

every 5 words, the network was given complete words and meanin

1 out of every 5 words, the input g-number was treated as unknow

g-number unit was set to an intermediate value of 0.5 initially and for the subsequent

input segments to the value that it took on the previous time step. For example, the

inputs for the word chip for the ‘unknown number’ case are given in Table 5.1.

Chauvin (1988) also found it necessary to adjust the training regimen for his

somewhat similar study.

nsists in autoassociating the 28 pairs patterns-labels us-

The training co
(pattern presentation) consists of

hod. Each cycle
y the Jabel is presented to S-
ted from S-out only; at step 2, only the

ing the following met
in and the error

three steps: at step 1, onl

is computed and back-propaga
corresponding image is presented to W-in and the error is computed and

ed from W-out only; at ste

) is com
d W-in, and the error 13

p 3, both label and image are pre-

back-propagat
puted and back-propagated

sented to S-in an

from S-out and W-ou

¢ The complete cycle is therefore composed of three

autoassociations: one for the labels only, one for the images, and one for

both together. (p.47)
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Why did training with uncertainty improve the network’s performance? First, the

noise that resulted from having the g-number unit copy
nded the data set. Even though the network

its activation value from the

output layer effectively expa took longer

to learn, the input with noise ultimately helped the network perceive better, given

he network defer its decision on

novel words. Second, the introduction of noise helped t

saw conclusive input data. Third, this training procedure

grammatical number until it
and it is assured that the trajectory of the

was closer to the actual testing procedure,

weight space moved along the «desired” paths.

ed to update the weights. In the case of uncertainty

Two different strategies were us
lete set of words was presented in order

the weights were changed only after a comp

ossibility of getting stuck in
it was suspected that a few atypical

to avoid the dangerous p a local minimum. Since a part
he input layer,

of the output was copied back to t
part of the weight space where it might

guesses could pull the network into some
d.4 In other cases, online updating

he task in fewer epochs® (

was used to save memory space

become trappe
Fahlman, 1988).

and to allow the network to learn t

raining (Allen, 1989; Allen, 1990; Elman,

e training time adaptive t
nd was decreased by a factor of

To accelerate th

1991) was used. The learning rate began at 0.25 a

over a period of 5 epochs.

ntum of 0 for some of his experiments,

0.75 when there was no improvement A fixed momentum of
(1989a) reports a mome
a network with zero mo

0.9 was used. Elman
mentum would have taken too

but for the current experments

ng in their experiments on tasks involving sequences.
uence depended on what the 2nd and 4th
twork was just trained to predict the next
to predict only the 6th element; there was no training at
d network did better at learning how to predict
doing the differences built into the initial

relevant findi
element in a sed

nt ways. One ne

" *Kushner et al. (1991) report 2
he task was prediction, where the 6th
elements were. They tried this tWO differe
element each time. The other Was trained
all as the other elements were presented. The .?econ
the 6th element. The prediction training was in effect un

ran;i om weights. it 1qpele present
An epoch is the training cycle, containing & 5178 P
One after another.

ation of each of the training patterns,
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long to converge, for example, in one case a momentum value of 0.9 gave convergence

after 180 epochs, while the network with zero momentum did not co

6250 epochs.

nverge even after

To test the network’s performance on the production task, the network was given

the appropriate segments for the stem successively, along with the meaning of that
iction output units were

stem and the g-number unit indicating plural. Then the pred

examined at the point where the plural morpheme should appear. Using Euclidian
nverted to the nearest phoneme. This phoneme

distances, each output pattern was co
was then compared to the desired phoneme.

iven the sequence of input

To test perception performance, the network was g

propriate pattern,

f each

m meaning units were set to the ap
nitial value of 0.5. At the presentation o

d from the output on the previous time

segments for a word, the ste
and the g-number unit was given the i

new segment, the g-number unit was copie
r the appearance of either the

step. The output g-number unit was examined afte

appropriate plural form or the word boundary.

5.4 Experiment O: Simple Plural Cases

s described in Chapter 4 was used for the real tasks described

Before the network a
ployed to find out whether this kind o

above, a modified network was erml f simple recur-
rent network is capable of and appropriate for performing the kind of task involving

(1) production and perception and (2) the association of form with meaning.
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5.4.1 Method

CVC words from an artificial language were used to test the “suffix” rules which

added an /s/ or /z/ to singular words to form plural words. The suffixes agreed

on the voice feature with the previous segment. For this particular simulation, the

input /output layer did not have meaning units, but only a grammatical number unit.
etwork as possible. There were 9 units on the

This was done to create as small a n
1 the output layer. The network was

input layer; 13 on the hidden layer; and 17 o

For 20 of the words, singular and plural forms were presented

trained on 120 words.
while training. The remaining 100 words were presented only with singular forms.
ds were reserved for testing. There were

stopped after 50000 word presentations

no duplicates among

Another set of 100 wor
(about 350

the 220 words. Learning was

epochs).

5.4.2 Results

present in the network, it could not naturally produce

Since no meaning units were
dict the endings correctly. The network learned

correct words; yet it was able to pre
ndings (either # (word boundary), /s/, or

the training set perfectly, that is, all €

When the test words were presented, it also predicted the endings

/ z/ ) were correct.
ore test words which had never

he network was given 100 m

ct all of the endings correctly.
h ended /g/ or /f/, the network predicted the endings

correctly, too. When t
Even though the training

been seen, it still could predi

set did not have any words whic
ich ended /g/ or /f/. The network produced a

correctly for all of the test words wh
if the word was singular; /s/ or [z/, if the

word boundary after the third phoneme,

e network also learned to autoassociate phonetic forms.

word was plural. Th
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On the perception task, the network predicted singular after the third phoneme

as a default number. If the next segment was a word boundary, it did not change.

Once /s/ or /z/ appeared, then it correctly changed the number to plural.

To see what was happening, after the third phoneme was input, hidden unit ac-
tivations were collected and a hierarchical clustering analysis® was performed. The

nalysis is shown in Figure 5.2. For singular words, group-

dendrogram for the cluster a
ings were shown according to the phonetic features place and stop, for example, stop

vs. fricative. For plural words, words were clustered according to the voicing feature.

3, a box plot” of hidden layer activations after the third

As shown in Figure 5.
segment shows that each unit encoded a particular feature. Unit 1 is dedicated to
voiced consonants; unit 5 represented alveolar stops (/d/ or /t/); unit 7, velar stops
pectively; unit 12, fricatives

(/g/ or /k/); units 8 and 10, singular and plural words, res
(/v/ or /f/); and finally, unit 13, bilabial stops (/b/ or /p/). T

surprising given the task of autoassociation and are exactly what was expected from

hese results are not

the model.

is task only involved predicting grammatical number,

Note that even though th
Without them, the network could not have

the context units were needed here.
es in the first and the third position, for

distinguished between two identical phonem

b, and 1t might have been impossible for the network to

example, two /b/’s in bo

decide when to add a plural morpheme.

a distance matrix of all pair-wise distances

at operates on
the two groups of leaves closer together are

This is a statistical technique th
a dendrogram,

between objects. When plotted using

seen as most similar in characterlstlcs

"This plot, sometimes called

to visually display weights in &

gmt s activation. Big boxes T€P
0.

a Hinton diagram after the person who first used this type of plot
connectionist network, is a way of showing relative strength of each
resent activation values close to 1.0 and dots denote values close to
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Figure 5.3: Box plot of hidden layer activations after the third segment was input in

the simple plural task.
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Table 5.2: Results for the production of test words in the affixation experiments.

