TECHNICAL REPORT NO. 333

Visualizing the Fourth Dimension

Using Geometry and Light
by

Andrew J. Hanson

and Pheng A. Heng

July 1991

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101



Visualizing the Fourth Dimension using Geometry and Light *

Andrew J. Hanson and Pheng A. Heng
Department of Computer Science
Indiana University

Bloomington, IN 47405

Abstract

We ezplore techniques for visualizing mathemati-
cal objects in four-dimensional space that exploit four-
dimensional lighting effects. We analyze the geome-
iry of image production, stereography, and shadows in
4D. We eramine aliernatives for smooth and specular
shaded rendering of curves, surfaces, and solids in 4D,
and propose a new approach that systematically con-
veris curves or surfaces into uniquely renderable solids
in four-dimensional space by attaching spheres or cir-
cles to each point. Analogs of 3D shading methods are
used to produce volume renderings that distinguish ob-
jects whose 3D projeciions from 4D are identical. An-
alyzing the procedures needed to justify and evaluate a
system such as ours for ieaching humans o “see” in
four dimensions leads us to propose a generelly appli-
cable four-step visualization paradigm.

1 Introduction

Four-dimensional mathematical objects [18, 21, 20]
have long been of interest to computer graphics [6, 2,
3,4,8,1,19, 5, 11, 12] because computer graphics can
enable us to take a simulated “look” into the fourth
dimension.

Our goal here is to explore the interaction of geom-
etry and light in four-dimensional worlds, and to show
how the concepts of stereography, shadows, shading,
and specularity can be usefully extended from the
three-dimensional world of our evervday experience
into four dimensions to help us visualize unfamiliar
four-dimensional objects.*

Why Use Lighting in 4D7 Many approaches can
be used [5] to represent four-dimensional mathemat-
ical objects using computer graphics, including gray-
scale range images, color-coded range images, and var-
ious types of projections and slices. Here we choose to

1By “four-dimensional objects” we generally mean manifolds
of dimension 1, 2, or 3 (curves, surfaces, or solids) that have
coordinate representations in four-dimensional Euclidean space.
{An n-manifold is a space that looks like ordinary n-dimensional
Euclidean space in the vicinity of every point.)

*To appear in the Proceedings of the IEEE Computer Soci-
ety Conference, Visualization '91, Oct. 22-23, 1991, San Diego,
CA.

concentrate on the question of how shaded depictions
very close to images of familiar everyday objects can
be used effectively to convey 4D structure. Among
our motivations is the fact that even when both range
(absolute depth) and shading (implying relative sur-
face orientation) are available in 3D, shading infor-
mation dominates the interpretation: when we see a
photograph on a billboard, we describe the 3D object
in the photograph, rarely perceiving the photograph
as meaningless paint smears on a flat billboard.

By forming consistent analogs of the familiar ways
that shadows, shading, and specularity let us perceive
3D shape in shaded 2D images (e.g., photographs), we
explore methods that represent 4D shape in shaded 3D
images (i.e., volume intensity arrays). Volume render-
ing techniques (see, e.g., Kaufman [17], Fuchs, et al.
[10]), together with visualization tools such as stereog-
raphy and motion parallax, can be used to see these 3D
objects using 2D computer graphics images. We study
two principal techniques: methods based on display-
ing multiple viewpoint information such as shadows,
and methods motivated by 3D surface shading mod-
els. Our most interesting result is a new 4D shading
technique that disambiguates the 4D rendering pro-
cedure for curves and surfaces by transforming them
into 3-manifolds.

How Can We Know We See in Four Dimen-
sions? At the conclusion of the paper, we ponder
the question of verifying the utility of our proposed
methods. A paradigm for validating visualization ap-
proaches such as ours is suggested and is summarized
separately in the Appendix.

2 Multiple Viewpoint Methods

Stereographic images and monoscopic images with
shadows provide rich cues to the viewer concerning
the shape of objects in a 3D scene. In this section,
we examine analogous phenomena that are potentially
useful for the interpretation of 4D scenes.



