TECHNICAL REPORT NO. 331

DDD — A Transformation System

for Digital Design Derivation
, i
Bhaskar Bose

May 1991

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

DDD - A Transformation System for Digital Design Derivation”
Reference Manual

by

Bhaskar Bose
Computer Science Department
Indiana University
Bloomington, Indiana

DDD - A Transformation System for Digital Design Derivation

Reference Manual
by
Bhaskar Bose

May, 1991

*Research reported herein was supported, in part, by the National Science Founda-
tion under grants numbered DCR85-21497, MIP87-07067 and MIP89-21842.

Dear Reader,

The DDD system is constantly undergoing changes as researchers continue to
study hardware design in the context of an algebraic framework. This manual is
intended to document the current status of the system and acknowledges the dy-
namics of the system it attempts to characterize. It is the sincere hope of the
author that this document provides the reader with an understanding of the
system and continues to be updated as the system evolves.

Bhaskar Bose

Table of Contents

1 Introduction
1.1 Design by Algebraic Transformationc.cooeovvneenens 1

12 Aboutthismanualcccoieteosssssssssssnssnssasasnossnsss 2

T Derivation Patho s ssnssdinss@sscimmamssmameddidas@isosonsaanns 5
3 SPecification ceieiiaiaaiaiiiitrtias i aaa et 7
3.1 Scheme SYNtaXcccveusenesssnsanaannssacansansnseess 7

3.2 Hardware Specificationscooveiuenntonnnnnnaneeeens 8

3.2.1 Expressing Controlttt 9

3.2.2 Expressing Architectureooiiiiiiiiae s 1l

3.3 An Example: Single PUlseroouoreiacnnnannnnn e s 13

4 Control Abstraction and ArchiteCture oo v i oo 15
4.1 The Stream Model vii et i ittt it 15

4.2 Deriving a Sequential SyStemiiiiiianaae e 16

5 Algebra on Sequential SYStEmSo i i ia i e 21
5.1 TransfOrMAtONS . « . v v o v oo v m s oe s snam s ae e a s as s s 21

SO FActONiZAON . «cvveveeosscssasossasasscssansasassosssssnscs 22

521 General FaCtOrizationcccoovnecsaosssassnesssosns 23

5.2.2 Signal Factorizationoeueineennnneeneenn s 24

53 0pimizationcccovevreccrrsrsoraasotsessatauson e 26

5.3.1 Minimizing Selectorscceue it 26

5.3.2 Minimizing Stream Equationsot 26
SAPSBHOBINGE . i wsonsvssmspwuswrmeemswmwamnnd §lds o868 860w 28

5.5 Partial Evaluation of SElectorso veivi i 30

5.5.1 Deriving @ State Generatorcceveveeconnenne e 30

6Register Transfer Tablec.cuiiiiineeiiinrrnieeresnennnnens 41
6.1 Algebra on RTTs (Register Transfer Tables)ssisvassscsosawsnvs 42

T PIOHEOIIN «10 5w 5 5 0500 3 wvm om0 wie o om o 806 505 B BT 3 @B 60 8 00 8 o0 e mlavs n o n R R W 4 49
7.1 Projecting SeleCtOrSc..coveviorassansusanriorantancorens 49

7.2 Projecting Stream EQUationsooieiiiiine e 50

8 INPUIADUIDUL & o« o6 s 66 5@ s w s avomenonansssssdsdsassenssssmnsmsmss 35
ODaisy IMEIFACE + . vovvevrnvsvasosssssssnssnsssusnenaanssstasevecses 57

10 Integrating with Logic Synthesis Tools 61

10.1 Boolean Equation Generation 61

10.1.1 Generating Boolean Equations from Selectors 61

10.1.2 Generating Boolean Equations from Stream Equations 62

10.2 ESPRESSO Interface 63
10.3EQN Interface i 65

L0 PLAJMBEEHOE: « « v s w55 555 55 8 50515 00 m oo w s 5 s 8 5 ke 5 66

10.5 Altera Interface 67
RESEISIOES . v x5 00 2 56 6 s e 5 0 5 55 500 918 5 0 e e s 79
Appendix A: DDD Quick Reference A-1
Appendix B: Type Classification B-1
Appendix C: Examples C-1
Example 1: A Single Pulser C-1
Example 2: A Black Jack Machine C-7

ii

DDD - A Transformation System for Digital Design Derivation’
Reference Manual

Bhaskar Bose
Computer Science Department
Bloomington, Indiana

1 Introduction

DDD (Digital Design Derivation System) is a transformation system that implements a design
algebra for synthesizing digital circuit descriptions from high level functional specifications.
The system reflects a formal approach to digital design synthesis based on the algebraic manip-
ulation of purely functional forms.

The system is intended to provide a well founded, mechanized, algebraic tool set for design
synthesis. DDD is implemented in the Lisp dialect Scheme [11] as a collection of transforma-
tions that operate on s-expressions. Transformations are applied manually by the designer,
either interactively or by creating a script, at various stages of the design process in order to
derive hardware implementations. The hardware descriptions that are manipulated by DDD are
written in Scheme and may be executed (with syntax extension) as Scheme programs.

DDD derives a technology independent set of digital circuit descriptions which are projected to
binary representations. Boolean equations are then generated from these descriptions and are
integrated with existing logic synthesis tools, such as boolean equation minimizers, PLD assem-
blers, and VLSI layout generators.

1.1 Design by Algebraic Transformation

In "Synthesis of Digital Designs from Recursion Equations" [9], Johnson defines a formal
approach to hardware synthesis based on the algebraic manipulation of purely functional forms.
In this framework, the discipline of applicative program design style is adapted to hardware
synthesis.

Design is viewed as a translation of notation, starting with an abstract specification ranging
over abstract data types and deriving an intended target description called an implementation
and a physical object called a realization. This process may be viewed as a translation between
dialects of recursive expressions, and can be expressed in the following diagram:

"Research reported herein was supported, in part, by the National Science Foundation under
grants numbered DCR85-21497, MIP87-07067, and MIP89-21842.

1

T T T
o, p, "y Ty p,

D,
D, represents a source description and D, an implementation. The arcs may be enumerated
from 1, to 1., and represent applications of transformations. Thus design is defined as an
initial specification D, and a derivation - the sequence of transformations <TppeesTp >

The first step in design is to write a functional specification. The design proceeds by applying
a series of transformations on an evolving description. The final form is a circuit description
ranging over binary values that are integrated with logic synthesis tools to generate hardware.

The method provides a secure path to hardware. In the formal discussion [9], each transfor-
mation is correctness preserving. The implementation is said to be correct by construction.
The notion of "correctness" is defined as: Given a specification S, and a transformation 1, T(S)
results in an expression that will compute the same function as the initial specification.

The specifications are written in a functional programming language and are directly execut-
able. Each derived form is also executable (with syntax extension). The source for synthesis is
also the same object for simulation. For instance, the execution trace of the specification may
also be used for rest vector generation. An example of this may be found in [2]. A common
source description, from which varying information is derived, reduces the chance of incon-
sistencies between the specification/implementation, and simulation model.

The notion of abstraction is fundamental. Control abstraction, data abstraction, and hierarchical
abstraction define the design process. Control abstraction forms the basis of separating control
and architecture from the initial specification. Data abstraction allows for the manipulation of
architectural components. And finally, hierarchical abstraction allows for the translation to
lower levels of description to the point of a realization.

The incorporation of representations may be introduced at any stage in the derivation. This
allows the opportunity to postpone representation decisions to a later point in the design.

Verification is an interdependent facet of this methodology. Although mechanical derivation
implements algebra that assures correct hardware - too many facets of design are unaccounted
for in any given transformation system. In principle, the incorporation of a verification system
will allow the engineer to call upon insight and experience to produce an efficient design,
which is then simply certified by a computer. This is developed further in [3].

1.2 About this manual

Section 2 characterizes the derivation path in a design. Each of the sections (Section 3 to
Section 10) discuss a facet of the derivation path. Each section has a heading which highlights
which stage of derivation path is being addressed. Each section is divided into two parts.

DDD User Manual 2] Introduction

First, an informal discussion on relevant strategic issues, and transformational algebra are
presented. The second part, defines transformations that are implemented in DDD. Each
transformation definition contains the name of the transformation and what its arguments are.
A short description of the transformation, followed by an example application. Section 3
defines the input specification. Section 4 discusses the initial transformations which derive a
structural description from a behavioral specification. Section 5 discusses algebra on structural
descriptions. Section 6 discusses register transfer tables, a intuitive abstraction of structural
descriptions. Section 7 discusses the projection of a description defined over an abstract basis
to that of a description defined over some target basis. Section 8 discusses input/output exten-
sions to Scheme. Section 9 discusses transducing scheme circuit descriptions into Daisy de-
scriptions. Section 10 discusses the integration of DDD with logic synthesis tools.

Appendix A is a quick reference to all current DDD functions. Appendix B lists the forms of
the objects that are manipulated by DDD. Appendix C contains two complete design examples.
First, a simple single pulser circuit, SinglePulser, followed by a machine which implements the
actions of a Black Jack dealer, BlackJack. Other examples not found in this text include a
Stop-and-Copy garbage collector in VLSI [2], and an SECD machine [15].

DDD User Manual Introduction

2 Derivation Path I = CpS, ... > Cp2S,J[F — CgeSy/IF

#

In DDD, a sequence of transformations are applied to an initial specification defining a deriva-
tion path to an implementation. The path is expressed in the following diagram:

I —CpS; ... > CpoS, [[F 2 CgeSg| F

I represents an initial specification. It is iterative - the class of recursion schemata that charac-
terizes sequential control. The initial specification is expressed in terms of a complex basis
consisting of abstract operations and predicates, in addition to concrete operations and objects.
Some examples are arrays of integers, memories, stacks, and arithmetic. The complex/concrete
distinction is subjective and hierarchical. Thus / is defined at some intended level of descrip-
ton.

Initial transformations separate control and architecture, and derive a sequential system de-
scription: C,+S,. C denotes a descision combinator representing control, and S denotes a struc-
tural component representing architecture. The « operator denotes the composition of C and S.
C,+S; has the same complex basis as 7, but the interpretation is based on the model of streams.
Whereas before, variables ranged over values, they now denote sequences of values.

The algebra supported by DDD allows for the logical and physical decomposition of design.
These design tactics alter the derivation path and sketch a complex design space with many
possible paths between specification and implementation. The dotted notation ... in the ideo-
gram denotes this one-to-many correspondence.

C,S,/|F is system description at some level of refinement. Complex data types present in S,
have been factored as a system of abstract components denoted by F. The || suggests a com-
municating system. As complex signals are factored, DDD generates signals to maintain the
correct connectivity. Factorization is a central part of DDD’s transformations.

Cy*S/[F is the projection of C,+S,//F to a target representation, B. Representations are input
to the system in the form of a projection function denoted by pg.

Completing the path to hardware, abstract descriptions are projected to binary representations.
Boolean equations are then generated. The equations can be implemented with MSI compo-
nents directly, or can serve as inputs to a programmable logic device (PLD) programmer, or can
be used as input to VLSI tools to generate PLAs, gate matrix, or standard cell layouts.

DDD User Manual Derivation Path

3 Specification 3 o8 o > CpS HF w5 CoeSy liF

Specifications are written in Scheme. The specifications are written in a purely functional style
where there are no side-effects. Descriptions are built from applicative terms, constants, identi-
fiers, conditional expressions, case statements, and function definitions, and express synchro-
nous systems. The specification is a control algorithm, as well as a description of architecture.
Both control and architecture are derived from such specifications. DDD manipulates a con-
crete syntax of functional s-expressions in Scheme.

3.1 Scheme Syntax

Scheme is a statically scoped, applicative order, dialect of Lisp, which is well suited for sym-
bolic manipulation. The language definition is a small core of syntactic forms from which all
other forms are built. These core forms, a set of extended syntactic forms derived from them,
and a library of primitive procedures make up the full Scheme language. An informal introduc-
tion to some of the basic forms are described in this section. A complete language definition
can be found in [11].

Scheme supports operations on structured data such as strings, denoted with double quotes,
"abcd", lists, denoted by parenthesized sequences, (I, I, ... I,), and vectors. Scheme also sup-
ports operations on more traditional data such as numbers and symbols. Programs are made up
of forms (lists), identifiers (symbols), and constant data (strings, numbers, vectors, quoted lists,
quoted symbols, etc.). A brief description of the forms used in DDD are described below.
Procedures are defined with function expressions. A function expression has the form

(lambda (id ...) expl exp2 ...)

The identifiers (id ...) are the formal parameters of the procedure, and the sequence of expres-
sions expl exp2 ... is its body.

Objects can be associated with a name at top level with a top-level definition. A rop-level
definition has the form

(define id exp)
The identifier id is bound at top-level, to the value of the expression exp.
Two forms of conditional expressions are used in DDD, an if-then-else expression, which has
the form

(if test consequent alternative)

which returns the consequent if the test is true, and the alternative otherwise; and a case-

DDD User Manual Specification

expression of the form
(case val (key exp ...) ...)

which returns the value of the last exp of the corresponding label key equals val.