% Segments Correct | % Affixes Correct
Suffix 82.3 82.5
Prefix 62.0 76.3
Infix 73.5 42.5

5.5 Experiment 1: Affixation

5.5.1 Method

Three separate experiments were conducted to test the network’s ability to acquire

morphological processes which add a phoneme to the stem. The “suffix” rule attached

an /s/ or a /z/ to the uninflected basic form Cv
The “prefix” attached an /s/ or a [z/ to the

feature with the following

C; the suffix agreed on the voice

feature with the previous segment.
uninflected basic form CVC; this prefix agreed on the voice
segment. The “infix” rule duplicated the middle consonant fo

this is a kind of gemination process. The network had 16, 24, a

r the basic form VCV;
nd 19 hidden units,

respectively, for each of the tasks described above.

5.5.2 Results

The network predicted the correct segments for all of the training words. It was

able to produce correct segments 100% of the time for the suffix task, 99.8% for the
prefix task, and 99.9% for the infix task. It also predicted the correct plurality 96.5%
of the time for the suffix task, 94.5% for the prefix task, and 98.4% for the infix task.

When test words were presented, most of the test forms were correctly predicted
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Table 5.3: Results for the perception of test words in the affixation experiments.

% Plurality Correct
Suffix 79.0
Prefix 76.0
Infix 90.0

for the “suffix” and “prefix” rules, while less than half were correctly predicted for

the “infix” rule.

ble 5.2. The network

Results for the production of test words are summarized in Ta
was very good at generating the suffixed forms, a little less good at the prefixed forms,

and less than average for overall segments correct at the infixed forms. Note that

chance for these tasks is 18.8%, 18.8%, and 37.5%, respectively.
Table 5.3 shows the results for the perception of plurality on the plural forms of

the test words. Note that chance is only 37.5%.% On this test, infixed forms performed

better than the prefixed or suffixed words. This is because the relevant information

(the second consonant) appeared at just the right place. In the case of prefixation,

the critical information appears at the beginning of the word, forcing the network to

make a decision based only on this information. As a consequence, there still remains

ambiguity: is the first phoneme /s/ a prefix, or is it a part of the stem? In the

suffixation case, the critical information appears too late, meaning that a wrong path

to the final phoneme will likely give a wrong answer.

80ut of 32 training input words, only 12 are plural. This percentage is same for all the perception

tasks reported in this chapter.
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5.6 Learning the English Plural “Rule”

Since the previous “suffix” rule experiment was so successful, an experiment on the

acquisition of the English plural “rule” was conducted to test it on the real data. The

orpheme has three variations: /s/, /z/, and /1z/. To account

English regular plural m
two rules are invoked as explained in Section 2.4:

for them in generative phonology,

voicing assimilation and vowel insertion.

5.6.1 Method

| structure of the network is shown in Figure 4.1. The Form clique in

which represent a single phonetic

The overal

the input and output layers consist of 13 units,

segment. The Meaning clique has 7 units; 6 for the “stem” and 1 for the plural

marker. The network has 32 hidden units and also 32 Context units.

The input corpus for this simulation consisted of a set of 20 one-syllable English

nouns as shown in Table 5.4.

Twelve of these (top, lip, ache, hat, Tom, saw, job, zone, judge, dish, page, catch)

were designated “training” words, while the other eight (chip, bat, cake, mom, tub,
Note that both the training and the test words

tone, match, age) were “test” words.
The rest of the

include nouns taking all three of the plural morpheme allomorphs.

training regimen was exactly that described in the beginning of this chapter. Two

separate runs were conducted.

Training continued until the network performed correctly on the training set, that

is, until the error for every output was less than 0.05: 270 epochs for the first run;
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Table 5.4: List of words and their representations used in the English plural acquisi-

tion task.
Words ASCII Transcript IPA Transcript Training Testing
top tap tap i
lip 1Ip lip :
ache ek ek <
hat hAt haet x
Tom tam tam *
saw s) $2 .
job i dsab x
zone zon zon *
judge it dsads i
dish dIs dif #
page pej pe'ds 5
catch kAC ke L
chip Clp f1p B
bat bAt baet <
cake kek ke'k .
mom mam marn %
tub £°b tab %
tone ton ton x
match mAC meeff =
age ej e'd L
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Table 5.5: Results of English plural acquisition experiment.

Production Perception n
Sg Pl Sg Pl
Training | 100% 100% | 100% | 100% | 24
Testing | 100% | 87.5% 100% | 100% | 16

160 for the second.

5.6.2 Results

The results of English plural acquisition experiment are summarized in Table 5.5.

The network predicted the correct segments for all but 2 of the stem segments

and 14 of the 16 suffixes in the two runs. The two suffix errors involved substituting

/f/ for /s/ in bats and /f/ for /z/ in tones.

For the training words, the output g-number unit fluctuated around 0.5 until the

relevant information was given. Then the unit correctly turned on or off according

to whether the word boundary or plural ending appeared. For the test words, the

network consistently output 0 before the appearance of the relevant information. This

is not surprising since the network only saw singular forms of these words during

e unit correctly stayed

ber

training. When the word boundary appeared in the input, th
off. When the plural morpheme appeared in the perception task, the output num

unit behaved appropriately for all of the 16 test items.

t have affected the results of the

9This should be jab; yet it is safe to assume that it would no
b show almost identical results.

experiments. Later experiments using the correct transcription ja
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5.7 Experiment 2: Deletion

5.7.1 Method

In this set of experiments, one of three rules was used to generate plural forms in
which a segment was deleted from some part of the singular form of the word: from
the beginning of a word (CVC — VC) (“pre-del”), from the middle (VCCV — VCV)
(“mid-del”), and from the end (CVC — CV) (“post-del”). There were 10 separate
simulations for each of the three morphological rules. After the pilot run the size of
hidden layer was decided upon: for pre-del the hidden layer had 26 units; for mid-del
20; and for post-del 26.

5.7.2 Results

The network learned the set of training words for all three rules quite successfully.

of the time (pre-del: 100%; mid-del:

Segments were produced correctly more than 99%
99.6%; post-del: 99.9%), and the network correctly predicted grammatical number
more than 96% of the time (pre-del: 99.1%; mid-del: 96.2%; post-del: 98.4%).

The results for the test words are shown in Table 5.6. The network correctly

predicted the word boundary more than half of the time when it was exposed to the

test words after being trained to delete the final consonant (“post-del”). It performed

quite poorly when a segment was deleted from the middle (“mid-del” ), and even worse

for the case a segment was deleted from the beginning of the word (“pre-del”). Note

that the network failed to learn exactly those types of rules which are rarely found

in human languages, however, some aspects of the rules had been learned. Thus in



5. Experiments 110

Table 5.6: Results of deletion experiments. “% Segments Correct” refers to the
percentage of the segments which the network predicted correctly after a segment

was deleted.

Production Perception n

% Segments Correct | % Plurality Correct
Pre-del 12.5 60.0 80
Mid-del 23.8 73.8 80
Post-del 57.5 67.5 80

(77% VC

about 80% of the cases the network produced the correct syllable structure
for “pre-del”, 80% CVC for “mid-del”; in “post-del” cases it always predicted CV).