Projecting to the Next Lower Dimension.
Since in 3D, the film image is a 2D rectangle, as are the
ideal “walls” upon which shadows are cast, we deduce
that in 4D, the “film” must be thought of as a 3D rect-
angular solid, while shadows are cast on rectangular
solid subsets of hyperplanes. A darkened, smoke-like
cloud appears in the 3D virtual film volume whenever
a ray cast from the 4D light source is obstructed by an
object. Objects appear in the film volume as 3D pro-
jections from 4D; that is, all points on the 4D object
that lie on a ray from the 4D focal point through a 3D
point in the film volume are projected to that single
3D point in the film image. Depth-buffering methods
must be used to choose the opaque scene point near-
est the focal point, or to combine transparent objects.
For additional realism, shadows cast by light sources
should be computed before rendering.

To project from N dimensions to (N — 1)-
dimensional film or shadow hyperplanes, we let X =
(X1,X2,...,XN) be the location of either a light
source or a camera focal point, and let

A-EF=c (1)

be the equation of the image (hyper)plane (7t -2 = 1).
Given any known point H in the (hyper)plane, we
know ¢ = # - H. The image of a scene point P =
(Pl, P,, ..., Py) is found by substituting the paramet-
ric equatlon of a line joining the point source to the
scene point, F(t) = X + t(P X), into Eq. (1), and
solving for tp = (¢ — it - X)/( - (P — X)). The im-
age point I lying within the image (hyper)plane (1) is
then:

X(@-P-c¢)+ P(c—n- X)
(7-P—n-X)

Four Dimensional Stereography. In any dimen-
sion N, a pair of images each consisting of intensity
values in an (N — 1)-dimensional hyperplane is suffi-
cient to determine the N-dimensional position of a
known scene point appearing in both images. As-
suming that we know the focal centers and film (hy-
per)planes of both “cameras,” the two lines joining the
focal centers to the images of the same scene point
must pass through the actual scene point (see, e.g.,
[15]).

In 4D, projected rays intersect the film volume at
an interior point, rather than in a line as one might
expect: in 4D, a line can “go directly” to an interior
volume pixel in the same way as a 3D line can pass
through a single interior pixel in the film plane. Thus
the principles of stereography carry over to all dimen-
sions, and two aligned 3D volume images are sufficient

I'=#(to) = 2

to determine the 4D coordinates of a visible point on
a 4D object.

The Role of Shadows. The information provided
by a single shadow seen alongside the object in a sin-
gle view is like having some information from a second
camera. Therefore, even a single shadow is sufficient
to carry out some stereo identification, provided we
know the location of the light source and of the (hy-
per)plane upon which the shadow is cast. Multiple
shadows, cast by multiple light sources, can provide
additional constraints resembling the various views in
an engineering drawing (which would have four views
in 4D). An example of a two-manifold in 4D with a
4D shadow, projected into 3D, illuminated with 3D
lighting, and projected to 2D, is rendered in Figure 3.

3 Intensity Shading Methods

Images of illuminated 3D objects produce a wealth
of orientation cues that the human visual system is
able to interpret reliably, apparently by imposing con-
straints on the ambiguous data. In this section, we
discuss 4D shading issues.

4D analogs of 3D Gouraud and Phong interpola-
tion methods of course deal with rectangular or tetra-
hedral volumes, rather than square patches and trian-
gles. Rectangular blocks are rendered scan-plane by
scan-plane into a volume image by (1) dividing the
block into 5 tetrahedra, and (2) dividing each tetra-
hedron into as many as 6 subtetrahedra with easy-to-
handle horizontal terminating faces or edges. Up to
30 tetrahedra thus replace the 4 horizontal-based tri-
angles used to shade a rectangular patch in 3D. Care
must be used when defining the blocks to avoid “vol-
ume butterflying” of adjacent nonplanar rectangular
faces. Finally, we must depth-buffer voxels lying on
the same camera ray using either an opaque or trans-
parent combination algorithm.