Local definitions are made with ler and letrec expressions. A let expression has the form

(let ([id val] ...) expl exp2 ...)

Creates a local binding in which each identifier id is bound to the value of the corresponding
expression val. These bindings are valid in the body of the let expl exp2 ...

A syntactic form similar to lez, but allows mutually recursive bindings is lerrec. A letrec
expression has the form

(letrec ([id val] ...) expl exp2 ..)

3.2 Hardware Specifications

A general form of the specification is given below. A circuit is defined by a set of mutually
recursive function definitions, S,...,Sq, referred to as state definitions. Each state definition is
a conditional expression representing a point of control. (i, i, ...) denotes a set of inputs to the
circuit, and (Siu; Tyinie Fzinic - i) denotes the initial control point and state for the machine.

Each state definition has a uniform parameter list, (r, r, ... ry) denoting a set of registers,
defining the state of the machine, and i/o ports. However, since the level of abstraction is
arbitrary, the notion of registers are abstract. The list of registers may contain arbitrary objects
such as registers, memories, stacks, and communication channels. The set of registers is an
initial estimation of architecture and represents architectural components with state.

(define CIRCUIT
(lambda (i, i, ...)
(letrec
((Sp (lambda (r, 1, ... 1) exp,))
(S, (lambda (r; 1, ... Ty) exp,))

.(.éQ (lambda (1, 1 ... 1) €Xpy)))
(Sinit Trinit T2inie - Tninit))))

where exp can be:
a let expression
(let ((id val) ...) exp)

DDD User Manual 8 Specification

an if statement
(if pred exp, exp,)

a case statement
(case pred (id, exp,) (id, exp,) ...)

or a control point invocation
(S val, ... valy)

where val denotes an expression defined in the ground type at some intended level of abstrac-
tion. Valid terms for val are ?, signals, constants, integers, booleans, arithmetic operations,
boolean operations, routing primitives, and operations on abstract data types. ? is a special
character which denotes a "don’t care” term.

The let expression provides a means of defining combinational signals, and associating a name
with that expression.

The if and case statement, implement a conditional control construct dependent on a decision
point pred. In the case of an if statement, pred can be any boolean expression defined in the
ground type. In the case of a case statement, pred can be any expression defined in the ground
type. These conditionals are implemented in control, while conditionals expressed within a
control point invocation are implemented in the data path. '

A control point invocation, (S val, ... valy), is a function invocation which denotes a parallel
assignment to a set of registers and a transfer of control to state S. Operations expressed here
are implemented in the data path.

Operations on abstract data types are expressed as
(op object x y ...)

where op is an operation defined on the abstract data type object, and x and y, are arguments.
For example, operations on a memory object, MEM, may be written with the expressions
(MemWrite MEM Addr Data), and (MemRead MEM Addr). A stack object, STACK, may
be written with the expressions (Push STACK Data), (Pop STACK), (Top STACK), and
(Empty? STACK). ‘

3.2.1 Expressing Control

The specification is iterative - each state definition, S, is a conditional expression in which the
alternatives are tail-recursive, and is equivalent to the class of schemata associated with finite
state machines. The correspondence between the iterative specification and finite state ma-

DDD User Manual 9 Specification

chines is illustrated in the mappings on the following page from partial state definitions to
Algorithmic State Machine (ASM) [16] fragments. The ASM notation is derived from software
flowchart notation, and provides a means of expressing abstract algorithms while supporting the
conversion of the algorithm into hardware. Control flows through a sequence of states, denoted
by a rectangle, based on the position in the control algorithm, and the values of the relevant
status variables. Given a present state, the next state is determined unambiguously. To express
operations on the architecture, operations are placed within the appropriate state rectangle.
Conditional branches are denoted with a diamond. Operations on the architecture which occur
conditionally are placed in ovals on the appropriate conditional branch. The following con-
structs show how a simple sequence of state transitions, a conditional branch, and a multi-way
branch are expressed in the language. (note: Architectural details have been suppressed for the
sake of clarity and are addressed subsequently.)

A sequence of state transitions:
S0

(SO
(lambda (...) S1
(S1 ...))
(S1
(lambda (...) -
(82 ..))

A conditional branch:

S0
(SO
(lambda (...) S2
(if Q F
(51 ...
(82 ..))) % T

DDD User Manual 10 Specification

A multi-way branch:

(SO
(lambda (...)
(case Q
(INC (S0 ...))
(DCR (S1 ...))
(ADD (82 ...)))))

3.2.2 Expressing Architecture

Architecture is expressed in the formal parameters, the let expression id/val pairs, and vals in
the control point invocations. Consider the following state definition and ASM fragment which
illustrates how the formal parameters and vals in the control point invocations are used to
define the architectural components and operations:

S0

(SO
(lambda (X Y STACK)
(if (empty? STACK)
(S84 X Y (push STACK Y))
(SO (top STACK) (inc Y)

(pop STACK)))))

X «— top(STACK)

empty?(STACK) >4 sy0 ¢ . pop(STACK)

The formal parameters (X Y STACK) specify two registers X and Y, and a stack STACK.
When STACK is empty, control is passed to state S4; the contents of X and Y remain un-
changed; and the value of Y is pushed onto the stack. If STACK is not empty, control is

passed to state S0; X is updated with the value of the top of stack; the contents of Y is incre-
mented; and the stack is popped.

In order to execute the specification the operations empty?, push, pop, top, and inc, are de-
fined in the ground type or basis at some level of abstraction. Suppose X and Y are defined

DDD User Manual 11 Specification

over integers, and STACK is represented by a simple list. Then the above operations may be
defined by the following function definitions:

(define initSTACK ()

(define empty? (lambda (s) (null? s)))
(define push (lambda (x s) (cons x s)))
(define inc (lambda (v) (+ v 1)))

(define top
(lambda (s)
(if (empty? s)
(error ’top "stack is empty")

(car 5))))

(define pop
(lambda (s)
(if (empty? s)
(error ’pop "stack is empty")

(cdr 5))))

The level of abstraction at which the ground type is defined is purely a matter of choice. The
ground type may just have easily been described in terms of a binary representation, or a
combination of different levels of abstractions - X may range over binary numbers, while Y
may be defined over integers. In the course of a design, various levels of abstraction of the
basis may be supplanted while the specification remains unaltered.

Combinational terms may also be associated with a signal name using the let expression. In the
next example, the (top STACK) operation from the previous example is associated with the
signal Z.

(SO (lambda (X Y STACK)
(let ((Z (top STACK)))
(if (empty? STACK)
(S4 X Y (push STACK) Y)
(SO Z (inc Y) (pop STACK)))))

DDD User Manual 12 Specification

However, signals defined in let expressions are under specified. What is the value of Z outside
the scope of the let expression in which it is defined? The DDD system defaults the value of
Z to nop which denotes a "do nothing" operation.

3.3 An Example: Single Pulser

Consider the specification of the single pulser circuit as described in [16], and its corresponding
ASM. The example, though simple, illustrates a complete specification. For further examples

see [6,15,5,Appendix C]. In the next few sections, this example is taken through the derivation
system.

The SinglePulser senses the depression of the button, PBsync, and asserts an
output signal, PBpulse, for a single clock pulse. Additional assertions of the
output are not allowed until after the operator releases the button.

(define SinglePulser
(lambda (PBsync)
(letrec
((FIND
(lambda (PBpulse)

(let ((O (out PBpulse))) P
(if (PBsync) (WAIT ON) (FIND OFF)))))

(WAIT
(lambda (PBpulse) pggfﬂffﬂ"éfp
(et ((O (out PBpulse)))
@if (PBsync) (WAIT OFF) (FIND OFF)))))) PBsyne™>
(FIND OFEF))))

The circuit is defined as a two-state machine: FIND, and WAIT, that t:xes a
synchronized input assertion from a push button: PBsync. The output of the
system is O which carries the signal PBpulse, a synchronized output assertion.
The initial invocation of the single pulser algorithm, cycles in the FIND state,
until a true signal is asserted on PBsync. Control is then transferred to the
WAIT state, with the value ON being asserted on the PBpulse signal. The
algorithm cycles in the WAIT state, until a false is asserted on the PBsync
signal. Control is then transferred back to FIND.

DDD User Manual Specification

4 Control Abstraction and Architecture § s CpoSy oo+ C 28 JF > CoaSafiF

Initial transformations decompose the iterative specification into a control abstraction, called
Select, and an architectural component, referred to as a structural specification defined as a set
of mutually recursive stream equations. The control abstraction and structural specification are
collectively referred to as a sequential system. The sequential system has the same abstract
basis as the initial specification, but the interpretation is based on streams. Whereas before,
variables ranged over instantaneous values, they now denote sequences of values over time.

4.1 The Stream Model

Sequential systems are modeled by streams. The symbol ! denotes an element that has state.
In this discussion it is referred to as a register.

Consider a counter modeled as a stream.
X =1"!inc(X)
X denotes a stream of values 1,2,3,4,5,..., defined over integers.
X is a signal with state, and represents the output of the equation. The equation is initialized

with the value 1. ine(X) denotes a combinational incrementor, whose input is X, and whose
output is X+1. The stream equation may be characterized by the following circuit:

@j} -

1=4

Another example is a memory modeled as a stream.

MEM = MEM’ ! (if WRITE (MemWrite MEM Addr X) MEM)

L

Addr _|
X2 uE

WRITE

MEM denotes a stream of memories MEM*,MEM!, MEM?MEM’,...
MEM is the initial memory. If the WRITE signal is asserted, MemWrite will return a new
memory object, with address, Addr, updated with value X. Otherwise, the memory is returned

DDD User Manual 15 Control Abstraction and Architecture

unchanged. It is important to note that the level of abstraction is arbitrary. In the first example
values ranged over integers. In the second example values ranged over memories.

The characteristic stream equations derived by DDD have the form:

(X &= (Select state P, ... P, V, V, ... V) (a)
(Y = (Select state P, ... Py Vo, V; ... Vi) (b)

The ! symbol together with an initial value are denoted with the <= symbol. Equations defined
with < have state. Equations with a simple = are combinational. Select is a combinational
decision combinator which returns one of the possible values, V,...,Vy as a function of state,
and a set of status predicates, Py,...,P;. Select may be viewed as an N-input multiplexor,
defined over abstract values, with control signals state, and Py,...,P;. The associated schematic
for (a) is shown below. The schematic for (b) is similar to (@) with the omission of the regis-
ter.

[

4.2 Deriving a Sequential System

The derivation of a sequential system from the initial specification are outlined in this section.
For a formal discussion refer to [9]. The SinglePulser specification on page 13 from the previ-
ous section is used to illustrate the initial set of transformations.

(define SinglePulser
(lambda (PBsync)
(letrec
((FIND
(lambda (PBpulse)
(let ((O (out PBpulse)))
(if (PBsync) (WAIT ON) (FIND OFF)))))
(WAIT
(lambda (PBpulse)
(let ((O (out PBpulse)))
(if (PBsync) (WAIT OFF) (FIND OFF))))))
(FIND OFEF))))

DDD User Manual 16 Control Abstraction and Architecture

The first step introduces a control token, state, to represent each of the state definitions WAIT
and FIND. A single loop form of the initial specification is constructed by adding state to the
formal parameter list, changing each function invocation to a recursive call to SinglePulser, and
constructing a case statement encoding which function is in control.

(define SinglePulser
(lambda (state PBpulse)
(case state
(FIND (let ((O (out PBpulse)))
(if (PBsync)
(SinglePulser WAIT ON)
(SinglePulser FIND OFF))))
(WAIT (let ((O (out PBpulse)))
@if (PBsync)
(SinglePulser WAIT OFF)
(SinglePulser FIND OFF)))))))

A decision combinator, or control abstraction is then derived by factoring all predicates and
function invocations from the single loop form. The result is a control specification, Select,
and an architectural description, SinglePulser, defined as a set of stream equations.

(define Select
(lambda (s p vO v1 v2)
(case s
(FIND (if p v0 v1))
(WAIT Gf p v2 v1)))))

((state <
(Select state (PBsync) WAIT FIND WAIT))
(PBpulse <=
(Select state (PBsync) ON OFF OFF))
0=
(Select state (PBsync) (out PBpulse) (out PBpulse)
(out PBpulse))))

DDD User Manual Control Abstraction and Architecture

(ItrSys->SingleLoop ItrSys) — SingleLoop
Takes an iterative system specification and returns the single loop form.