The network performed little better than chance on the perception task.

5.8 Experiment 3: Mutation

5.8.1 Method

test the mutation rules.

re of all of the

Three different kinds of experiments were performed to
In one experiment, the network was trained to change a single featu
segments in the singular word to generate the plural word. This is analogous to a tone

change rule where singular words have all low tones, and plural tones all high tones

(“H-L Tones”). In another experiment, the «reversal” rule was tested: plural words

were generated by reversing the segments of the singular words. The third experiment

involved Pig Latin, where the word-initial consonant of the English word is moved
to the end and the vowel [e] is added after it. As with the previous experiments
10 separate simulations were run. The H-L Tones network performed best with 20

hidden units; The Pig Latin network 17; and the reversal network 21.
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Table 5.7: Results of mutation experiments. “% Segments Correct” refers to the
percentage of all the segments which the network predicted correctly.

Production Perception n

% Segments Correct | % Plurality Correct
H-L Tones 97.5 99.1 80
Reversal 22.5 13.0 80
Pig Latin AT 61.3 80

5.8.2 Results

Results are summarized in Table 5.7.

The network was able to learn the “H-L Tones” task (100% correct for both

production and perception tasks on training words) very well. Tt was also very good

at generating “high” tones for novel plural words and perceiving a novel word with a

“high” tone as a plural word.

Yet the network failed to generate a new reversed form, even though it learned

the training words more than 99% of the time. On the perception task, the network

(37.5% as shown in Section 5.5.2).

performed at a level considerably worse than chance

This is apparently due to the fact that during training the network was exposed to

the singular and plural forms of training words but only to the singular forms of test

words. Thus it saw more singular forms overall and, given no evidence one way or the
other, responded with an activation less than 0.5 on the g-number unit. The network
found it much harder than other types of rules to learn a reversal, a type of rule which

is apparently difficult for human language learners.

The network apparently had difficulty in coming up with the correct Pig Latin

forms when given test words, even though it performed well on training words (more
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than 95% correct). This is not surprising given the twofold task of rearrangement of

segment order and affixation.

5.9 Analysis of Hidden Layers

So far I have reported that the network was able to learn apparent rule-governed

morphological processes in a manner that makes use of the associations of form with

meaning. The next question I should be able to answer is: where are the URs?

It is the pattern on the hidden layer that mediates the relation between form and

meaning; in this case, these patterns would be analogous to URs in the networks.

Only analyses of plurals are reported here. Since teacher forcing'® was employed in

training, the hidden representation of the stem for a given word is naturally similar

during the perception and the production tasks; thus, it is not possible to draw a

conclusion about URs from the hidden layer representations of the stems.

The question that needs to be asked is: Is there a single hidden-layer pattern

shared by different realizations of the plural morpheme? As will be shown, an analysis

of the hidden layer representations of the network indicates that certain units are

dedicated to representing the plural morpheme, independent of its surface form. Thus

it appears that my networks have the capacity to learn distributed URs.

10Throughout the experiments, “correct” inputs were given, the activation values were propagated
to the output units, “correct” outputs were compared to desired outputs, weights were adjusted,
new actual inputs were given, and the cycle repeated. This is different from techniques in which the
actual outputs are used as the inputs for the next time step.
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Figure 5.4: Box plot of hidden layer activations before perceiving plurality during the

perception task in the first English-plural run.
5.9.1 English Plural Task

Initially, I analyzed hidden unit representations which the network developed dur-

ing the first run of the English-plural task.

Figure 5.4 shows a box plot of the hidden unit activations for 18 randomly-picked

words (test words as well as training words) at the segment before plurality is per-

ceived (perception task): after the appropriate plural form was input for the plural or

after the word boundary for singular words. Only 10 selected units are shown in the

figure. From the figure it appears that unit 1 and unit 10 distinguish plurality. But

further analysis shows that unit 1 always responds to the sibilant phonemes, such as

/s/, /z/, and /d/ regardless of their positions in the word (see Figure 5.5).
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Figure 5.5: Box plot of hidden layer activations for some
des plurality during the

unit 1 is responsive to the sibilant phoneme and unit 10 enco
perception task in the first English-plural run.

Figure 5.5 shows the hidden unit activations for the words judge, saws, ZONes and

chips after each segment is presented during the perception task. In the figure #
denotes a word boundary. Let us examine unit 10 more closely. For judge this unit is
always off, yet for saws and zones, it correctly turns on after /z/ is input, signaling
a plural form. For chips it turns on after the /p/ is presented, making a spurious
prediction (and quickly turns off when a word boundary is encountered, which is not
shown in the figure) and stays on when /s/ is given at the next time step. In a

word, unit 10 is not generally turned on until it has enough information to decide the

number of the word in question.

Now what happens when the network is given a production task? In this case I
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Figure 5.6: Box plot of hidden layer activations after the stems are input during the

production task in the first English-plural run.

found that unit 11 is responsible for producing plural morphemes; this unit goes on

for the singular words and off for the plural words.

Figure 5.6 shows a plot of hidden unit activations for the production task, that
is, after the stems were presented. In the figure 10 different units are shown selected
from the same 32 hidden units. Unit 11 for saw is off. Even though it correctly
predicts the word boundary with the current threshold of 0.5, if we were to use the
lower threshold, it predicts /z/, which is the plural for the word. The activation value
of unit 11 for judge is very small. Again it is close to predicting /1/, which would
come next if it were a plural. The activation of unit 11 for tons is high, predicting

/f/ instead of /z/. One might argue that since number is presented in the input layer



5. Experiments 116

11 12 13 14 15 16 17 18 19 20
h - y : : .
ha o o =
hat o - . - o - o o
hAt# # = - . =i - & o
t o - o o )
ta : - - () o
tam [} . o =} = =
tam# . = s - o o
h . . i : -
ha - . - : =) . =
hAt . . " ; - 7 o
hAts . . . o o
hAts# - =i . . =] =
t 5 s ) = °
ta . . o )
tam i - a = =
tamz - . . -
tamz# - = : e =

ot and Tom after each segment
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is presented during a production task in the first Eng
boundary).

the unit can easily represent the correct number by simply copying the input value.

But this is not the case. The unit turns on only after the stem for singular words.

Figure 5.7 shows the hidden unit activations for the words hat and Tom after each

segment is presented during the production task. If unit 11 were simply copying the

value of the number unit from the input layer, this unit should be on all the time for

the singular words. It is not. It is turned on only after the stem where the singular

should come. Table 5.8 shows the mean values of unit 11’s activations across all the

input words at “before-stem-end”, “at-stem-end’, and “after-stem-end” in the word.
The table clearly shows that after the stems were presented in the input, unit 11

turned on, causing the word boundary symbol to be produced in the output for the
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Table 5.8: Mean values of unit 11 activations across the input words during a pro-
duction task in the first English-plural run.

Training Test

Sg Pl Sg Pl

Before Stem-end | 0.033 | 0.000 | 0.206 0.000
At Stem-end 0.642 | 0.000 | 0.813 | 0.075

After Stem-end | 0.008 [ 0.000 | 0.038 0.000

singular words. For plural words, the unit stayed off, causing the network to produce

the plural morpheme.

So far I have examined the behavior of the hidden units during the first run to find

out if they encode a plural UR and have found that unit 10 acted as a detector for the

g-number during the perception task, while unit 11 was responsible for producing the

plural morpheme. Now there arises a question: was it just a fortunate coincidence

that I was able to find some units which encode plurality? Or is it really safe to say

that my network developed a UR? To answer these questions I analyzed the another

rumn.