3-manifolds in 4D possess a unique normal vector
at each point, and can be shaded using exact analogs
of 3D methods. If we are not rendering a 3-manifold,
however, we must deal with the fact that a single 4D
light ray does not uniquely probe the orientation of a
1D curve or a 2D surface. The situation is identical to
that of a point and a coil of wire in 3D: the point has
three undetermined normal directions parameterizable
as a 2-sphere, while the wire has one local tangent
direction and two normal directions parameterized by
a circle. Thus the intrinsic local properties of a point
or a wire in 3D, and a wire or a surface in 4D, force
us to deal with a normal sphere or plane instead of a
normal vector.



3.1 Smooth Surface Shading

In 3D, a typical shading algorithm computes the
normal vector #i at each polygon vertex, and assigns a
Lambertian diffuse intensity

Ip=Ia-L (3)

to the vertex, where L is the unit vector from the
polygon vertex to the light source and the dot product
is taken as zero when negative (the face is pointing
away from the light). If both sides of a polygon might
be visible, the absolute value is used instead (e.g., for
one-sided surfaces). Then either the intensity or the
normal vector is linearly interpolated to the interior
of the polygon to determine the pixel values.

Note that # can actually be considered to be pro-
portional to the cross-product of the tangent vectors
P, Q at a local point (u, v) in the surface, so

To Ly P @
Ip = B— Det| Ls P Q9 |, (4)
Ly P3 Q3

where L is the vector to the light source and the nor-
malization H = ||L|| - ||Cofactor L|| is chosen to make
the maximum value of the determinant be unity.

In four dimensions, the determinant in Eq. (4)
has four columns, and so the shading equation for 3-
manifolds is obtained either from Eq. (3) with a four-
vector normal, or by placing the tangent directions
(P,@, R) on the 3-manifold into the columns of the
determinant, yielding the form

Ly A Q1 R

_ I Ly P, Q2 R
=gt 5 B @ my|* W

Ly Py Q4 Ry

For 1D curves and 2D surfaces, there are only one
or two available tangent vectors instead of the three
needed in Eq. (5), so we are missing some information
needed to fill in the rest of the determinant. (This is
equivalent to our earlier statement that, in 4D, curves
have normal spheres and surfaces have normal planes.)

Multiple Light Sources. If we provide additional
light sources, we can make a well-defined 4D shading
algorithm if we simply replace the missing dimensions
of the manifold tangent space by additional lighting
vectors. For a curve or surface embedded in four di-
mensions, we simply replace the missing 4-dimensional
tangent vectors R or (@, R) by additional light sources
M or (M, K) to fill up the missing columns of the de-

terminant, e.g.,

Ly My P @
Ip(surface) = %Det E: ﬁ: i: 8:

Li My Py Q4
L, Mi Ky P

L, M, K, P
Ip(curve) = EDet Lz M:. Kz Pz (6)

Ly My Ky Py

The meaning of Eq. (6) is that to get maximum inten-
sity, the light sources and the remaining tangent direc-
tions in the manifold must form an orthogonal frame
in four dimensions. A moment’s thought about the
3D Lambertian equation will confirm that an exactly
analogous orthonormality property holds in the more
familiar 3D case. Experiments with this method gave
results that were distinctive but difficult to interpret,
leading us to the development of the more intuitive
swept surface representation to be described next.

Swept Surfaces and Volumes. Let us now re-
turn to the case of a wire embedded in 3D. When we
think of the wire, we in fact do not necessarily imag-
ine it as a pure one-dimensional object that would
have to be shaded using the 3D version of the two-
light model just introduced; it is much more natural
to imagine the abstract one-dimensional wire as the
spine of a cylindrical surface swept out by a circle ly-
ing in the perpendicular plane at each point on the
wire. The normal to the cylindrical surface swept out
in this way is unique in 3D. The shading that results,
particularly when specularities are included, provides
much more natural intuitive clues about the three-
dimensional curve that the wire sweeps out in space
than the two-light model does. From the theory of
shape-from-shading [16], this depiction should carry
ample information for reconstruction.