DDD> (define sp
" (define singlepulser
(lambda (pbsync)
(letrec

([find
(lambda (pbpulse)
(let ([o (out pbpulse)])
(if (pbsync) (wait on) (find off))))]
[wait
(lambda (pbpulse)
(let ([o (out pbpulse)])
(if (pbsync) (wait off) (find off))))])

(find off))))

DDD> (ItrSys->SingleLoop sp)
(define singlepulser
(lambda (state pbpulse)
(case state

[find
(let ([o (out pbpulse)])
(if (pbsync)
(singlepulser wait on)
(singlepulser find off)))]

[wait
(let ([o (out pbpulse)])
(if (pbsync)
(singlepulser wait off)
(singlepulser find off)))])))

(SingleLoop->Select SingleLoop) — Select
Takes a single loop specification and returns the control abstraction, Select.

DDD User Manual

DDD> (SingleLoop->Select sl)
(define select
(lambda (s p0 v0 vl v2 v3)
(case s
[find (if p0 v0 v1)]
[wait (if p0 v2 v3)1)))

18 Control Abstraction and Architecture

(SingleLoop->StrtEqns SingleLoop) — StrEqns
Takes a single loop specification and returns the architectural component StrEgns - a set of
stream equations.

DDD> (define sl (ItrSys->SingleLoop sp))
sl

DDD> (SingleLoop->StrEgns sl)
((state <= (select state (pbsync) wait find wait find))
(pbpulse <= (select state (pbsync) on off off off))
(o0 = (select state (pbsync) (out pbpulse) (out pbpulse)
(out pbpulse) (out pbpulse))))

(ItrSys->SeqSys ItrSys) — [Select StrEqns]
Takes an iterative system specification and returns a sequential system. The sequential system
is also optimized to eliminate redundant inputs to Select.

DDD> (define sp (ReadFile "SinglePulser"))
sp

> (ItrSys->SeqgSys sp)
((define select
(lambda (s p0 v0 vl v2)
(case s
[find (if p0 vO0 v1)]
[wait (if p0 v2 v1)1]1)))

((state <= (select state (pbsync) wait find wait))
(pbpulse <= (select state (pbsync) on off off))
(o = (select state (pbsync) (out pbpulse)

(out pbpulse) (out pbpulse))))

DDD>

DDD User Manual Control Abstraction and Architecture

5 Algebra on Sequential Systems s C08; e = C oS, J[F 3 CyoS, iF

At this stage in design, a sequential system consisting of a control specification, and an archi-
tectural component have been derived. Although this step in the derivation is mechanical, not
every sequential system describes an implementable circuit. The identification of like terms
may be necessary to reduce the complexity of the circuitry; signals may have to be merged in
order to satisfy certain target constraints; abstract data types such as memories, stacks, alu’s, or
some subprocess may have to be factored from the description in order to construct a circuit
defined over more concrete signals; and the partitioning of the design may be necessary to
satisfy logical and/or physical aspects of the design. These decisions are made by the designer.
DDD is a tool by which these decisions may be explored while preserving the integrity of the
specification.

This section presents some of the algebra that has been implemented in DDD to manipulate
sequential systems. The algebra is fairly simple, yet powerful, and manipulates design descrip-
tions in a natural way. A set of transformations, identification, merge, generalization, and
distribution, are defined. From this set, two transformations fundamental to factorization,
general factorization, and signal factorization, are defined. A set of add hoc transformations to
add, rename, extract, and remove stream equations are also defined. A transformation to
optimize the sequential system is defined. A transformation to partially evaluate the control
specification with respect to a stream equation is defined. A set of transformations to derive a
state generator are defined.

5.1 Transformations

Identification is giving a name to an expression by adding a signal equation for it. Identifica-
tion of like terms by a single equation has the effect of eliminating redundant circuitry.
Identifying (inc X) with Z in

(X < (Select p X (inc X) (inc X)))

(Y < (Selectp Y (inc X) Y))

(X & (Select p X Z Z))
(Y & (SelectpYZY))
(Z = (Select p ? (inc X) (inc X))

Merge Equations is a merging of signal equations by instantiating don’t cares, which are denot-
ed by ’?°, and like terms. Merging allows multiple signals to share a common bus.
Merging X and Y
(X = (Select p Z ? X))
(Y = (Select p 7 W X))
returns
(XY = (Select p Z W XY))

DDD User Manual A | Algebra on Sequential Systems

Generalization is the introduction of don’t care arguments to normalize function calls across
Select. Generalizing
(X = (Selectp (fxy) (guvw))))
returns
X=(Selectp(xy? (guvw))
with f extended to
(define f* (lambda (a b c) (f a b)))

Distribution is the distribution of Select over function application.
Distributing Select over add, and sub in

(X = (Select p (add W X) (sub Y Z)))
returns

(X = ((Select p add sub) (Select p W Y) (Select p X Z)))

5.2 Factorization

A system factorization encapsulates a subsystem in order to remove some collection of opera-
tions from the description. The encapsulated subsystem is called an abstract component. The
transformation maintains the correct connectivity between the system description and the fac-
tored component. This technique of encapsulation yields a circuit defined over more concrete
signals.

There are two ways of doing factorizations. The first, called a general factorization, is to state
the set of operations that are to be encapsulated. The subject terms are those in which mem-
bers of the set are applied. The second, called a signal factorization, encapsulates a signal; in
this case the subject terms are those in which that signal’s name occurs as an argument.

Consider the partial system description and its corre-
sponding circuit characterization:

SELECT —

(M <= (Select p M (write M r Y) M (write M s y)))) & SELECT x
(X < (Select p (h X m) X (read M X) (g X v w))) X__{med|———
(Y < (Select p (read Mu) Y (h Y 1) Y)) oy ML LR

Y
Y SELECT

P

DDD User Manual 22 Algebra on Sequential Systems

5.2.1 General Factorization

Applying a general factorization on operations h and g

(M «< (Select p M (write M r Y) M (write M s y))))
(X < (Selectp(h X m) X (read M X) (g X v w)))
(Y & (Selectp(read Mu) Y(hYr) Y))

yields

(HG = (abstHG HGi HGa HGb HGc))
(HGi = (Select p h nop h g))
(HGa = (Select p X ? Y X))
(HGb = (Select p m ? r v))
(HGc = (Select p? ? 7 w))

(M « (Select p M (write M 1 Y)

M (write M s y)))
(X < (Select p HG X (read M X) HG))
(Y < (Select p (read M u) Y HG Y))

where
(define abstHG
(lambda (ia b ¢)
(case i
(nop ?)
(h (h a b))
(g (gabo))

The subject terms (g X v w), (h X m) found
in X, and (h Y r) found in Y, are identified
and replaced with the output of the subsys-
tem, HG. The subject terms are collated,
and a set of combinational signals: an in-
struction signal, HGi, and three inputs to the
subsystem, HGa, HGb, and HGec, are syn-
thesized. A functional specification of the
factored subsystem, abstHG, and its applica-
tion in the description, (abstHG HGi HGa
HGb HGec) are also synthesized.

The factored component, abstHG, becomes a "black box" from the perspective of the system
description. The operations h and g have been encapsulated and only residual signals necessary
to communicate with the black box are maintained within the description. The factorization of
h and g represents a design decision which removes these operations from the description. The
effect on the system description is a set of stream equations defined over more concrete signals.

DDD User Manual 23 Algebra on Sequential Systems

5.2.2 Signal Factorization

Consider again the partial system description. Applying a signal factorization on M

(M ¢= (Select p M (write M r Y) M (write M s y))))
(X <= (Select p (h X m) X (read M X) (g X v w)))
(Y < (Selectp (read Mu) Y(h Y1) Y))

yields

(Mout = (abstM Mi Ma Mb Mpi Mpa))
(Mi = (Select p nop write nop write))
(Ma = (Select p? r ? 5))

(Mb = (Select p? Y ? y))
(Mpi = (Select p read nop read nop))

(Mpa = (Select pu ? X ?))

(X <= (Select p (h X m) X Mout

(g X vw))
(Y <= (Select p Mout Y (h Y r) Y))

where
(define abstM
(lambda (ia b ¢ d)
(letrec
(M (Interpret(M i a b)))
(Interpret
(lambda (miab)
(case i
(nop m)
(write (write m a b))))))
(case ¢
(nop ?)
(read (read M d))))))

abstM | Mout

Each of the operations found in the defining
equation for M, such as, (write M r Y),
(write M s y), are called constructors, since
they return a new M. Each of the operations
on M that occur outside the defining equa-
tion, such as, (read M u), are called probes,
since they return values from the object M. The factorization encapsulates the signal M. Three
combinational constructor signals, Mi, Ma, and Mb, and two combinational probe signals, Mpi,
and Mpa are synthesized to communicate with the abstract component. Each occurrence of a
probe is substituted with the output of the abstract component Mout. A functional specification

DDD User Manual 24 Algebra on Sequential Systems

of the subsystem, abstM, and its application in the description, (abstM Mi Ma Mb Mpi Mpa),
are also synthesized.

The factorization of M leaves five residual signals, Mi, Ma, Mb, Mpi, and Mpa which com-
municate with the abstract component abstM. Since abstM will be implemented with a stan-
dard memory component, the Mi and Mpi represent the read/write instructions to memory, and
Ma, Mpa represent the address, these signals can be collated into a single instruction, and
address stream.

Merging the instructions Mi, Mpi, and addresses Ma, and Mpa returns

(Mout = (abstM MiMpi MaMpa Mb))
(MiMpi = (Select p read write
read write))
(MaMpa = (Select pur X s))
(Mb = (Selectp 7Y ?y))
(X < (Select p (h X m) X Mout

(gXvw))
(Y < (Select pMout Y (h Y1) Y))

where
(define abstM
(lambda (i a b)
(letrec
(M = (Interpret M i a b))
(Interpret
(lambda (m i ab)
(case i
(nop m)
(read m)
(write (write m a b))))))
(read M a))))

Factorization is fundamental to the derivation of designs in DDD. The encapsulation of subsys-
tems is a technique of information hiding analogous to an abstract data type. As complex
objects are factored, the description is refined to more concrete terms. It is this stepwise
refinement of the description which provides the mechanism by which designs are transformed
to an implementation.

This design process continues until the design has been refined into a form which represents an
implementable design. The notion of implementable depends on both the capabilities of the
technology tools used to map the description to some target, and the designer’s decision as to
what to implement within the system description and what implement outside the system de-
scription.

DDD User Manual Algebra on Sequential Systems

5.3 Optimization

Optimizations on a design are done at both the boolean equation level!, and the sequential
system level. At the sequential system level, transformations may be applied to reduce the
complexity of the design by identifying like terms, merging stream equations, minimizing
stream equations, and minimizing selectors. Transformations to identify like terms, and merge
stream equations are discussed in Section 5.1. Transformations to minimize selectors, and
stream equations are discussed in the following sections.

5.3.1 Minimizing Selectors

Selectors are essentially conditional expressions. If-expressions in a selector are minimized
using the conditional simplification rule: (if p r r) — r. For example, given the following
selector:

(define Select
(lambda (s p q vO v1 v2)
(case s
(sO (if p vO v2))
(s1 (if q v1 v1)))))

returns
(define Select
(lambda (s p vO v1 v2)
(case s
(sO @Gf p vO v2))
(s1 v1))))

The conditional test (if q v1 v1) in Select simplifies to (if q v1 v1) which is simply v1. Con-
sequently, the predicate q becomes unnecessary and is removed from the expression.
5.3.2 Minimizing Stream Equations

Just as merge allows for the mcfging of stream equations, it is useful to merge redundant
inputs to a selector in order to minimize a set of stream equations.

Consider the following sequential system:

' Boolean equation minimization using ’espresso’.

DDD User Manual 26 Algebra on Sequential Systems

(define Select
(lambda (s p q vO v1 v2)
(case s
(sO Gf p vO (if q v1 v2)))
(s1 v0))))

(X =(Selectspq X Z7Z))
(Y=(Selectspq YQQ)

Looking at both X and Y simultaneously, notice that there are two instances where X and Y are
updated with the values Z and Q, respectively. The last two inputs to Select, v1 and v2, are
the same. In order to eliminate the redundant Z term in X, and the redundant Q term in Y, the
sequential system is rewritten as

(define Select
(lambda (s p vO v1)
(case s
(s0 @f p vO v1))
(s1 v0))))

(X = (Select s p X Z2))
(Y =(Selectsp Y Q)

The conditional test (if q vl v2) in Select simplifies to (if q v1 v1) which is simply v1. The
equations for X and Y reduce and the q predicate becomes unnecessary and is removed from
the stream equations, as well as the selector.

The effectiveness of this optimization depends on the arrangement of possible values for all the
stream equations associated with a particular selector. Redundant terms in a single equation
may not be reduced using this technique if the redundancy does not occur in all the stream
equations simultaneously.

Consider the following sequential system:

(define Select
(lambda (s p q vO v1 v2)
(case s
(s1 (if p vO (if q vl v2)))
(s2 Gf p v1 v2)))))

(X = (Selects pq Z Z X))
(Y =(Selectspq Y QQ)

DDD User Manual Algebra on Sequential Systems

In this example there are redundant terms in each of the equations. However, when you con-
sider the system as a whole, the inputs to Select are unique and cannot be merged. v0 corre-
sponds to Z and Y, vl to Z and Q, and v2 to X and Q, in equations X and Y respectively.