In the second run it turned out that unit 6 acted as a detector for the g-number for

both perception and production tasks. Figure 5.8 shows a box plot for 18 randomly-

picked words during the perception task in the second run. Only the first 10 units

are shown. From the figure we can easily see that unit 6 might be responsible for

encoding g-number. The activation value of unit 6 for chips is very small, around 0.2.

This is a word for which the network made a wrong prediction: it predicted singular.

We can safely say that the activation value of unit 6 is consistent with the results of
the prediction task. Looking at Figure 5.8, we might say that unit 10 is also sensitive
to the g-number. But further analysis shows that this is not the case. In Figure 5.9

we can see that unit 10f is on for some singular as well as plural nouns.
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Figure 5.8: Box plot of hidden layer activations before perceiving plurality during the

perception task in the second English-plural run.
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Figure 5.9 shows the hidden unit activations for the words hat and Tom after each

segment was presented during the perception task. Again, let us examine unit 6 more

closely. For Tom it is always off, but for Toms, it correctly turns on after /z/ is input,

signaling that a plural. For hat it turns on after [t/ is presented, making a false

prediction, and quickly turns off when additional information (the word boundary) is

available. For hats it correctly predicts that the word is plural.

Now what happens when the network is given a production task? Figure 5.10

shows another plot of hidden unit activations for the production task, that is, after

the stems were presented. Again unit 6 predicts whether the next segment will be a

plural or a singular. As in the case of the first run, the unit changes its value only
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Figure 5.10: Box plot of hidden layer activations after the stems are input during the

production task in the second English-plural run.

after the stem is completely presented. For the cases of matches and ages, the values

are small, 0.1 and 0.2 respectively. This seems to be due to the insertion of

/1/.

the vowel

5.9.2 Non-assimilatory Suffixation Task

After the English-plural runs, I asked this question: does the network really encode

the notion of “plurality”, or does it just encode the “ryle” that adds a sibilant, /s/

or /z/, at the end of nouns, taking advantage of the phonetic cue that points to the

right suffix by way of assimilation? In other words, can the network produce correct
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Table 5.9: Results of a non-assimilatory suffixation experiment.

Production Perception n
Sg Pl Sg Fl
Training | 100% | 100% | 100% 100% | 12
Testing | 100% | 75.0% | 100% 75.5% | 8

results and encode g-number even when there is no phonetic relationship between the

suffixes? To answer this question a non-assimilatory suffixation experiment was run.

5.9.2.1 Method. For this run a smaller network was used by representing a
segment using only 8 binary features: the input layer had 15 units, the hidden layer 21,
and the output layer 23. The input corpus consisted of 20 CVC randomly-generated

words from an artificial language. The plurals of the words were constructed by either

adding an /o/ after the voiced stem or /s/ after the voiceless. The training regimen
work predicted the
The output

The

was the same as for the English plural task. After training, the net
correct segments for all of the training words and 6 of the 8 test words.
g-number unit was correct for all the training words and 6 of the test words.

results are summarized in Table 5.9.

5.9.2.2 Analysis. Earlier the question was raised concerning whether there are

any units which are dedicated to representing just the plural morpheme, and not the

sibilant phoneme. To answer this question, hidden unit representations which the

network developed during the non-assimilatory suffixation run were analyzed.

Figure 5.11 shows a box plot of the hidden unit activations of 18 randomly-picked

words at the segment before the network perceives plurality, during the perception

task in the non-assimilatory suffixation run. From the figure we can see that unit 3

clearly distinguishes singular words from plural ones.
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Figure 5.11: Box plot of hidden layer activations before perceiving the plurality during

the perception task in the non-assimilatory suffixation run.
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Figure 5.12: Box plot of hidden layer activations after the stems were input, during

the production task in the non-assimilatory suffixation rumn.

Now what happens when the network is given a production task? Figure 5.12

shows another plot of the hidden unit activations for the production task in the non-

assimilatory suffixation run. From the figure we can se€¢ that the box sizes for unit

2 and unit 5 are quite different for singular nouns and plural nouns. As shown in

Figure 5.13 unit 2 turned on only after all the segments of the stems were given

and no plural marker was expected, indicating that the next segment should be a

singular morpheme. In Figure 5.13 only 4 words are shown. In fact I did the same

kind of analysis as shown in Table 5.8 for the production task in the non-assimilatory

suffixation run, obtaining the same results.
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Figure 5.13: Box plot of hidden layer activation
the non-assimilatory suffixation run.

presentation step, during the production task in
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5.9.3 Final Deletion Task

So far, I have analyzed hidden layer representations that were developed during

two suffixation task runs. The analyses showed that the network encodes the no-

tion of plurality on the hidden layer as a UR. At this point, I asked myself if this

What about other types of
ould the model

representation was possible only in addition processes.
morphological processes? If the network were given deletion tasks, c
still develop the notion of plurality on the hidden layer? To answer this last question,
the hidden unit representations which the network developed during a successful run

of the final deletion (“post-del”) task were also analyzed. Among three different dele-

tion tasks, this task was the most successful, making the results of the analysis more

convincing. Note that in this task the shorter forms are the plurals.

Figure 5.14 shows a box plot of the hidden unit activations of 10 randomly-picked

words (test words as well as training words) at the segment before plurality was

perceived (perception task): after the second consonant was input for singular, or

after the word boundary for plural words. Only 5 of the units are shown in the figure.

From the figure we can easily see that unit 5 distinguishes plurality. Further

analysis has shown that the unit is not turned on until it has enough information to

decide the grammatical number of the word in question.

Now what happens when the network is given a production task? In this case I

found that the same unit is responsible for producing plural words; unit 5 is on for

the singular words and off for the plural words.

Figure 5.15 shows another plot of hidden unit activations for the production task,

that is, after the second segment (vowel) was presented. One might argue that since

number is presented in the input layer the unit could easily represent it by simply
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Figure 5.14: Box plot of hidden layer activations before perceiving the plurality during

the perception task in a “post-del” task run.
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Figure 5.15: Box plot of hidden layer activations after the second segment was input

during the production task in a “post-del” task run.
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copying the value. But this is not the case. The unit turns on only after the second

segment is presented for singular words.