In Figure 1, we show how the visual ambiguities
between a tilted 3D circular torus and a vertical 3D
elliptical torus can be resolved by using images based
on the swept surface with a wire ring spine.

This concept is easily extended to four dimensions
as follows: If we consider a curve embedded in 4D and
extended by attaching a sphere at each point, we find a
swept 3-manifold in 4D with uniquely defined normals
everywhere. To be precise, each surface patch on the
sphere is swept by a line interval to form a 3D solid;
the directions normal to the vertices are determined
by drawing a line from the center of the sphere (on the
curve segment) to a point on the surface of the sphere.
Alternatively, the normal to the 3D solid can be com-
puted from a signed “4D cross-product” of three vec-



(a)

tors bordering the solid by extending the determinant
formula for 3D cross-products of two vectors. The
shading procedure simply replaces i in Eq. (3) by the
appropriate 4D normal and interpolates vertex inten-
sities or normals across each polyhedron.

In Figure 2, we show a volume rendering that dis-
tinguishes between a swept circular 3-manifold tilted
away in 4D and an elliptical 3-manifold that has an
indistinguishable shape in the volume rendering.

Surfaces: For surfaces in 4D, the radial direction of
the ring attached at each point can be understood by
taking the local tangent vectors P#(u,v) and Q*(u,v)
at a point (u, v) of a parameterized surface and using a
repeated Gram-Schmidt procedure to find candidates
for the coordinate basis (N{', N3') of the plane perpen-
dicular to the surface. Once N{(u,v) and Nj'(u,v) are
found, they are normalized and the four-dimensional
normal vector

74 (8, u,v) = cos N (u,v) +sin 0N (u,v)  (7)

is substituted into the 4D version of Eq. (3). The three
variables parameterize the corresponding 3-manifold
for which ##(8, 4, v) is the current normal direction.

3.2 Specularity

Specular highlights give yet another independent
source of information about the geometry in four di-
mensions. We next construct the analog of a specular
Phong shading contribution (see, for example, [7]) to
the intensity displayed in the 3D image of an object in
4D. We simply take as many lighting vectors L; as we

()

Figure 1: (a) (above) A dimensionless wire circle tilted back so that, when drawn with a thick line, its 2D depiction
is indistinguishable from (below), a true ellipse lying in the vertical image plane. (b) (above) A dimensionless
wire circle converted into 2-manifold by sweeping a circle centered on the wire. When shading and specularity
are added, this figure is distinguishable from the true swept ellipse shown in (below). (¢) Rotating in the plane
perpendicular to the film plane exposes the spatial differences between the two figures.

require, replace L; by the normalized sum B; of the
camera direction C and the lighting vectors L;, then
raise the appropriate dot product or determinant to a
high power k.

For a 3-manifold swept out by a circle (or a sphere)
attached to each sample point of the manifold, we sim-
ply add to the shading equation a specular term

.k

Is=1 IB-ﬁ| , 8)

where 7 is the appropriate 4D normal. We then carry

out volume rendering (for both diffuse and specular

components) by interpolating the normals at the poly-

hedron vertices instead of directly interpolating the
intensities.

4 Examples:

We next illustrate our basic concepts with some
classic examples from four-dimensional topology.

Three-Sphere. The three-sphere is given by the im-
plicit equation

w 2
P e (;) = R?
or the parametric equations

Rcosasin @sind
Rsinasin 8sin 8
Rcos(sinf
Recosb

E & w8
|



(a)
Figure 2: (a) (above) A 3-manifold given by the cross product of a ring and a 2-sphere, tilted back into the fourth
dimension w so that its 3D volume rendering is indistinguishable in shape from the elliptical 3-manifold (below)
lying in the w = 0 hyperplane. Four-dimensional shading and specularity introduce features that distinguish the
two 3-manifolds. (b,c) Rotating in the z-w plane reveals the difference between the two manifolds.

where ¢ is a constant we may use to “squash” the
sphere into a 4D pancake while leaving its 3D projec-
tion a completely symmetric 2-sphere. Figure 4 shows
a rendering of the true 3-sphere compared to the cor-
responding squashed sphere. Substantial differences
in the shading can be easily seen.