The transformations to minimize stream equations and selectors are fundamentally different
from the transformations previously described since it affects both the control specification, as
well as the structural specification. Any changes to the selector may effect the stream equa-
tions, and any changes to the stream equations may effect the selector. The optimization is a
global optimization on the sequential system.

5.4 Partitioning

Partitioning provides a powerful tool for reorganizing the design. The partitioning of a sequen-
tial system may be motivated by various aspects of design. Some of the considerations are the
logical and physical organization of the design; the internal connectivity of the design; the
communication specification of the design; and constraints imposed by the target technology.
DDD supports the partitioning of a design along stream equation boundaries. How equations
are grouped is determined by the designer and becomes a part of the design space which must
be explored. Each partition is viewed as a distinct sequential system - each with is own selec-
tor and set of stream equations. Naturally, partitions with identical selectors can share the same
selector. Since each partition is a distinct sequential system, they can be optimized indepen-
dently.

Consider the sequential system:

(define Select
(lambda (s p q v0 vl v2)
(case s
(sO Gf p vO (if q v1 v2)))
(s1 v0))))

(X =(Selects pq X X Z))
(Y=(Selectspg X YY))
(Z=(Selectspq W Z7Z)

Suppose X and Y are grouped together into one partition, and Z in another. This may be a
reasonable grouping since X and Y share signals, and since Z is not dependent on either X nor
Y. Then each partition may be optimized independently resulting in

DDD User Manual 28 Algebra on Sequential Systems

(define Select
(lambda (s p q vO v1 v2)
(case s
(s0 (if p v0 (if q v1 v2)))
(s1 v0))))

Partition 1

(X =(Selects pg X X Z))
(Y =(Selectspg X YY)

(define Select_1
(lambda (s p vO v1)
(case s
(sO (if p vO v1)) Partition 2
(s1 v0))))

(Z = (Select_1 s p W 2))

An alternative partition is to group Y and Z together. Optimizing each of the partitions inde-
pendently returns

" (define Select_1
(lambda (s p q vO v1)
(case s
(sO (if p vO (if q vO v1))) Partition 1
(s1 v0))))

(X = (Select_1spqX?Z)

(define Select_2
(lambda (s p vO v1 v2)
(case s
(sO (if p v0 v1))
(s1 v0))))

(Y=(Sclect 2s5p X Y))
(Z = (Select_ 2s p W Z))

Both of the partitions simplify. In general this is usually the case. However, the added com-
plexity of two controllers, and the inter-partition communication may not offset the simplifica-
tion of the equations. These questions are answered as designs are pushed through to hardware.

DDD User Manual Algebra on Sequential Systems

5.5 Partial Evaluation of Selectors

The partial evaluation of selectors with respect to a particular stream equation returns a special-
ized selector which computes the same function as the original equation. The transformation is
an extension to the creation of a partition containing a single stream equation. This technique
is commonly used to derive the classical state generator, and the various instruction generators
found in a typical design.

5.5.1 Deriving a State Generator

Consider the selector, Select, and the state, stream from the SinglePulser sequential system
from page 17:

(define Select
(lambda (s p vO v1 v2)
(case s
(FIND (if p v0 v1))
(WAIT (if p v2 v1)))))

(...
(state <= (Select state (PBsync) WAIT FIND WAIT))

i)

Partial evaluation of Select, with respect to state returns

(define NextState
(lambda (s p)
(case s
(FIND (if p WAIT FIND))
(WAIT (if p WAIT FIND)))))

(state <= (NextState state (PBsync)))

NextState is derived from Select. The v0, v1, and v2 parameters to Select are instantiated with
the constants WAIT, FIND, and WAIT respectively. NextState will return the values WAIT
or FIND as a function of the present state and predicates. (Note: In this example, the case
statement in the function definition NextState may be simplified. However, at present, DDD
only simplifies if-expressions).

DDD User Manual 30 Algebra on Sequential Systems

(Identify Exp newStrEqnName StrEgns) — StrEqns

Takes an expression, a new stream equation name, and a set of stream equations, and returns a
set of stream equations. The function has the effect of identifying an expression with a stream
equation name.

DDD> (define stregns
o= (select p x (inc y) x (dcr x)))
(y (select p y y (der x) y)))
stregns

DDD> (Identify ’ (inc y) 'z stregns)
((x (select p x z x (dcr x)))
(y (select p y y (der x) y))

)
(z (select p ? (inc Y) ? ?)))

DDD>

(Generalize StrEqn) — SttEqn

Takes a stream equation and returns a stream equation. The function has the effect of general-
izing function calls within a stream equation. Don’t care arguments, "?", are introduced to
generalize the function calls across Select.

DDD> (define stregn
f(x = (select p (£ xy) (guwvw))
stregn

DDD> (Generalize streqn)
(x = (select p (f xy ?) (guvw)))

DDD>

DDD User Manual Algebra on Sequential Systems

(MergeOperations newStrEqnName OpSet StrEqns) — StrEqns

Takes a new stream equation name, a set of operations, and a set of stream equations, and
returns a set of stream equations. The function has the effect of merging a set of operations
into a stream equation. The new equation is given the name newStrEqnName. The set of
operations are specified as a list of operation names in OpSer. If more than one operation must
be done in parallel, multiple streams are created. The parallel operations are allocated using a
naive allocation strategy.

DDD> (define stregqns
P (select p ? (inc x) (der y)))
(y (select p y (inc x) ?))))

(|

DDD> (MergeOperations ‘z ’ (inc dcr) stregns)
(select p ? z z))

(select py z ?))

(select p ? (inc x) (dcr y))))

((x

(y
(z

DDD> (define streqns
"((x <= (select p ? (inc x) (der y)))
(y <= (select p y (inc y) ?2))))

DDD> (MergeOperations ‘z ’ (inc dcr) stregns)
((x <= (select p ? z0 z0))
(y <= (select p y zl1l ?))
(select p ? (inc x) (dcr y)))
(select p ? (inc y) ?2)))

(MergeStuEqns StrEqnl StrEqn2 newStrEqnName StrEqns) — StrEqns
Takes two stream equations, a new stream equation name, and a set of stream equations, and
returns a set of stream equations. The function has the effect of merging two stream equations.

DDD> (define streqns
£ l(x (select p ? ? w w ff))
(y = (select p x 2 w 2 ?2))))

streqgns

DDD> (MergeStrEgns 'x ‘y ‘z stregns)
((z = (select p z ? ww ££)))

DDD User Manual 32 Algebra on Sequential Systems

(Distribute StrEgn) — Exp
Takes a stream equation and returns an expression. The function has the effect of distributing
select over function application.

DDD> (define streqn
*(x = (select p (add w x) (sub y z))))
stregn

DDD> (Distribute streqn)
(x = ((select p add sub) (select p w y) (select p x z)))

(AbstractOperations AbsCompName OpSet StrEqns) — StEqns

Takes an abstract component name, a set of operations to be encapsulated, and a set of stream
equations, and returns a set of stream equations. The function has the effect of implementing a
general factorization. The abstract component name is the name given to the encapsulated
subsystem. The collection of operations to be encapsulated is specified as a list of operation
names in OpSet.

The factorization assumes that a single component, can perform only a single operation at any
given time. If the set of operations identified in the specification require that more than one
operation be performed at one time, multiple abstract components are generated.

DDD> (define streqns
f((m <= (select pm (write m r y) m (write m s y)
(x <= (select p (h x m) x (read m x) (g x Vv W))
(y <= (select p (read mu) y (hy r) y))))
stregns

)

)
)

DDD> (AbstractOperations 'hg ' (h g) streqgns)
((m <= (select pm (write m r y) m (write m s y)))
(x <= (select p hg x (read m x) hg))
(y <= (select p (read m u) y hg y))
(hg-=i = (select p h nop h g))
(hg-v0 (select p x ? y X))
(hg-vl (select pm ? r v))
(Hg-v2 (select p 2 2?2 2 w)))

DDD User Manual Algebra on Sequential Systems

(AbstractSwEqn StrEqnName StrEgns) — StrEqns
Takes a stream equation name, a set of stream equations, and returns a set of stream equations.
The function has the effect of implementing a signal factorization.

DDD> (AbstractStrEgn 'm streqgns)

((m-1 = (select p nop write nop write))
(m-vl = (select p ? r ? s))
(m-v2 = (select p 2 y ? y))
(x <= (select p (h x m) x m—out (g x v w)))
(y <= (select pmout y (hyr) y))
(m-probe-i = (select p read nop read nop))
(m-probe-vl = (select pu ? x ?)))

(AbstractMemory EqnName SirEqns) — StrEgns

Takes a memory stream equation name, and a set of stream equations, and returns a set of
stream equations. The function has the effect of implementing a signal factorization, followed
by a merging of signals for the constructors and probes to form single instruction and address.

DDD> (AbstractMemory ‘m stregns)

((m-i = (select p read write read write))
(m—a = (select purzr x s))
(m-d = (select p ?2 y ? y))

(x <= (select p (h x m) x m—out (g x v w)))
(y <= (select pm-out y (hy r) y)))

DDD User Manual 34 Algebra on Sequential Systems

(AddStrEqn StrEqn StrEgns) — StrEqns
Adds a stream equation to a set of stream equations.

DDD> (define streqgn
"(r = (select puvw)))
stregn

DDD> (AddStrEgn stregn streqns)
((xr (select p v W))

(x (select p z))

(y (select p x))

(z (select p y)))

wonn

(ExtractStrEqn StrEqnName StrEqns) — SttEqn
Takes a stream equation name, and a set of stream equations, and returns the named stream
equation.

DDD> (define stregns
F((x (select p x y z))
(y (select p y z X))
(z (select p z X y))))

streqgns

DDD> (ExtractStrEgn ‘x streqgns)
(x = (select p x y 2z))

(RemoveStrEqn StrEqnName StrEgns) — SttEqns
Removes a stream equation from a set of stream equations.

DDD> (RemoveStrEgn ’'x streqns)
((y = (select py z x))
(z = (select p z X y)))

DDD User Manual Algebra on Sequential Systems

(RenameStrEqn oldStrEqnName newStrEqnName StrEqns) — StrEqns
Renames a stream equation in a set of stream equations.

DDD> (RenameStrEgn ‘X ’newx streqns)
((newx = (select p newx y z))

(y (select p y z newx))
(z (select p z newx y)))

(OptimizeSEL Select) — Select
Takes a selector, and simplifies if-expressions within the selector using the conditional simplifi-
cation rule: (if p r r) — r. At present, case statements are not simplified.

DDD> (define sel
" (define select
(lambda (s p g v0 vl v2)
(case s
(SO (if p v0 v2))
(81 (if p v0O (if g vl v1)))))))

DDD> (OptimizeSEL sel)
(define select
(lambda (s p v0 vl v2)
(case s
(SO (if p v0 v2))
(S1 (if p v0 v1))))))

DDD User Manual 36 Algebra on Sequential Systems

(OptimizeSeqSys Select StrEqns) — [Select StrEqns]

Takes a selector, and its corresponding set of stream equations, and returns a sequential system.
The function has the effect of eliminating redundant data transfers. The function side-effects
the file system by updating the predinfo (predicate information) file to reflect the reduced
number of register transfers.

DDD> (define sel
" (define select
(lambda (s p g v0 vl v2)
(case s
(sO (if p vl v0))
(s1 (if p vO (if g vl v2)))))))
sel

DDD> (define stregns
" ((x (select s p g
P g

)
(y (select s)

X z z)
Y q)

)

stregns

DDD> (OptimizeSegSys sel streqgns)
((define select_1
(lambda (s p v0 vl)
(case s
(sO0 (if p vl vO0))
(sl (if p v0 v1)))))
(select_1 s p x z))
(select 1 s py aq))))

DDD User Manual Algebra on Sequential Systems

(PartialEval StrEgn Select) — Select

Takes a stream equation and a selector, and returns a selector. The function has the effect of
partially evaluating Select with respect to StrEqn. The function instantiates the V arguments in
Select to the corresponding values from StrEgn, and returns a specialized selector with a new
name composed of the name of the stream equation prefixed with next.

DDD> state
(state <== (select s (pbsync) wait find wait))

DDD> sel
(define select
(lambda (s p v0 vl v2)
(case s
[find (if p v0 v1)]
[wait (if p v2 v1])))

DDD> (PartialEval state sel)
(define next-state
(lambda (s p)
(case s
[find (if p wait find)]
[wait (if p wait find)])))

(ExpandFuncDef FuncDef StrEqns) — StrtEqns

Takes a function definition and a set of stream equations, and returns a set of stream equations.
The function has the effect of replacing all applications of the defined function, F uncDef, with
its body with arguments instantiated.