5.9.4 Summary of the Results

Through analyses of the hidden layer representations during the English plural
ask, and the final dele-

morpheme acquisition task, the non-assimilatory suffixation t

tion task, I have shown that the network indeed encodes a “plural” UR in a distributed

representation (“distributed” in a sense of “superimposed” scheme). In the analyses

of hidden representations during the first English-plural run and the non-assimilatory

suffixation run, we were not able to find a single unit responsible for plurality; rather

2 units were involved, one for perception and the other for production. Also the en-

codings were found to be different for the three runs. In the first English-plural run

the g-number unit was on for plural in the perception task, while the other unit was

e second run the g-number

The units

on for the singular nouns in the production task. In th

unit was on for plural nouns during both perception and production tasks.

responsible for g-number in the non-assimilatory suffixation run were on for singular

nouns during both perception and production tasks. Despite the differences among

these runs, I can safely say that there are certain units which are responsible for

detecting the g-number. For a given morpheme, English plural or an artificial “plu-

ral”, there is a commonality among the hidden layer patterns for all realizations of

the morpheme. And in one case, the network chose to dedicate the same unit to

representing plurality for both tasks ( This may not have been a coincidence; the

probability of choosing the same unit twice is around 0.15, considerably smaller than

the observed value of 0.25 that I got). This is what is required for a UR to be part

of “competence”.
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5.10 Test of Knowledge Transfer

Elaboration tolerance (McCarthy, 1988) is the ability of a model to be elaborated
to take additional phenomena into account. One example of this phenomenon is
the problem of knowledge transfer, how a pattern of activity learned by one network

As Pinker and Prince (1988) point out, Rumel-

becomes interpretable by another.
nt for the fact that

hart and McClelland’s (1986) past tense model failed to accou

may have different past tenses (e.g., Ting and wring). Nor

t” enough to explain the commonality between the

past tense forms and the /s/-/z/-/1z] al-

lar plural nouns, possessive and so

homophonous verb roots
is the model “elaboration toleran
/t/-/d/-/1d/ alternations found in regular

ternations found in the third person singular, regu

some experiments were performed.

on. To partially answer this problem,

5.10.1 Method

to and from the meaning units, the network in these

Except for the connections
mes. Input for the network at a given time step

experiments is independent of morphe
meaning of the word. The segments vary,

consists of a segment of a word and the
1 of a word’s input. It is possible to train

while the meaning stays same for the duratio
this network on the same rule twice with the same set of words, but with the different
grammatical feature units. This is analogous to the “suffix” rule that can be applied
as well as the plural noun. For example, not only is

to the third person singular verb
ning tops fell off the table,” but the third person

the plural of top tops as it “The spin

singular form is also tops a5 in “His battin
ain this network using th

g average of 390 tops the previous record.”
e same set of words on different types

It is also possible to tr
adding different suffixes to the same stem. For example, the

of rules by, for example,
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progressive form of the verb top is topping. How much faster, then, can the network

learn the second rule? Can it learn the similar rule faster than the different rule? If

the answer is yes, it is evidence that this network is capable of transferring its prior

other environment that is similar. To test whether transfer would

knowledge to an
work on the suffix rule. I then added a new grammatical

occur, I first trained a net
feature unit and trained the network either on the same rule for the new morpheme
or a different (but equally difficult) rule. Of interest here was the relative time to

One hundred different

learn the different rules. data sets were generated randomly,

each with 20 words. The numbers of epochs needed to 1

e recorded, and the means wWere calculate

earn the different rules for all

100 simulations wer d and compared.
a network. One

wo different rules were to be learned by
nflected

d earler: an /s/ or /2/ i affixed to the uni

oicing feature with the previous segment

(Rule 1). The other one was a made-up rule which added /z/ after /b/, [P/, /f/, or

/v/, and /s/ after /t/, /d/, /k/, or g/ (Rule 2). Rule 2 is harder than Rule 1, since

monality between the suffix and

In the first experiment,
rule was that of suffixing as describe

basic form CVC, the suffix agreeing on the v

the final consonant of the

in Rule 2 there is no com
stem where it is affixed, while in Rule 1 there exists a cue according to voicing.

for the grammatical feature (say, one for the

The network possessed two units

) The same set of stem words were used with the two

plurality and the other tense

hase 1, only the first grammatical feature unit was involved in

different rul
es. Inp
d: in one case, it was the same

9, the other unit was learne

learning Rule 1. In phase
analogous to applying the knowledge of the plural rule

rule (Rule 1) as the phase 1 (
. in another case, the rule was different (Rule 2).

to the third person singular rule);
In the above described experiment, Rule 1 had an inherent advantage over Rule
phase 1 the network

ule 1 that it had to learn,

saw only Rule 1, by default the network

2 in phase 2. Since in

tended to think it was K

causing Rule 2 to take more time
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to learn than Rule 1. To give fair treatment to both rules, a second experiment was
conducted in which there was no intrinsic rule associated with the stem words. In
the second experiment, three different rules were employed: two as before with the
addition of a new artificial rule which added /s/ after /p/, /b/, [/, 0t /d/, and /z/
after /k/, /g/, /f/, or /v/ (Rule 3). Again Rule 3 is harder than Rule 1, while there

are no differences in terms of difficulty between Rule 2 and Rule 3. The network had

3 separate grammatical feature units, one for each rule. In phase 1, the first two units

were trained on Rule 1 and Rule 2. The training was done one rule at a time: at a
given time, only one rule was learned on a unit. The network saw Rule 1 in the first
half of an epoch, and Rule 2 in other half. This was to ensure that the network could

not expect any particular rule to be associated with the stem words. The rule order

was chosen randomly. In phase 2, all three different rules were learned on all three

units. In this case new rule (Rule 3) was to be learned on the third unit.

5.10.2 Results

As seen in Figure 5.16, the first experiment clearly shows that it took less time to
Jearn the similar task than the different task (¢ = 2.350, df =99, p < 0.021). The
h help to make Rule 1

results are not surprising, since the network was given enoug

be learned easier then Rule 2 as explained above.

Figure 5.17 shows the results of the second experiment. Note that Rule 1 and
Rule 2 were trained before, while Rule 3 was newly introduced. As expected, Rule
3 took the longest time to learn (t = 3.240, df =99, p < 0.0016'). Rule 1 took a

little more time than Rule 2 because the learning of the second rule took place later

11This was for the pair of “init2” and “different”. No significant difference was found between
“nit1” and “init2”; ¢ = 1.123, df = 99, p < 0.228.
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and resulted in some unlearning. This was confirmed when a different order (Rule
2 in the first half and Rule 1 in the second half) was employed. This time Rule 2
took more time than Rule 1. It is the training order that made one rule take a little

more time than the other when both of them were involved in phase 1, not the tasks

themselves.

5.11 Summary of Experiments

To test the effectiveness of the architecture, as shown in Figure 4.1 for the learning

of morphological rules, a set of experiments were conducted employing the following

9 rules:
1. suffix (+ assimilation): fik -> fiks, gob -> gobz
2. prefix (+ assimilation): fik -> sfik, gob -> zgob
3. infix (gemination): ipa -> ippa
4. initial deletion: fik -> ik
5. medial deletion: ippa -> ipa
6. final deletion: fik -> fi
7. tone change: fik -> fik

8. reversal: fik -> kif

9. Pig Latin: fik -> ikfe
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Table 5.10: Results of morphological process experiments.

Production Perception
% Segments Correct | % Affixes Correct % Plurality Correct

Suffix 82.3 82.5 79.0
Prefix 62.0 76.3 76.0
Infix 3.5 42.5 90.0
English Pl 93.9 87.5 100.0
Os Pl 80.0 75.0 75.6
Pre-del 12.5 - 60.0
Mid-del 23.8 = 73.8
Post-del 57.5 - 67.5
H-L Tones 97.5 - 99.1
Reversal 22.5 - 13.0
Pig Latin A0 2 - 61.3

The network succeeded on rule types which are common in human languages and
failed on those which are rare or non-existent. Types 1 and 2 are common, types
3-7 less common, type 8 non-existent, and type 9 apparently encountered only in
language games. The results are summarized in Table 5.10. There is a moderately
high correlation (r = 0.74) between the results of the production task and those of
the perception task. One notable exception is the results of the perception task for
Pig Latin. The network performed quite well, even though this rule is found only in
language games. Since each rule types was tested separately, the network could tell

rather easily if the word being perceived was a stem word or a Pig Latin form just

by attending to the final phoneme, vowel /e/.