Steiner Surface/Whitney Crosscap. In an ap-
pendix to a chapter of their classic book Geometry and
the Imagination, Hilbert and Cohn-Vossen [14, 8, 1]
give a set of equations for a Whitney crosscap, a non-
singular embedding of the projective plane in four di-
mensions. We represent this surface parametrically by
the equations

z = cos’ucos’v—sin?ucos?v (9)
y = sinucosucos’v (10)
Z = cosusinvcosv (11)
w sinusinvcosv , (12)

where u € [0, 7], v € [0, 7). The tangent vectors are
computed locally by taking partial derivatives with
respect to u and v and orthonormalizing as required.

The interesting fact about this equation is that
when it is rotated in four dimensions, it changes
smoothly from a Whitney crosscap to a Steiner Roman
surface, depending upon the rotation axes chosen[6, 8].
In Figure 3, we showed how these surfaces can be
viewed by casting 4D shadows and projecting both
the object and the shadows to 3D before rendering
using conventional 3D lighting methods. We see how
the use of shadows can greatly clarify the nature of
the projection that is taking place from 4D to 3D;

()

we can simultaneously see the two states of the shape
and watch them exchange places in the course of an
animated 4D rotation.

Figure 5 shows a stereo pair of the shaded volume
rendering of the Steiner surface when each point is re-
placed by a small specular circle in the normal plane
and the resulting 3-manifold is illuminated by a sin-
gle 4D point light source. To distinguish 4D from 3D
effects, we render the full 4D surface alongside an ar-
tificially modified surface that has the same 3D ap-
pearance, but has had its fourth coordinate shrunk to
a very small value before attachment of the circles in
the normal plane. Finally, Figure 6 shows two stages
of the 4D rotation that exposes the hidden differences
between the two figures as the Roman surface is trans-
formed into the Whitney crosscap. Once again, we can
see that objects with identical shapes in the film vol-
ume have quite distinct shading signatures depending
on their 4D characteristics; we also see that making
sense of these distinctions is nontrivial and requires
experience and training.

5 Conclusion

We have proposed a family of techniques for cre-
ating intuitively informative shaded images of four-
dimensional mathematical objects. We deliberately
chose to concentrate on depiction methods that are
close to familiar 3D-world shaded images, as opposed
to range images and slices that have an artificial ap-
pearance.

As we consider the requirements for a robust 4D vi-
sualization system, we come to the conclusion that the
present work is incomplete: in particular, we have not



proven that the images we produced are inferpretable,
we have not shown that the necessary interpretation
techniques can be taught to human users if they were
not already known, and we have not verified that the
desired intepretation of the images is cognitively fea-
sible within the limitiations of the human intellect.
A robust approach to visualization should address all
these issues, leading us to propose the general visual-
ization paradigm outlined in the Appendix.

Interpreting 4D Images. Among the issues that
we are currently investigating is the question of ex-
tending machine vision techniques to four dimensions;
the shape from shading methods such as that of
Ikeuchi and Horn [16], and the photometric stereo
technique of Woodham [22] seem particularly appro-
priate. We have already tested these methods success-
fully on simple synthetic data resembling the mathe-
matical systems we have examined. These methods
appear to be useful for reinterpreting 3D volume ren-
derings as images of mock four-dimensional objects
[13]. Our observation is that, while not all 2D images
are derived from renderings of the 3D world, it is of-
ten helpful to organize 2D data as though it were a
shaded image. Thus, given some basic assumptions,
it is possible to reconstruct a completely fictitious 4D
interpretation of any volume rendering using the same
techniques we must use to check the validity of our 4D
rendering methods. Depending on the nature of the
data, such 4D interpretations might single out oth-
erwise obscure characteristics of the data for further
attention. Note that this is entirely different from ap-
proaches that treat voxel values as a fourth coordinate
and simply rotate the data in four dimensions.