DDD> (define stregns
f((x (select p x y z))
(y (select p y (add x y) x))
(z (select p z z (add x z))))

i n

- DDD> (Expand ‘ (define add

' (lambda (a b) (+ a b))) stregns)
(select p x y z))

(select p y (+ x y) x))

(select p z z (+ x z))))

<
(N

DDD User Manual 38 Algebra on Sequential Systems

(GroupStrEqns StrEgns Order) — [[SttEqns]...]
Takes a set of stream equations, and an order, and returns the set of stream equations grouped
according to the ordering, Order. Where Order is a list of lists of stream equation names.

(define streqgns
"((x = (select pxy z))
(y (select p y (add x y) %))
(z (select p z z (add x z))))

(GroupStrEgns stregns ' ([x y] z))
= (select p x vy z))

= (select p y (add x y) x)

= (select p z z (add x z))

DDD User Manual Algebra on Sequential Systems

6 Register Transfer Table

#

A register transfer table (RTT) is an abstraction of the sequential system. It is a representation
which reflects the abstraction by which boolean equations are derived within the system, and
provides a framework in which designs may be reasoned.

A sequential system is composed of a set of mutually recursive stream equations, defining the
architecture of the design, and a control abstraction, Select which computes the next value for
each of the streams, based on a set of status signals. Select is applied to each of the stream
equations simultaneously. Select takes as arguments, the common status signal of the system
and a list of all the possible values that may occur for that a particular stream, and based on
status, returns one of the possible values. Since Select is applied to all the stream equations,
and the status is common, Select will return the i possible value for each of the equations at
the same time.

Consider the following example derived from the single pulser described on page 17.

(define Select
(lambda (s p vO v1 v2)
(case s
(FIND (if p vO v1))
(WAIT (if p v2 v1)))))

(state < (Select state (PBsync) "WAIT "FIND "WAIT))
(PBpulse < (Select state (PBsync) 'ON "OFF OFF))

Each of the signals State, and PBpulse, are evaluated simultaneously with the next value
determined by Select. If State = FIND, and PBsync = false, Select will return the V, value in
both equations - State and PBpulse will be updated with the values FIND and OFF respec-
tively. If State = FIND, and PBsync = true, Select will return the V, value in both equations
- State and PBpulse will be updated with the values WAIT and ON respectively. Similarly,
Select will return the V, value if State = WAIT and PBsync = true.

Since the status signals to Select are common to all the stream equations, Selecr will always
return the i® value for all the stream equations. An appropriate transformation would be to
abstract Select. The abstraction develops Select as a command generator, CMD. Whereas be-
fore, Select was a function of status, and returned the i*" next value, it now simply returns a
command signal i. A RTT is constructed by creating a column in the table for each stream
equation, and assigning the corresponding i to each of the possible values in each of the stream
equations. Each stream equation corresponds to a column in the RTT, and each i corresponds
to a row in the RTT. The command generator, CMD, issues a command to the RTT which
performs the corresponding register transfer.

DDD User Manual Register Transfer Table

In general, the abstraction to a register transfer table takes a sequential system of the form

(define Select
(lambda (s pg p; ... Pr Vo Vq - V)
(case s
(So (if py v; vy))
(S, Gf p, Gf p; vk -..)))

Sq)

(StrEqn, <= (Select status Wy, W, W, Wy))
(StrEqn, <= (Select status X, X, X, Xy))

(StrEqny, <= (Select status Zy Z, Z, ... Zy)

And derives a command generator, and RTT of the form

(define CMD ey
D 2 EgnM
(lambda (s status) CM StrEgnl | StrEgn " StrEqn
(case s v0 wo0 X0 Z0
(SO (if pO vI v])) vl W1l X1 Z1
(S1 Gf p1 (f p2 vK...))) v2 W2 X2 z2
-(.S-Q -")))) ’ “TI:J . kﬁ . kﬁ . s ») él‘q

Returning to the SinglePulser example: CMD is derived from Select. A RTT composed of
two columns from the stream equations State and PBpulse, and a row for each of the possible
register transfers v0, v1, and v2, is derived from the stream equations.

(define CMD CMD | State|PBpulse
(lambda (s p)
(case s v0 [wait on
(Find (if p v0 v1)) vl |[Find Off
(Wait (if p v2 v1))))) v2 |Wait Off

6.1 Algebra on RTTs (Register Transfer Tables)

In DDD, transformations have been developed to manipulate sequential systems. However, it is
often useful to view these transformations as operating on RTTs. Consequently, transforma-
tions have been developed to translate from stream equations to RTTs. Transformations on
sequential systems can be viewed as transformations on RTTs.

DDD User Manual 42 Register Transfer Table

Identification introduces a new column in the RTT.
Identifying (inc X) with Z in

Merge merges two columns in a RTT by instantiating don’t cares (?), and like terms.
Merging X and Y in

returns

Generalization introduces don’t care arguments to normalize function calls in a column.
Generalizing f and g in X

DDD User Manual Register Transfer Table

returns [T
CMD X

(f" x y ?2)
(g uv w)

B O

Merge operations merges a set of operations into a column.
Merging h and g in

CMD M X b 4
0 M (h X m) (read M u)
il (write M r Y) X ¥
2 M (read M X) (h Y r)
3 |(write M s y) [(g X v w) Y
returns [T
CMD M X Y HG
0 M HG (read M u) (h X m)
1 |(write M r Y) X Y ?
2 M (read M X) HG (h ¥ r)
3 | (write M s y) HG Y (g X v w)

Abstract stream equation encapsulates a column and introduces a set of columns which specify
communication with an abstract component.
Factoring M in

CMD M X Y
0 M (h X m) (read M u)
1 [(write M r Y) X ¥
2 M (read M X) (h ¥ r)
3 |(write M s y)|[(g X v w) Y
returns [T T T 1
CMD| Mi Ma |Mb |Mpi |Mpa X Y
0 nop ? ? |read| u (h X m) M
1 |write| r Y |nop ? X Y
2 nop 2 ? |read| X M (h ¥ r)
3 |write| s Yy |nop ? | (g X v ow) Y

DDD User Manual 44 Register Transfer Table

Abstract operations encapsulates a set of operations and generates a set of columns to specify
the communication with the abstract component.
Factoring h and g in

CMD M X

M (h X m)
(write M r Y) X

M (read M X)
(write M s y) | (g X Vv W)

M X b4

M HG (read M u)
(write M r Y) X pd

M (read M X) HG
(write M s y) HG ¥

Optimizations on RTT’s can eliminate redundant rows. These operations affect the CMD
generator and it is updated appropriately.
Merging rows in

(define CMD
(lambda (s p Q)
(case s
(sO (if p 0 (if g1 2)))
(s1 0))))

(define CMD
(lambda (s p)
(case s
(sO (if p 0 1))
(s1 0))))

The RTT may be partitioned along column boundaries. A set of columns may be grouped

according to some partitioning strategy. Partitioning column X and columns Y and Z, and
updating the respective CMD generators in

DDD User Manual Register Transfer Table

(define CMD cup = 1 e
(lambda (s p q) 0 7 % 7
(case s ; 5
(sO (if p 1 (if g 2 3))) % (1n§ X)| ¥ e
(s1 0)))) .
3 Z X Z
returns
(define CMD 1
(lambda (s p) CMD_1 X CMD| Y Z
(case s
(sO (if p 1 0)) 0 Z 0 X Z
(s1 0)))) . (inc X) il Y ?
2 2 (inc Y)
3 X 2

Partially evaluating the CMD generator with respect to a column in the RTT has the effect of

moving a column from the RTT to a CMD generator.

(define CMD

(lambda
(case
(s0

(sl

returns

(s p)

S

(if p 0 1))
(if p12)))))

(define CMD-x

(lambda
(case
(s0

(sl

DDD User Manual

(s p)
S
(if p X 2

))
(if p ? ¥}))))

46

CMD| X Y
0 X ¥
1 r; ?
2 Y ?

CMD| Y
0 Y
1 2
2 ?

Register Transfer Table

(StrEqns->RTT StrEgns OutFile) — ()llOutFile
Takes a set of stream equations and creates an output file. QutFile is the formatted register
transfer table.

DDD> (define streqns
" ((x (select p
(y (select p
(z (select p
streqns

DDD> (StrEgns->RTT streqgns "stregns.rtt")
The total line width of table =
()

stregns.rtt

(RTT->StrEqns Regs RTT) — StrEqns

Takes a set of register names, and a register transfer table (in s-exp format), and returns a set of
stream equations. The function loads the predinfo (predicate information) file to reconstruct
the stream equations.

DDD> (define rtt
"((xyz) (xyz) (yzy) (zyx) (y zy)))
2 o)

DDD> (RTT->StrEqns ' (x y) rtt)
((x <= (select pxy z ¥)

(y <= (select py z y z)

(z = (select p z y x y))

DDD User Manual Register Transfer Table

7 Projection f s Cpe8y o os C o8, fF > CpoSy [IF

Projection is defined as a mapping of a sequential system defined over an abstract basis, given
a target representation, to a sequential system defined over the target basis. The mapping is
intended to be meaning preserving and defines a syntactic correspondence between each term in
the abstract basis to corresponding terms in the target basis. This notion can be expressed in
the following example:

Consider a simple addition expression (+ a b) denoted by S. Then a projection function P: S
— §’, maps each term in S to a corresponding term in S, defined by

P:{a — a’, b = b/, AXy.+xy — Axy.+xy}
derives (+ a’"b).

DDD takes a sequential system C,+S, //F, which is defined over some abstract basis, to a collec-
tion of sequential subsystems defined over a binary representation, CpSy JJF. Transformations
to project stream equations and selectors have been defined. The mapping from the abstract
basis to the binary basis is input to the system and is developed by the designer. Representa-
tions, like the original specification, are assumed to be correct, thus, the correctness of the
representations are not secured by DDD - DDD simply provides a tool by which the mechanical
projection is automated.

It is at this stage in the derivation that representations necessary to move from one level of
description to another are incorporated. However, the methodology does not preclude the
declaration of representations at any prior stage in the design phase.

7.1 Projecting Selectors

Selectors, such as the command generator described in the RTT abstraction (Section 6), and the
next-state generator described in Section 5.5, may also be projected. The projection of selectors
to a binary representation is treated similar to the projection of stream equations. A projection
map, similar to the one for stream equations, is defined to map the abstract values of the selec-
tors to the target representation.

For example, given the command generator from Section 6 (page 44)

(define cmd
(lambda (s p)
(case s
(s0 (if p vl v2))
(s1 v0))))

DDD User Manual 49 Projection

and a set of representations for v0, v1, and v2:
v0 — [0 0]
vl = [0 1]
v2 = [10]

projecting, returns two copies of cmd, one for each bit.

(define cmd_bit0 (define cmd_bitl
(lambda (s p) (lambda (s p)
(case s (case s
(O G@fp01) (s0 (if p 1 0))
(s1 0)) (s1 0)))

7.2 Projecting Stream Equations
Consider the set of stream equations

(X = (Select p f g H))
(Y = (Select p u W u))

and suppose that f, g, and u are symbolic constants, and X, Y, H, and W are variables defined
over some abstract base type. The following binary representation may be imposed on the
equations: f, g, and u are bit constants with values 000, 001, and 1 respectively. X is a 3-bit
signal and Y is a 1-bit signal. H and W are inputs to the system. This representation is encod-
ed by a projection function that maps symbolic values in the abstract basis to values in a binary
basis.
X = [Kiie Xoia Xoiol
Y = [Yyiol
f—>[000]
g—[001]
u—[1]
H — [Hyie Hyy Hiiol
W = [W]

The resulting set of stream equations are

(Xpip = (Select p 0 1 Hy,p))
(Xpiy = (Select p 0 0 Hy,,)))
(X = (Select p 0 0 Hyp))
(Yoo = (Select p 1 W 1))

DDD User Manual 50 Projection

The mapping function may describe mappings for more complex terms than variables and
symbolic constants. For example, the abstract stream equations may contain a bitwise or
operation. The corresponding projection would be the binary representation of or.

(or Y W) - [(Yyo + W)
(or X H) = [Xie + Hpiw) Kpin + Hiir) Koo + Hyio)]

The entry into the projection table is more general. Operations are specified with the function
name on the left hand side, and a lambda expression on the right hand side which takes the
same arguments as the operation to be projected, and returns the expression or’ed in the correct
target representation. Thus, the or operation is written as

or — (lambda (a b) (binary-OR a b))

(define binary-OR
(lambda (x y)
(cond
((null? x) nil)
((atom? x) (list x "+ y))
(t (cons (list (car x) ’+ (car y))
(binary-OR (cdr x) (cdr y)))))))

where binary-OR is a function which returns the correct binary representation of or over

arguments a and b.

Once selectors and stream equations are mapped to a binary representation, they are translated
to boolean equations. Section 10, discusses the translation of projected stregns into boolean
equations.