When the network was tested on the English plural morpheme acquisition task,
the network predicted the correct segments for all but 2 of the stem segments and
14 of the 16 suffixes in the two runs. When the plural morpheme appeared in the
perception task, the output number unit behaved appropriately for all of the 16 test

items.
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The network successfully encoded UR “plurality” as a distributed representation
on the hidden layer. For a given morpheme, such as plural, there is a commonality
among the hidden layer patterns for all realizations of a morpheme. It has been shown

that certain units on the hidden layer are responsible for encoding patterns that are

analogous to URs.

The network was tested to see if it can exhibit elaboration tolerance. Two ex-
periments were done to show that it could indeed show knowledge transfer. The

network was able to learn a rule which was identical to the one it had already learned

significantly more easily than one which was different.
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ezplicit rules (Hypothesis 2). Rules are implicit in the connection weights between
units which the network develops while trying to produce the correct outputs. Among
the many rule types tested, the network succeeded on rule types which are common

In human languages and failed on those which are rare or not encountered in human

lan811a.ges. Extensive analyses of the hidden representations suggest that the model
ed representations on the hidden layer.

encodes underlying representations as distribut
out sound patterns (Hypoth-

Also, the model captured some central generalizations ab
s already learned

esis 3). It was able to learn new rules which were identical to one

much more easily than rules which were different from those already learned, showing

its ability to transfer knowledge acquired from one task to another similar task.
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to acquire the particular language of his/her community with remark-
able speed and despite impoverished input. Others argue for a more so-
cial, rather than a biological, foundation to language: the communicative
(discourse-pragmatic) functions that language users perform are reflected
in linguistic structure. Yet others appeal to the psychological demands
placed upon language users in the production and comprehension of lan-
guage in real time. These so-called ‘processing’ demands are also argued to
be reflected in its structure, as are certain intrinsic properties of our human
perceptual and cognitive apparatus. Finally, there are more grammar-
internal explanations, whereby one part of the grammar is claimed to be

explained by another, for reasons essentially of internal consistency. (p- 3)

My approach in this thesis is one that is based on the demands of learnability and
processing (third approach from the above quote). I do not believe that the work
described in this thesis necessarily makes strong claims that human perceptual pro-
cesses are learned by the model (the model might not be the right one after all), but
it gives an example of the kind of contribution connectionism can make to the search

for language universals and their explanation. In the rest of this section, I will explain

how the model has discovered some universals.

6.2.1 Affixation and Deletion

The network performed much better on the affixation tasks than on the deletion
tasks. The reason might be that for the affixation tasks, the model had to predict the
segment following the current phoneme, while for the deletion cases its task was to
predict the phoneme that would come after the next one if it were not deleted. For

the latter task, there is a gap between the current phoneme and the one that is to
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be predicted, making it more difficult for the network to predict the correct segment.

Consider the following three cases:

(6.1) /tap/ + /#/ and /tap/ + [/s/
(6.2) /tam/ + /#/ and /tam/ + /z/

(6.3) /tap/ + /#/ and /ta/ + [#/

Problems (6.1) and (6.2) are somewhat easy, as in each case the identity of the last
phoneme depends on the penultimate phoneme. The different contexts created by
the penultimate phoneme are sufficient to ensure that different predictions can be
made for the last phoneme. However, for (6.3), the final phoneme, that is, the word
boundary, comes after the final phoneme in the stem for the singular case, while it
comes after the second phoneme for the plural case. To predict the word boundary
correctly in both cases, the network must develop different internal representations
relative to the second phoneme for each case. (Indeed, the hidden unit activations
have to be different if different outputs are to be produced.) Only in this way can
the network generate the correct final phoneme (and in the next time step the word
boundary) for the singular case and simply the word boundary for the plural case.
Since the prediction tasks are the same for both cases up to the second phoneme,
the network tends to develop the same hidden representations. This “homogenizing”
process seems to strongly hinder learning in deletion tasks. Servan-Schreiber et al.

(1988) report similar findings in their study on learning two arbitrary sequences of

the same length and ending in two different letters such as:

PSSS P and TSSST

They report:
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.. .the predictions in each sequence are identical up to the last letter. As
similar outputs are required on each time step, the weight adjustment
procedure pushes the network into developing identical internal represen-

tations at each time step and for the two sequences — therefore going in

the opposite direction than is required. (p. 29)

The very nature of the back-propagation learning rule and the structure of the
model enable correct prediction of the affixed phonemes but make difficult the pre-
diction of the segments after a phoneme is deleted. This is one explanation for the

universal tendency of natural languages to exhibit many affixation processes, but few

deletion processes.

6.2.2 Affixation and Assimilation

The network was able to generate the appropriate forms even in the prefix case
when a “right-to-left” (anticipatory) rule was involved. That is, the fact that the
network was trained only on prediction did not limit its performance to left-to-right
(perseverative) rules since it had access to a static “meaning”, permitting it to “look-
ahead” to the relevant feature on the phoneme following the prefix. What makes this
interesting is the fact that the meaning patterns bear no relation to the phonology of
the stems. The connections between the stem meaning input units and the hidden
layer units were being trained to encode the voicing feature even when, in the case

of the test words, this was never required during training. For example, consider the
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following training set of artificial data.

(6.4) FIK' + SINGULAR --> /fik/
(6.5) FIK + PLURAL --> [sfik/
(6.6) KOB + SINGULAR --> /kob/

When the network predicted the prefix of the word “KOB” for plural,

(6.7) KOB + PLURAL --> 7?7 + /kob/,

it had available to it the characteristics of the first phoneme in the stem: among
them notably the voicing feature. The meaning “KOB” has /k/ associated with it

as its first segment. Thus the network knows that it has to produce /s/, since the

grammatical feature unit is on and /k/ is voiceless.

In any case, it is clear that right-to-left assimilation in a network such as this is
more difficult to acquire than left-to-right assimilation, all else being equal. Cross-
linguistic studies of morphology have revealed an asymmetry in the frequency of
affixing processes in favor of suffixing over prefixing (Hawkins, 1988a), meaning that
there are at least fewer opportunities for the right-to-left process.? I am unaware
of any concrete evidence that would support left-to-right assimilation as easier than

right-to-left assimilation, though in trying to explain the asymmetry between the

processes Hawkins and Cutler (1988) argue that:

...the linguistic and psycholinguistic evidence together suggest that lan-

guage structure reflects the preference of language users to process stems

1 As explained before, the items in capitals represent meanings. Since the word is a made-up one,

stem meaning is arbitrary.
20f course, this does not necessarily mean that left-to-right rules are more common than right-

to-left rules. In fact, right-to-left stress rules are more common than left-to-right ones.