Verifying Learnability. Another open question
that we hope to address is the issue of the cognitive na-
ture of 4D perception. We must understand whether
the proposed visualization procedures are useful to hu-
man observers, and to understand and model the most
effective techniques for teaching an understanding of
the resulting images. After all, from our experience
with the 3D world and 3D lighting, we have learned
to apply a few ad hoc constraints that let us deduce
very reliably the 3D content of shaded 2D images of a
scene, particularly if shadows, stereo, and/or motion
parallax are available. Can humans acquire facility
with four dimensions with enough practice? Is it pos-
sible that, just as we can “see” true 3D depth in a
monocular sequence of images from motion parallax,
we can learn to use our binocular vision on volume ren-
derings combined with oscillating motion parallax in
the fourth dimension to “see” true four-dimensional
depth? With more practice, could a single shaded

volume rendering in stereo be sufficient for 4D under-
standing, just as single photographs of a 3D scene are?
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Appendix: A Visualization Paradigm

In this Appendix, we present our viewpoint on the
nature of a complete scientific visualization paradigm
for problems such as the representation of four-
dimensional mathematical objects.

We begin with a statement of what we call the Vi-
sualization Principle:

A useful data depiclion must allow the
viewer to reconsiruct a consistent and rele-
vant model of the originel data.

That is, images produced by a visualization procedure
are assumed to be based on real or simulated data con-
sistent with an underlying mathematical model. The
purpose of such an image is to allow the user to grasp
some fact or property that is not intuitively obvious
from looking at a formula, columns of numbers, or a
text description. If the viewer cannot produce an ac-
curate mental model for the relevant properties from
the image alone, the image is not serving the purposes
of the visualization process.

We suggest that the following steps are necessary
and sufficient to guarantee that the Visualization Prin-
ciple is satisfied:

e Generate Images. In this stage, the visual-
ization team studies the available data and the
classes of information that are relevant for dis-
play, and then proposes various data depiction
techniques to elucidate the underlying models.

e Interpret Images. Next, a convincing argu-
ment must be made that the images alone contain
sufficient information to allow the reconstruction
of the desired data models. Specific, computer-
implementable model reconstruction algorithms
should be suggested and, if feasible, tested in or-
der to discover unexpected ambiguities.

e Teach Interpretation. The existence of au-
tomatable algorithms to reconstruct the data
model from the image does not necessarily mean
that humans can perform this reconstruction



without training. It may be necessary, for exam-
ple, to build interactive tools that help a human
acquire an intuitive understanding of the recon-
struction procedure. Typically, this might be ac-
complished by establishing a simulated environ-
ment (or perhaps a “virtual world”) that incor-
porates tasks that cannot be solved successfully
without mastery of the reconstruction algorithm.

o Verify Learnability. Finally, it is not neces-
sarily true that any given reconstruction method
can be learned by a human, even with extensive
training. One must therefore evaluate both hu-
man ability to intuitively employ the proposed
reconstruction algorithms and the effectiveness of
any proposed teaching methods. This completes
the cycle: if one can prove that humans can learn
the reconstruction, and that the method can be
taught effectively, the visualization procedure is
guaranteed to meet its goals.
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Figure 3: The projective plane and its shadow pro- Figure 4: (left) 4D volume rendering of the 3-sphere

jected from 4D to 3D. Appearances of object and (top) and a squashed 3-sphere (bottom). (right) Same
shadow interchange when rotated in 4D (on right). scene rotated 60 degrees in 4D.

(Right Eye: Steiner, flattened Steiner) (Left Eye: Steiner, flattened Steiner)

Figure 5: Cross-eyed stereo pair of volume rendering of Eq. (12) using swept-circle method. Left object is a
projection to the Steiner Roman surface, right object is flat in 4D, but has the same 3D projection in this view.

) (b)
Figure 6: (a) Rotating Figure 5 to expose the hidden fourth dimension gives a shape between the Whitney
crosscap and the Steiner Roman surface. (b) Rotating by 90 degrees gives the Whitney crosscap and a flat disk.