DDD User Manual Projection

To incorporate a representation in DDD:

BitMap
Define a representation mapping by defining a "back-quotted" expression in the following form:

(define P
‘([ide, ,(lambda (...) exp,)]

lidey (lambda (...) exp,))

which is interpreted as a mapping from an abstract basis to a target basis
P:{ide, — exp,, ..., idey — expg}

ide,...ideg Denotes every identifier in the abstract description.
exp,...expp Denotes the corresponding values in the target basis.

DDD> (define bitmap

“((x , (lambda () " [x.2 x.1 x.01)))
(y ,(lambda () " [y.0]1)))
(£ ,(lambda () [0 0 0])))
(g ,(lambda () [0 0 1])))
(u , (lambda () ‘[1])))
(h , (lambda () *[h.2 h.1 h.0])))
(w , (lambda () "[w])))))

DDD User Manual 52 Projection

(ProjectStrEqns RepMap StrEqns N) — StEqgns

Takes a representation map, a set of stream equations, and the number of bits, and returns a set
of stream equations. The function has the effect of projecting a set of stream equations defined
over an abstract basis to a set of stream equations defined over N-binary values. The integer,
N, specifies how many bits to return.

DDD> (define streqns
(X (select
(Y (select

streqgns

DDD> (define bitmap
‘((x , (lambda ()
(y , (lambda ()
(f , (lambda ()
(g , (lambda ()
(u , (lambda ()
(h , (lambda ()
(w , (Lambda ()
bitmap

DDD> (ProjectStrEgns bitmap stregns 3)
{ (X.2 (select p 0 1 h.2))

(X1 (select p 0 0 h.1))

(X.0 (select p 0 0 h.0))

(Y.0 (select p 1l w 1)))

DDD User Manual Projection

(ProjectSEL RepMap Select) — [SelectQ ... SelectN]
Takes a representation map and a selector, and returns N selectors defined over N-binary
values.

DDD> (define cmd-gen
" (define cmd
(lambda (s p)

(case s
(sO (if p vl v2))
(s1 v0)))))

cmd—-gen

DDD> (define bitmap

*((v0 , (lambda () ‘[0 0]))
(vl , (lambda () [0 11]))
(v2 , (lambda () ‘[1 01))

bitmap

))

DDD> (ProjectSEL bitmap cmd-gen)
((define cmd.1
(lambda (s p)
(case s
(s0O (if p vl v2))
(sl v0)}))
(define cmd.0
(lambda (s p)

(case s
(sO (if p vl v2))
(sl v0)))))

DDD User Manual 54 Projection

8 Input/Output

The DDD system is implemented as a collection of Scheme programs that implement a design
algebra. Since the system is written in Scheme the entire set of Scheme i/o functions are
available within the system. However, some simple i/o extensions have been defined to make
certain routine operations simpler.

(open-output-file-prompt QutFile) — port

Returns a new output port. The function creates a new output port for the file specified by
OutFile. If the file exists, the function prompts the user to either return an error if the file is
not to be overwritten, or deletes the preexisting file and creates a new output port for the file.
The OutFile must be a string.

(ReadFile InFile) — Exp
Returns first s-expression in the input file. InFile must be a string.

(WriteFile Exp OutFile) — ()llOutFile

Writes an expression to the specified output file in pretty-print format. If the file exists, the
user is prompted as to whether the file should be deleted. Exp is any valid expression. Out-
File must be a string.

(AppendFile Exp OutFile) — ()llOutFile

Appends the values of Exp to a file specified by OutFile. If the file exists, Exp is appended to
the file. If the file does not exist, a new file is created. Exp can be any valid expression.
OutFile must be a string.

DDD User Manual Input/Output

9 Daisy Interface

Animation of design is a fundamental part of the design process. As an initial specification is
developed at the algorithmic level, the execution of the specification helps the designer debug
and understand the behavior of his design.

As the derivation process progresses through the various levels of abstraction, animation at each
of these levels defines good design. The animation model in this research is developed around
the notion of the executability of the specification. That is, each intermediate form of the
circuit, is directly executable without any need for the development of extractors. The source
for animation is the same for transformation.

Although the algorithmic specification is executable directly in SCHEME, the sequential system
descriptions are executed in Daisy. Daisy’s normal order evaluation, and stream constructs
provide a good modeling environment for these designs. These features must be added to the
SCHEME environment. This is under development and would provide a uniform environment.

A set of transformations have been implemented to transduce stream equations to Daisy. The
transduction is only partial and requires manual editing of the Daisy code. There is no auto-
mated support to transduce the basis to Daisy, thus this must be done manually. This maybe a
formidable task, unless a library of basis functions are established. Care must be taken in any
manual intervention since errors are most likely to be introduced here. However animation is
orthogonal to deriving correct hardware from a specification.

DDD User Manual Daisy Interface

(StrEqns->Daisy FuncName RegSet StrEqns OutFile) — ()llOutFile

Takes a function name, a list of registers, a set of stream equations, and a file name, and
generates the corresponding set of Daisy stream equations. The result is written out to the file
name specified. The register set defines which of the signals is a register. The function name
can be any valid Daisy symbol and defines the name of the set of Daisy stream equations.

DDD> S
((state <= (select state pgqr £figfigqg))
(x <= (select state p g r x x zz (dcr x) X
(add (top s) x)))
(s <= (select state pgr s s s (push s x) s (pop s)))
(rdy <= (select state p g r nil rdy rdy rdy tt rdy))
(go <= (select state p g r go go go go go go))))

DDD> (StrEqns->Daisy 'SUM ' (state x s rdy) S "S.daisy")
()

S.daisy
SUM = ~\[initargs].
REC: [[STATUS STATE X S RDY GO]
< | STATUS
XPS:<STATE P Q R >
| STATE
< @STATE ! SELECT:<STATUS F I G F I G >>
| X
< @X ! SELECT:<STATUS X X ZZ (DCR X) X (ADD (TOP S) X) >>
| S
< @S ! SELECT:<STATUS S S S (PUSH S X) S (POP S) >>
| RDY
< @RDY ! SELECT:<STATUS NIL RDY RDY RDY TT RDY >>
| GO
SELECT:<STATUS GO GO GO GO GO GO >
>
< STATUS STATE X S RDY GO >]
TRACE = ~\[STATUS STATE X S RDY GO].
<STATUS STATE X S RDY GO >

initargs, must be expanded to include the appropriate set of initial arguments. Function
applications must be edited to conform to Daisy syntax. For example the term (DCR X) should
be rewritten to be DCR: <X>

DDD User Manual 58 Daisy Interface

(StEqns->DaisyConstants StrEgns OutFile) — ()llOutFile
Takes a set of stream equations, and a file name, and generates a set of constant stream defini-
tions for every symbol. The result is written to the output file.

DDD> (StrEgns->DaisyConstants S "Sconst.daisy")

<MEM x>

<llill x>

<||gu *>
ZZ = <Wgzz" *>
DCR <"dcr" *>
ADD <"add" *>
TOP <"topll *>
PUSH = <"push" *>
POP = <Ilpopll *)
TT _ <llttll *>

The function does a brute force "streamification" of all identifiers. Some identifiers will have
other definitions and its constant definition should be deleted.

DDD User Manual Daisy Interface

(SEL->Daisy Sel OutFile) — ()llOutFile

Takes the combinator Select and generates a Daisy syntax version. The result is written to the
output file.

DDD> (define SEL
" (define select
(lambda (s p0 pl p2 v0 vl v2 v3 v4 v5)
(case s
[i (if p0 vO v1)]
[f (if pl v2 v3)]
[g (if p2 v4 v5)1))))

DDD> (SEL->Daisy SEL "sel.d")
0

DDD>

sel.d

select = "\ [[s p0 pl p2] v0 vl v2 v3 v4 v5]
if:<

same?:<s "i"> if:<p0 v0 vl1>

same?:<s "f"> if:<pl v2 v3>

same?:<s "g"> if:<p2 v4 v5>>

SELECT = <select *>

DDD User Manual 60 Daisy Interface

10 Integrating with Logic Synthesis Tools

e e e e e

Logic synthesis refers to the low-level mapping of logic equations to a given target technology.
The DDD system integrates with various logic synthesis tools in order to provide boolean
minimization, and realization paths to MSI level Programmable Logic Devices (PLDs), and
VLSI technology (PLA, Gate-Array, Standard-Cell, etc...).

10.1 Boolean Equation Generation

DDD generates a set of boolean equations from either selectors, or stream equations.

10.1.1 Generating Boolean Equations from Selectors

Selectors are compiled directly into a sum-of-products boolean equation. The selectors must
have already been projected to bit-values. Consider the following command generator
(define cmd_bit0
(lambda (s p)
(case s
(s0 if p 0 1))
(s1 0))))

In this example, ecmd_bit0, returns a 0, when s0 and p is true, or when sl is true. The function
returns a 1, when s0 is true, and p is false. The boolean equation for this selector is written as

cmd_bit0 = s0 & ~p;

Boolean equations for case-statements are generated to take advantage of the encodeing of the
predicate, rather than expanding the expression to a series of if-statements. For example,
looking at a memory instruction generator

(define mem-inst
(lambda (s i p q)
(case s

(s0 (fp0 1)

(sl (case i
(10 (if p 1 (if g 1 0)))
(i1 ifq 0 1))
(12 (if p 0 1))

(s2 (if q 1 0)))))

DDD User Manual Integrating with Logic Synthesis

The boolean equation generated is

mem-inst = q & s2
|'p & i2 & sl
| 1q & il & sl
lq&!p &i0 & sl
Ip &i0 & sl
I''p & s0 ;

10.1.2 Generating Boolean Equations from Stream Equations

DDD generates either D-type or Toggle-type boolean equations to represent stream equations as
described by Winkel in [17,18]. The D-type generates a single minterm for each input load,
feedback load, 1 load, don’t care load, and omits O loads, and is implemented with a D-type
register. The Toggle-type generates two minterms for each input load, a single minterm for a
1, 0, or dontcare load, and omits a minterm for a feedback load, and is implemented with a

Toggle-type register.

The correspondence between a stream equation and its boolean equation representation is tied
closely with the register-transfer table (RTT) abstraction discussed in Section 6. Each of the
possible values in a stream equation are indexed with a command code which is issued by the
command generator derived from the selector. This command is incorporated into the boolean
equations so that a minterm will represent the "on set" corresponding to the activation of the
appropriate register transfer.

Consider the following stream equation and its corresponding RTT

CMD

>

(X = (Select status X YO0 1 7))

S WNR O
VR OK X

A sequential assignment of command codes, 0 through 4 are assigned to each of the possible
values in the stream equation. The possible values in a stream equation are categorized into
four distinct types: a feedback load (or hold), a new data load, a 0 load, a 1 load, and a don’t
care load.

A D-type equation generates a minterm for a feedback load and a new data load by creating a
term that is the product of the associated command and signal to be loaded. A 0 load is sup-

DDD User Manual 62 Integrating with Logic Synthesis

pressed since it does not express a value in the on set. A 1 load is simply implemented by the
command code, and a don’t care load is implemented as the product of the associated command
code and don’t care symbol "?". Given the assignment of command codes, the corresponding
D-type boolean function is derived:
X =cmd0 & X

+cmdl &Y

+ cmd3

+cmdd & 7;

A Toggle-type equation suppresses the minterm for a hold since that is the default of the logic.
Two minterms are generated for a new data load by creating a term which implements the
product of the associated command code with the exclusive-OR of the signal with the new data.
A 0 load is implemented by the product of the command code and the signal, and a 1 load is
implemented by the product of the command code and the complement of the signal. A don’t
care is implemented as the product of the associated command code and the don’t care symbol.
The corresponding Toggle-type boolean function may also be derived:

X=cmdl &~X &Y
+cmdl & X & ~Y
+cmd2 & X
+ cmd3 & ~X
+cmd4 & 7;

Both methods generate different equations. Depending on the type of registers available in the
target technology, and the characteristics of the stream equations; the number of feedback loads,
1 loads, 0 loads, input loads, and dontcare loads, one type may lead to simpler logic than the
other.

10.2 ESPRESSO Interface

ESPRESSO [12] is a heuristic based truth table minimizer which is part of the Berkeley VLSI
Tools set. It takes as input a two-level representation of a multi-valued Boolean function (truth
table), and produces a minimal equivalent representation. ESPRESSO automatically verifies
that the minimized function is equivalent to the original function. The input is described as a
character matrix with keywords imbedded in the input to specify the number of input variables,
the number of output functions, and the number of product terms.

DDD derives truth tables in a format that is suitable for input to ESPRESSO, as described in
the Berkeley 1986 VLSI Tools reference manual [12]. Each position in the input plane corre-
sponds to an input variable where a "0" implies the corresponding variable appears comple-
mented in the product term, a "1" implies the input variable appears uncomplemented in the
product term, and a "-" implies the input variable does not appear in the product term. For

DDD User Manual 63 Integrating with Logic Synthesis

each output, a "1" implies the minterm has a function value of 1, and a "-" implies that the
minterm has a function value of dontcare or unspecified.