6. Discussion
143

before i
affixes, in that the component preferred for prior processing re

CeiVe . o sy oy
s the most salient (initial) position in the word, the component to b
proc 1 it1 e
esses second a less salient position. That is, the suffixing preferenc
results i i e
s in stems generally being ordered before affixes because language

u
sers prefer to process stems before affixes. (p. 311)

What
ever . i e
reason there might be, 1t 18 very encouraging to see that the model performs

N a way that mirrors h |
irrors human language: suffixation is more frequent acr
more frequent than infixing.

oss languages

tha,n .
prefixing, and both are considerably

6.
2.3 Reversal

ule, apparently difficult for human language

What is :
at is it that makes the reversal T
pects of the rule were learned. In 49%

lea.rn s
ers, so difficult for the network? Some as
s the plural form. What it could

of th
e cases the network produced a CVC syllable a
tense.

ot do .
was to predict the correct consonants for the past

preﬁx cases for the production task. The

esenting the stem of a word, together

Cons;i
nsider what happens in the suffix or

input cong;
consists of the sequence of phonemes repr
plural, not seen in this com-

with ¢
he stem meaning seen during training and the
ovel set of patterns, th

seen before: one of whic
along with the stem

e network treats it as a

bingt;
natio
)el i P .
during training. Given 2 1
h is a sequence of

comb; 2
ination of two sorts of patterns it has
uding the affix,

ph0n
emes representing the stem of a word, excl
with the feature of the segment

plural input, along
form. The relevant p
put. In the prefix case,
property of the stem meaning.

Meanine-
ing; the other of which is the
honetic feature is readily

that g .
: etermines the appropriate plural
Vail . .
able in the suffix case as a part of the in as argued in the

Prev;
1ou . " : 1
s subsection, it is available as an acquired



144

6. Discussion

F. ; :
or the reversal case, if we think of the novel item in the form of a set rather

tha
n a sequence, then exactly the same set of segmen
since the network’s task is to predict the

ts is used for both singular and

plural w :
ral words. More importantly, however,
next o

segment, there can be no sharing at all between the singular and plural forms in

den layer develop in response to prediction,

te e iid
rms of prediction. Patterns on the hid
ext inputs for singular and plural

80
we should expect little similarity between cont
] available for interpreting

wo

rds. As a result, the network does not have much materia
nted with the novel plural form, it i
d containing a similar sequence of phonemes

s more likely to

the
novel reversed words. Prese

n . . . .
pond based on similarity with a wor
t mirror-image sequence.

e. .

(cg, gip and gif) than respond with the correc
It is important to note, however, that the network’s difficulty with the reversal

pose the type of representat

iction. Rather difficulty results more from

ning to form and form to meaning,

pr .
ocess does not necessarily presup ons that result from
train; i

Ining a simple recurrent network on pred

th
e fact that the network is trained to map mea
del. Any network of the former

rat
her than form to form, as in the case of the RM mo

m in such a way that the contexts of the phonemes

¢ .
YpPe which represents linguistic for
ar o

€ preserved is likely to exhibit this behavior.”

6.3 Limitations and Future Extensions

gical rules by making generalizations

hts during the process of le

he desired plural morphemes

The model successfully Jearned morpholo
arning.

fr : .
°m the exemplars by changing the connection Welg
ped in producing b

w the desired patterns, and what looks like

T
he set of weights the model develo

Co .
Dstrained the model’s outputs follo

helping to clarify this issue:

3
I
am grateful to Dave Touretzky for



145

6. Discussion

a rule-governed behavior is in fact embodied in these weights. However, the network

does not yet achieve all that I would like.

6.3.1 Learning without Teacher Forcing

One of the most serious limitations of the current research is that the network
was tested with the help of a teacher. That is, to test the network’s performance
on the production task, I gave the network the appropriate segments for the stem
successively, along with the meaning of that stem and the g-number unit on for
plural. I then examined the prediction output units at the point where the plural
morpheme should appear. Thus the network was pushed along the right path through
teacher forcing;, The task was that of example (6.9) rather than (6.8) where no actual

segments are given as input and the network should be able to produce the whole

word, stem and suffix altogether.

(6.8) CHIP + PLURAL --> 77.
(6.9) CHIP + PLURAL --> /{fip/ + 77.

To test performance on the perception task, I gave the network the sequence of
input segments for a word, set the stem meaning units to the appropriate pattern,
and set the g-number unit initially to 0.5, to indicate an unknown g-number. Upon
the presentation of each new segment, the g-number unit was copied from the output
on the previous time step. I then examined the output g-number unit after the
appearance of either the appropriate plural form or the word boundary. Thus, the
network’s task was that of example (6.11) rather than (6.10) where no meaning is

involved at all as a part of input and the network should perceive the correct meaning:

s-meaning as well as g-number.
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To test if the network would perform better with easier rules, another experiment
was done. The task was to add just an /s/ to a singular word to form a plural.
Unlike previous tasks, the network does not need to encode variations of the suffix; it
is sufficient for the network just to know that it has to affix an /s/ after the stem. As
can be seen from the table, performance on the test words improved only slightly, even
though the task was much easier. Further examination of data revealed that either
the stem segments were correct (but the suffix was wrong), or the stem production
was poor (but the suffix was correct). From this, I would assume that the network
was able to encode only one piece of information, either the path information or the
suffix rule. It might be the case that we are expecting too much from this simple
architecture. The network has to learn two different kinds of things, the arbitrary
meaning-stem mappings (rote) and the general rule for grammatical features. Can
this network encode both pieces of information if it is given some help? In an effort to
force the network to accommodate both kinds of information, I trained the network
with a variable amount of noise added to the input data. Adding noise might help
generalization, since it expands the training set. The new set has some points in 1t
obtained by extrapolating from a given input to one near it (the “noisy” one). Since
the original input and the noisy one are given the same output, successful training
forces the network to reduce the degree to which it “learns” the data in the training

set. So far the addition of noise has not made any improvements worth mentioning.

It is important to discover ways to make the system robust enough to respond
appropriately to novel combinations of meanings and forms. In addition to the issues
of addition of carefully designed noise which I tried without obtaining significantly
better performance, another issue should be addressed: how much supervision is
reasonable? In the experiments reported in this thesis, all of the simulations were

done with the correct input data given from outside. The results were impressive.
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Yet I could not get the network to perform well when asked to generate its own input.
It is critical to determine how much external input is sufficient to carry out the task

of producing a whole sequence of segments given only meaning and perceiving the

meaning given only sequences of segments.

6.3.2 Rule Interaction

Equally as important as the network’s ability to easily handle only those rules
which occur in human languages, and the intended goal of learning without teacher
learning, is the ability of the model to handle more complex phonological processes,
as Touretzky and Wheeler’s model does (see Touretzky and Wheeler, 1989, among
others). An important question for future investigation concerns what happens in
cases where the traditional analysis posits a sequence of rules operating on interme-

diate representations at different levels of abstraction. Ordered-rule interaction is the

foundation of conventional generative phonology.

Is my network as it stands powerful enough to produce correct outputs in cases
where rule interactions would occur in the generative phonological analysis? Do I
need to make some modifications to the model to handle rule interactions? Would
changing some of the parameters of the model affect the behavior of the network
enough to accommodate these seemingly more difficult problems? Since I have not
tried any more difficult problems involving rule interactions, I am not able to answer
these questions. Modifying the training regimen so that learning would occur in
stages might be enough: the network would learn the easier rules first and then be
gradually introduced to the more difficult tasks. Elman (1991) shows that either
when the input is presented incrementally, or when the network begins with a limited

memory that gradually increases, the network is able to learn a complex grammar.
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But my speculation at this time is that my model would have to have more hidden
layers to correctly encode several rules and intermediate representations: the network
might need to learn inherent rule orderings. For example, my network might be
able to learn the rule interactions shown above with two hidden layers: one hidden
layer which would encode the rules and underlying representations and another which

would control the order of rule application. But precisely how this might work is still

unclear.