Once stream or boolean equations are converted to the truth table format compatible with
ESPRESSO, they are input to the ESPRESSO system for simplification. ESPRESSO is applied
to each of the truth tables individually. The minimized truth tables (output of ESPRESSO) may
then be transduced to boolean equations. These boolean equations are in sum of product form
and may be input to various tools.

The general ESPRESSO format generated by DDD has the form

% X ;name of the stream or boolean equation
% i ... i ;inputs to the equation

% N ;number of command bits

al ;number of inputs

01 ;number of outputs (always 1)

cmdy, ... cmd, i, ... 1; 1 ;truth table

.end ;end marker

For example, converting either the stream equation, or the corresponding boolean equation

(X =(Select status X YO0 1 7)) X=cmd0 & X +cmdl &Y
+cmd3 + cmd4 & 7;
into an ESPRESSO format truth table results in

% x
% Xy
% 3
45
0l
0001-1
001-11
010- - -
011- - -
.end

DDD User Manual 64 Integrating with Logic Synthesis

10.3 EQN Interface

EQN is a format for specifying boolean equations. The format is compatible with various logic
synthesis tools, such as EQNTOTT and MISII. DDD generates EQN-format equations from
either stream equations, or boolean equations.

The EQN-format has the following form:
NAME = filename ;

The NAME specifies the file name. INORDER =il 1i21i3 ...;
OUTORDER = o0l 02 03 ... ;
The INORDER and OUTORDER specifies ol=..;

the input and outputs, respectively, followed 02=..;

by a set of boolean equations.

For example, a set of boolean equations in DDD:

((sum ((!cin & !'a & b) (Icin & a & !b)
(cin & !'a & !'b) (cin & a & b)))

(cout ((!cin & a & b) (cin & !a & b)
(cin & a & !b) (cin & a & b)))))

are translated into EQN-format:

NAME = adder.egn ;
INORDER = cin a b ;
OUTORDER = sum cout ;

sum = !cin & !a & b
| !'cin & a & !b
| cin & !'a & !'b
| cin & a & b;

cout = !cin & a & b
| cin & !'a & b
| cin & a & !b
I

cin & a & b;

DDD User Manual Integrating with Logic Synthesis

10.4 PLA Interface

A programmable logic array (PLA) provides a regular structure for implementing combinatorial
sequential logic functions. Typically, PLA’s compute some logic function of its inputs and
yields outputs. Some of these outputs may be fed back to the inputs, thus forming a finite state
machine as in figure 1.

inputs ___| | outputs

PLA

registers

The PLA uses an AND-OR structure. Latches are incorporated into the planes and correspond
to half a latch. The basis for the PLA is a sum of products form of representation of boolean
expressions. The product terms are formed in the AND plane, and the outputs are formed by
ORing the appropriate product terms. Thus the height of the PLA is determined by the number
of distinct product terms, and the width by the number of inputs and outputs.

The DDD system integrates with MPLA, a technology independent PLA generator, by gener-
ating a set of boolean equations, in EQN-format, compatible with EQNTOTT from a set of
stream or boolean equations. DDD creates an EQN-format file. EQNTOTT generates a truth
table suitable for PLA programming from a set of boolean equations. The truth table is then
minimized with ESPRESSO and input to MPLA. Equations for both static and dynamic PLA’s
may be generated.

Static PLA’s are the most straight forward design. The design uses a pseudo-nmos gate.
Advantages are simplicity, small size, and the ability to handle feedback. The disadvantages
are static power dissipation, and possible speed problems.

Dynamic PLA’s generate less power and ground noise, but take a larger area and cannot imple-
ment function which requires feedback. A two-phase non-overlapping clocking strategy is
required to implement the design. In this strategy, the AND stage is precharged during phas-
e-1, and evaluated during phase-1. The OR state is precharged during phase-2 and evaluated
during ~phase-2. This leads to an OR-NAND structure, in which case the equations implement
the complement for all the outputs. Magic layouts for dynamic and static PLA’s are then
generated.

DDD User Manual 66 Integrating with Logic Synthesis

10.5 Altera Interface

The PLD (Programmable Logic Device) provides an inexpensive, rapid prototyping environment
for hardware design. A PLD is an off the shelf component that can be programmed by the user
to implement some logic function. Combinational circuitry, as well as latched function are
typical in such devices. The logic, i/o pins, register count are specific to the device being
programmed. PLD’s have the inherent advantage over other target technologies (full custom,
standard cell, gate array). They have a short development lead time. Low design costs and
interchangeable inventory.

Input to PLD programmers is typically a fuse map. Higher level tools (Palasm, Altera) take a
set of inputs, outputs, and boolean equations, and compute a fuse map for a specific device.

The DDD system generates a set of inputs, outputs, connectivity network, and a set of boolean
equations from a set of boolean equations. Specifically, DDD generates an ADF (Altera Design
File) file, that is input to the ALTERA EPLD system [1], which programs devices.

Altera provides CMOS EPLD (Erasable PLD) technology. Compared to bipolar fuse tech-
nology, CMOS provides lower power dissipation and a cooler operating temperature, which
enables greater logic densities. The device uses an EPROM programming mechanism enabling
reprogramming in the event of design changes.

The ADF file has the following form:
HEADER: filename
The HEADER information is simply a com- PART: AUTO

ment line which contains the file name. INPUTS: il1i2i3 ...
OUTPUTS: ol 02 03 ...
The INPUTS and OUTPUTS are derived NETWORK: ...

from the right hand side, and left hand side EQUATIONS:

of the equations, respectively. ol =2

02 =..,

The PART: AUTO parameter specifies that
an appropriate ALTERA part will be chosen.
However a manual specification of the part .
may be necessary if an appropriate part is | END$
not in the ALTERA compiler’s library.

The NETWORK defines how signals are connected within the PLD. Currently supported
Altera configurations are : CONF - combinational output/no feedback

COCF - combinational output/combinational feedback

RONF - register output/no feedback

TONEF - toggle output/no feedback

TOTF - toggle output/toggle feedback

DDD User Manual 67 Integrating with Logic Synthesis

(SEL->BoolEqgns Sel) — BoolEqgns
Takes a selector defined over bit-values and returns the boolean equation.

DDD> (define mem-inst
" (define mem-inst
(lambda (s i p q)
(case s
(sO (if p 0 1))
(sl (case i
(i0 (if p 1 (if g1 0)))
(114 (dE~g 0 1))
@20 (4€ p 0 LYY)Y)) ¥y)
mem—-inst

DDD> (SEL->BoolEgns mem-inst)
(mem—-inst ((!p & i2 & sl1)
(g & i1 & s1)
(g & 'p & 10 & sl)
(p & 10 & sl)
(''p & s0)))

(StrEqns->BoolEqns StrEqns RegType) — BoolEqgns
Takes a set of stream equations defined over bit-values, a register type (either ’d or ’toggle),
and returns a set of boolean equations.

DDD> (define streqns
T ((x (select status x y ? 2?2 0))
(y (select status y y x ? 1))))

DDD> (StrEgns->BoolEgns stregns ‘d)

((x ((!p2 & !pl & !p0 & x)
(!p2 & !'pl & p0 & y)
('p2 & pl & !p0)
(!p2 & pl & p0)))

(y ((!p2 & !pl & !p0 & y)
('p2 & !pl & p0 & y)
(!p2 & pl & !p0 & x)
(!'p2 & pl & p0)

(p2 & !pl & !p0))))

Auxiliary Functions:
(StrEqn->BoolEqn StrEgn RegType) — BoolEqn
Takes a stream equation, register type, and returns a boolean equation.

DDD User Manual 68 Integrating with Logic Synthesis

(StrEqns->ESPRESSO StrEgns RegType Group) — (IITT.Group

Takes a set of stream equations, a register type (either ’d or ’toggle), and a group, and gener-
ates a truth table for each equation. The truth tables for each equation are written out to files
with the equation name concatenated with the group name.

DDD> (define streqgns
Pl (3% (select status x y ? ? 0))
(y (Select status y y x ? 1))))
stregns

DDD> (StrEqns—>ESPRESSO stregns ‘d "esp)
X.esp

y.esp

()

The Group may be any valid identifier. Appropriate naming conventions will allow the identi-
fication of equations belonging to the same set. For example a set of stream equations defining
"bitslice 18" on a design may be appropriately grouped by the group name bit18. This will
create a set of files corresponding to each equation in the bitslice, with each having the same
file extension, bit18.

Auxiliary Functions:

(StrEqn->ESPRESSO_dtype StrEgn) — TT
(StrtEqn->ESPRESSO_toggletype SirEgn) — TT

Takes a single stream equation and returns a truth table in s-exp form.

DDD User Manual Integrating with Logic Synthesis

(BoolEqns->ESPRESSO BoolEgn Group) — ()IITT.Group

Takes a set of boolean equations in sum of product form, and a group name, and generates a
set of truth tables corresponding to each equation. The truth tables for each equation are
written out to files with the equation name concatenated with the group name. The s-exp
notation for the sum of products form is a list of lists.

For example the equation x = -a & b + a & -b is represented by the list (x ((!a & b) (a &
'b))), where the first element denotes the name of the equation, and the second is a list denot-
ing an OR of each of the minterms.

DDD> (define adder
"{((sum ((!cin & !'a & b) (!cin & a & !Db)
(cin & !'a & !b) (cin & a & b)))
(cout ((!cin & a & b) (cin & !a & b)
(cin & a & !'b) (cin & a & b)))))
adder

DDD> (BoolEgns—->ESPRESSO adder fadder)
sum.adder
cout.adder

0

sum.adder cout.adder

% sum % cout

% cin a b % cin a b
% 0 % 0

i3 .13

o1l .01

@ 0 1LT 0111
0101 I 041 .4
1300 il I L0 1

0 [I 1 |] L 1 P
end end

Auxiliary Functions:
(BoolEqn->ESPRESSO BoolEgn) — TT
Takes a single boolean equation and returns a truth table in s-exp form.

DDD User Manual 70 Integrating with Logic Synthesis

(ESPRESSO Input InputType Group [RegType]) — BoolEqns

Takes an input (either a set of stream equations, or a set of boolean equations), an input type
(either ’streqns or ’booleqns), a group name, and an optional argument specifing the register
type (either ’d or ’toggle), and returns a set of minmized boolean equations. The optional
argument, RegType, is only necessary when the input type is a set of stream equations.

DDD> (define adder
"{(sum ((!cin & !a & b) (!cin & a & !b)
(cin & !'a & !b) (cin & a & b)))
(cout ((!cin & a & b) (cin & !a & b)
(cin & a & !b) (cin & a & b)))))
adder

DDD> (ESPRESSO adder ‘boolegns ‘adder)
((cout ((cin & a) (cin & b) (a & b)))
(sum ((cin & !a & !b)
(!cin & a & !b)
(tcin & !a & b)
(cin & a & b))))

DDD> (define streqgns
"((x = (select pxy ? 2 0))
(y = (select pyy x ? 1))))

DDD> (ESPRESSO stregns 'streqns 'bit32 'd))
((x ((!cmd.2 & cmd.0 & y) (!cmd.2 & !emd.0 & x)))
(y ((!'cmd.2 & !cmd.1l & y)
(!cmd.2 & cmd.1l & x)
(cmd.2 & !'cmd.l & !cmd.0))))

The function side-effects the file system by generating an ESPRESSO-format truth table for
each equation. These files have the individual stream equation names concatenated with the
group name. In addition, the function creates two more files. The function makes a system
call, and applies ESPRESSO to each of the truth tables and creates a single file with the output
of ESPRESSO. This file is named with the group name concatenated with the file extention
.min. The other file created is an s-exp format of the truth table output by ESPRESSO. This
file is named with the group name concatenated with the file extention . sch.

DDD User Manual Integrating with Logic Synthesis

In the first example, (ESPRESSO adder "boolegns ’adder), the resultin ; files will be:

sum.adder cout.adder

% sum % cout
%$ cin a b $ cin a b
% 0 % 0
.13 .13
.01 =0
0 01 1 1 T i [|
0101 1011
1 000 1 1 1 0 %
1 1 Py R 1.3 -3 H
.end end
adder.min adder.sch
#% cout ((% cout)
#% cin a b (¢ (cin a b))
#% 0 (* 0)
.1 3 (.i 3)
0 K {.61il)
.p 3 (.p 3)
1)= 1 fay 1 = 1)
1-1 1 (1) = 1 1)
=1 L (<~ 1 1 1)
e (o))
#% sum (% sum)
#% cin a b (5 (cin a b))
#% 0 (5170)
3 (RAbIRRC!)
SRl | {,10=1)
.p 4 (.p 4)
100 1 (1170 0 1)
010 -1 (8 F) 1)
001 1 (0.0 1 1)
111 1 1 14 1)
.e (:e))

DDD User Manual 72 Integrat ng with Logic Synthesis

(ESPRESSO->BoolEqns 7T) — BoolEqgns
Takes a set of truth tables in s-exp form, and returns the corresponding set of boolean equa-
tions.