Related to the rule interaction problem is the need for the model to explain more
complex morphological phenomena than those encountered in the experiments de-
scribed in this thesis. First, it should be able to account for reduplication, since the
high frequency of reduplication in human languages implies that the model should
be able to handle this kind of process. Reduplication is a morphological process
that involves repetition of a part or all of a word to form a related word. We can
easily find examples from English in children’s speech: moo-moo (cow) and woof-
woof (dog). In Bushman, a southern African language, the plural form of a noun is
formed from the singular by reduplication, for example, /horo/ ‘eggshell’ becomes
/horohoro/ ‘eggshells’ (Bergenholtz and Mugdan, 1979, p.60). For the model to be
able to perceive and produce words using this process, the current model may need
to be substantially modified. Reduplication requires a primacy-oriented STM: such
a model would have to focus on the beginnings of sequences because without the
first segment, it would be very difficult, if not impossible, to predict the rest of the
sequence or to perceive the meaning of the word. Once a cue was input, the net-
work would have to reproduce the part it had seen so far (production), or given a
word, it would need to compare the different parts of morphemes to determine the
meaning of the word (perception). A static representation of segments that encodes

sequences, not just the contexts of the segments might be needed in this case. This
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static representation, then, could be used to reproduce the desired sequence when
given the correct cue or to determine the meaning when compared to the current
sequence. The current model is designed to encode the contexts of segments, and its
STM is therefore recency-oriented, since it is trained to predict the next segment; yet
I am not sure if it would accommodate a static representation. The model might need
some kind of help to acquire some knowledge of the syllable structure, as well as other
features. Gasser (1991) reports an experiment in which a pair of SRNs was trained
on a simple reduplication rule: one SRN was trained to predict the next segment,

while the other’s task was to predict the next syllable. He reports that the results

were clearly far better than chance.

Another morphological process that is very challenging to the current model is
that of metathesis, the transposition of two phonemes in a word. For example, in
Sierra Miwok, a Penutian language of California, a basic form of the verb celku, ‘to
quit’, is realized as [celukk] after undergoing metathesis (and gemination) (Goldsmith,
1990, pp. 83-87). As demonstrated by the Pig Latin experiment, this kind of process

might be extremely difficult, if not impossible, for the model to acquire.

6.3.3 Input Corpus

The experiments reported here were carried out on only a small, and severely
restricted input corpus. Only 20 CVC words were considered in each simulation run.
To be able to claim the plausibility of this model as an adequate system that can

process morphological phenomena, I need to expand my research to a bigger data set.

Unlike the RM model, my model did not treat both irregular and regular forms

and can shed no new light on the question of whether networks can mimic the stages
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phonologists . . . phonological processes serve to facilitate parsing. (p. 50)

As discussed earlier in this section, the network can handle noisy input; and it is
speculated that noise can actually help in generalization. As for segmentation, I
think my model would be able to perform this task. Elman (1990) suggests that this
type of network can indeed find word boundaries. He presented his network with
a stream of words without word boundaries, one segment at a time. The task for
the network at each point in time was to predict the next letter. The pattern of
errors over time revealed that at the onset of each new word, the probability of error

was high: as more of the word was received, the probability of error declined, as the

sequence became increasingly predictable.

The model described in this thesis employed both meaning and form in a network
to perform perception and production tasks. The network was given both meaning
and form from the beginning and trained on both production and perception tasks
from the onset. But here arises a problem of when and how the meanings were
presented. In my model the meanings were presented to the network from the begin-
ning without any reservations. Yet, it is quite possible that a person can hear words
without perceiving their definite meanings at all. It would be a conceivable training
procedure to expose the network only to the sequence of segments and let it develop
its own representations for each word in the corpus. It would also be possible to
introduce meanings only after the completion of a certain number of training epochs.
Even though this model is not a semantic model, it would be desirable to present the

model with more psychologically plausible data, by introducing the meaning later in

the training stages.

There is another issue at stake here. What is the relationship between perception

and production? How does the perception of a word aid in its correct production? It
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6.3.5 The Evolution of a Network

One of the severe disadvantages of the current model is that the network was
hand designed, especially in that the size of the hidden layer had to be empirically
determined. This is one of the biggest drawbacks inherent to most connectionist
models. My distant goal is to design a self-evolving network: given only the problem,
the model would come up with the optimal network. There are two main approaches
to such a task. In one method the network starts with a minimum number of nodes
and creates more nodes dynamically when the need arises (Ash, 1989; Fahlman and
Lebiere, 1990; Hanson and Pratt, 1989); in other approach the network starts from
a pool of available nodes and eliminates the nodes, as well as the weights, that do
not contribute to the solution of the problem (Sanger, 1989; Mozer and Smolensky,
1989). At the moment, I am not sure what kind of algorithms I could add to the

model so that it could cause the network to evolve, but I am certain that the model

should be able to address this important question.

6.4 Summary

Experiments with different morphological processes showed that the model accom-
modates both perception and production in a single network (Hypothesis 1) and can
acquire implicit “rules” without the benefit of pre-defined underlying representations
(Hypothesis 2). Also, the model did exhibit knowledge transfer (Hypothesis 3):

The model shows clear evidence of having learned morphological rules and its
degree of mastery of the rules mirrors the extent to which the different types of rules
occur in natural languages. The network performed much better on the affixation
tasks than on the deletion tasks. The network was able to generate appropriate
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Chomsky-Halle feature matrix

used in the study

Each segment in the data consisted of a binary vector representing modified
(Chomsky and Halle, 1968):
t type is uniquely specified

1 for the presence

Chomsky-Halle phonetic features.

nd 0 for its absence. Each segmen

of a particular feature a
y its vector. The distinctive feature matrix includes the following;:

1. In Chomsky and Halle (1968), high, low, and back are defined with respect to

a reference point that approximates the placement of the tongue for the vowel

of the word bed.

(a) High vowels are articulated by raising the tongue body above this point.

(b) Low vowels by lowering the tongue€ body below this point.

(c) Back vowels by retraction from this point.

a constriction in front of the alveopalatal

2. Anterior sounds are produced with

region.
3. Coronal sounds involve raising the blade of the tongue above its neutral posi-

tion.

4. Continuant sounds permit air to flow through their stricture.
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5. Voiced sounds are produced with vocal cord vibration.

6. Nasal sounds are produced with the velum lowered, thus allowing al

through the nose.

7. Strident sounds are marked acoustically by greater noise.

8. Rounded sounds are produced with a narrowing of th

9. . : 2 i
Tense sounds are produced with a gesture involving consider

effort, or tension.

10. Consonantal sounds are produced with a rad

the vocal tract.
d with an oral cavity in which

11. Vocalic sounds are produce
nd in the high vowels

constriction does not exceed that fou
w spontaneous voicing.

vocal cords that are positioned s0 s to allo

fied as a binary vector of 8 or of

e A2

Each segment type is uniquely speci

on the tasks as shown in Figure A.1 and Figur

r to flow

e opening of the lips.

able muscular

ical obstruction in the midline of

he most radical

[i] and [u] and with

13 depending
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vocalic
P 0
b 0
t 0
d 0
k 0
g 0
f 0
v 0
s 0
z 0
i 1
e 5l
a 1
u 1
o 1
# 0

Figure A.1: Phonemes represented as binary vec

feature matrix.
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