DDD> (ESPRESSO->Sexp "adder.min" "adder.sch")
()

DDD> (ESPRESSO->BoolEqns (ReadFile "adder.sch™))
((cout ((cin & a) (cin & b) (a & b)))
(sum ((cin & !a & !b)
(!cin & a & !b)
(!cin & 'a & b)
(cin & a & b))))

Auxiliary Functions:

(ESPRESSO->Sexp InFile QutFile) — ()

Converts ESPRESSO output to an s-exp form. The function writes the converted truth tables to
the file specified by OutFile.

DDD User Manual Integrating with Logic Synthesis

(StrEqns->EQN StrEgns EQNtype OutFile) — ()

Takes a set of stream equations, an EQN type (either ’standard or ’inverter), and an output
file name, and generates a set of inputs, outputs, and boolean equations. The result is written to
the file specified by OutFile and is compatible with EQNTOTT.

An ordering is placed on the INORDER and OUTORDER list to make routing of feedback

minimal.

DDD> (define streqgns

"((x = (select status xy ? 2?2 0))
= (select status y y x ? 1))))

DDD> (StrEqns->EQN stregns ‘static "stregns.eqgn")
()

streqns.eqn

NAME = stregns.eqgn ;
INORDER = cmd2 cmdl cmd0 x y :
OUTORDER = y X ;

cmd2 & !cmdl & !cmdO;

x = !emd2 & !cmdl & !cmd0 & x
| 'emd2 & !cmdl & cmd0 & y
| 'ecmd2 & cmdl & !cmd0 & ?
| '!emd2 & cmdl & cmd0 & ?;

y = !cmd2 & !'cmdl & !cmd0 & y
| 'cmd2 & !cmdl & cmd0 & y
| 'emd2 & cmdl & !cmd0 & x
| 'cmd2 & cmdl & cmd0 & ?

I

Auxiliary Functions:
(StrEqns->EQN_standard StrEqns) — EQN
(StrEqns->EQN_inverter StrEqns — EQN

Takes a set of stream equations, and returns either standard or inverted boolean equations in s-

exp form.

DDD User Manual 74

Integrating with Logic Synthesis

(BoolEqns->EQN BoolEgns EQNtype OutFile) — ()

Takes a set of boolean equations, an EQN type (either ’standard or ’inverter), and an output
file name, and generates a set of inputs, outputs, and boolean equations. The result is written to
the file specified by OutFile and is compatible with EQNTOTT.

DDD> (define adder
"{(sum ((!cin & 'a & b) (!cin & a & !b)
(cin & !'a & !b) (cin & a & b)))
(cout ((!cin & a & b) (cin & !a & b)
(cin & a & !b) (cin & a & b)))))
adder

DDD> (BoolEgns—->EQN adder ’‘static "adder.egn")
()

adder.mpla

NAME = adder.eqn ;
INORDER = cin a b ;
OUTORDER = sum cout ;

= lcin & !a & b
| 'ecin & a & !b
I

sum

cin & !'a & !'b
| cin & a & b;

cout = !cin & a & b
| cin & !a & b
| cin & a & !b
I

cin & a & b;

Auxiliary Functions:

(BoolEgns->EQN_standard BoolEgns) — EQN

(BoolEqns->EQN_inverter BoolEgns) — EQN

Takes a set of boolean equations, and returns static or dynamic boolean equations in s-exp
form.

DDD User Manual Integrating with Logic Synthesis

(MPLA FileName PLAtype) — ()

Takes a file containing boolean equations compatible with EQNTOTT, and a PLA type - either
"dynamic or ’static, and executes the unix shell scripts: "makestatic” or "makedynamic"” on that
file. "makestatic" and "makedynamic" generate Magic: static and dynamic PLA layouts, re-
spectively. The scripts apply egntott, espresso, and mpla sequentially to the original boolean
equations (note: some sed filters are necessary to handle naming incompatibilities). The shell
scripts may be executed directly from the Unix shell, or within DDD with the MPLA function.

makestatic: file

#! /bin/csh -f

sed ’s/-/_/g’ $1 | sed ’s/+/\/g’ | eqntott -f -.iolpte | sed ’s/x/-/g’ | espresso
| mpla -s SCS3cis -G 10 -1 -O -a -0 $1

makedynamic: file

#! /bin/csh -f

sed ’s/-/_/g’ $1 | sed ’s/+/\/g’ | eqntott -f -.iolpte | sed ’s/x/-/g’ | espresso
| mpla -s SCD3cis -G 10 -1 -O -a -0 $1

DDD> (MPLA "adder.mpla" ’static)

0

adder.mpla.mag

/

DDD User Manual 76 Integrating with Logic Synthesis

(BoolEqns->Altera

Regs BoolEgns OutFile) — ()llOutFile

Takes a set of registers, a set of boolean equations, and a file name, and writes the result to

OutFile.

Signal names in the register list are, by default, implemented with D-type flipflops.

Prefixing signal names with @ in the register list will implement them with toggle-type flipfl-

ops.

DDD> (d

adder

0

efine adder

f((sum ((!cin & !a & b)
(cin & !'a & !b)
((!cin & a & b)
(cin & a & !b)

(cin & a
(cin &
(cin & a

(cout

(!cin & a &

'b)
& b)))

la & b)

& b)))))

DDD> (BoolEgns->Altera ' (sum cout) adder "adder.adf")

adder.adf

PART

A
B
CIN
SUM
CcouT

SUMd

ENDS$

HEADER:

INPUTS:
OUTPUTS :

COUTd =

adder.adf
: AUTO

CLOCK, A, B, CIN
couT, SUM

NETWORK:
CLOCK
INP (A)

INP (CLOCK)

INP (B)

INP (CIN)

RONF (SUMd, CLOCK, GND, GND, VCC)
RONF (COUTd, CLOCK, GND, GND, VCC)

EQUATIONS:

!B

'

!ICIN & !A & B
+ CIN &« !A & !B
!CIN &« A & B
!B

ICIN & A &
CIN & A & B
CIN & !A & B
CIN &« A & B

+ CIN & A &

’

DDD User Manual

Integrating with Logic Synthesis

References

(1]

(2]

Altera Corporation, Altera Programmable Logic User System User Guide (Version 4.0), Altera
Corporation, Santa Clara, 1985.

Boyer, C. David, Johnson, D. Steven, Using the Digital Derivation System: Case study of a VLSI
garbage collector. In Proceedings of the Ninth IFIP Symp. on Computer Hardware Description
Languages (CHDL89), J. Darringer and F. Ramming, Eds., Elsevier. Also published as Technical
Report 274, Computer Science Department, Indiana University, April 1989.

Johnson, Steven D., Wehrmeister, Robert, M., and Bose, Bhaskar, On the Interplay of Synthesis
and Verification: Experiments with the FM8501 Processor Description, In Applied F ormal Meth-
ods For Correct VLSI Design (Amsterdam, Netherlands, 1989), L. Claesen, Ed., IMEC, Elsevier,
pp. 385-404. Also published as Technical Report 283, Computer Science Department, Indiana
University, July 1989.

Johnson, Steven D., Digital Design in a Functional Calculus. In Formal Aspects of VLSI Design,
G. Milne and P.A. Subrahmanyam, Eds. North-Holland, Amsterdam, 1986, pp. 153-178. Also
published as Technical Report 279, Computer Science Department, Indiana University, June 1989.

Johnson, Steven D., and Bose, Bhaskar, DDD - A System for Mechanized Digital Design Deriva-
tion, Technical Report 323, Department of Computer Science, Indiana University, December 1990.

Johnson, Steven D., Bose, Bhaskar and Boyer, C. David, A Tactical Framework for Digital De-
sign. In VLSI Specification, Verification and Synthesis, G. Birtwistle and P.A. Subrahmanyam,
Eds. Kluwer Academic Publishers, Boston, 1988 pp. 349-383. Also published as Technical
Report 221, Department of Computer Science, Indiana Univeristy, May 1987.

Johnson, Steven D., and Bose, Bhaskar. A System for Digital Design Derivation. Technical
Report 289, Department of Computer Science, Indiana University, August 1989.

Johnson, Steven D., Applicative Programming and Digital Design. In Proceedings Eleventh
Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (1984), pp.
218-227.

Johnson, Steven D., Synthesis of Digital Designs from Recursion Equations. The MIT Press,
Cambridge, 1984.

Rath, Kamlesh, Ignacio Celis, and Robert M. Wehmmeister, RTBA: A Generic Bit-Sliced Bus
Architecture for DataPath Synthesis, Technical Report 321, Department of Computer Science,
Indiana University, December 1990.

Rees, Jonathan and Clinger, William C., (eds.), The Revised® Report on the Algorithmic Language
Scheme. ACM SIGPLAN Notices 21, December 1986, 37-79. Also published as Technical Report
174, Department of Computer Science, Indiana University, June 1985.

DDD User Manual References

[12]

[13]

(14]

(15]

[16]

(17]

(18]

Scott, Walter S., Mayo, Robert N., Hamachi, Gordon and Ousterhout, John K., (eds.), 1986 VLSI
Tools, Report No. UCB/CSD 86/272, Computer Science Division (EECS), University of Califor-
nia at Berkeley, (1985)

Spickelmier, Rick L., Release Notes for Oct Tools Distribution 3.0, Electronics Research Labora-
tory, University of California, Berkeley, August 1989.

Wand, M. Semantics-directed Machine Architecture. In Proceedings of the Ninth ACM Sympo-
sium on Principles of Programming Languages (1982).

Wehrmeister, R. M. Derivation of an SECD Machine: Experience with a transformational ap-
proach to synthesis. Technical Report 290, Computer Science Department, Indiana University,
September 1989.

Winkel, David, and Prosser, Franklin P. The Art of Digital Design. Prentice-Hall, Englewood
Cliffs, New Jersey, 1980.

Winkel, David, What Next for PAL-Devices - The Second Generation Challenge, Technical
Report 188, Department of Computer Science, Indiana University, February 1986.

Winkel, David, The Use of PALS in CPU Design, Technical Report 204, Department of Comput-
er Science, Indiana University, October 1986.

DDD User Manual 80 References

Control Abstraction and Architecture

Appendix A: DDD Quick Reference

Function

Arguments

Returns

ItrSys—SingleLoop
SingleLoop—Select
SingleLoop—StrEqns
ItrSys—SeqSys

(ItrSys]
[SingleLoop]
[SingleLoop]
[ItrSys]

SingleLoop
Select

StrEqns

[Select StrEqns]

Algebra on Sequential Systems

Functions

Arguments

Returns

Identify
Generalize
MergeOperations
MergeStrEqns
AbstractOperations
AbstractStrEqn
AddStrEqgn
ExtractStrEqn
RemoveStrEqn
RenameStrEgn
OptimizeSEL
OptimizeSeqSys
PartialEval
ExpandFuncDef
GroupStrEqns

[Exp newStrName StrEqns]
[StrEqn]

[newStrName OpSet StrEqns]
[Str1 Str2 newStrName StrEgns]
[AbsCompName OpSet StrtEqns]
[StrName StrEqns]

[StrEqn StrEqgns]

[StName StrEqns]

[StName StrEqns]

[oldStrName newStrName StrEqns]
[Select]

[Select StrEqns]

[StrEqn Select]

[FuncDef StrEqns]

[StrEqns Order]

StrEqns
StrEqn
StrEqns
StrEqns
StrEqns
StrEqns
StrEgns
StrEqn
StrEgns
StrEgns
Select
[Select StrEqns]
Select
StrEqns
[[StrEqns]...]

Register Transfer Table

[Functions

Arguments

Returns

StrEqns->RTT
RTT—-StrEqns

[StrEgns OutFile]
[RegSet RTT]

OliOutFile
StrEgns

Projection

Functions

Arguments

Returns

ProjectStrEgns
ProjectSEL

[RepMap StrEgns N]
[RepMap Select]

SurEqgns
[SelectO ... SelectN]

DDD User Manual

Appendix A: DDD Quick Reference

Input/Output Extensions

Functions Arguments Returns Page
open-output-file-prompt [OutFile] ifo port 55
ReadFile [InFile] 1st s-exp in InFile 55
WriteFile [Exp OutFile] OllOutFile 55
AppendFile [Exp OutFile] OllQutFile 55
Daisy Interface

| Functions Arguments Returns Page
StrEqns—Daisy [Name RegSet StrEqns OutFile] OllOutFile 58
StrEqns—DaisyConstants [StrEgns OutFile] QllOutFile 59
SEL—Daisy [Select OutFile] OliQutFile 60
Boolean Equations
Functions Arguments Returns Page
StrEqns—BoolEqns [StrEqns RegType] BoolEqgns 68
SttEqn—BoolEqgn [StrEqn] BoolEgn 68
SEL—BoolEqns [Select] BoolEqgns 68
Espresso Interface

| Functions Arguments Returns Page
StrEqns—Espresso [StrEqns RegType Group] OITT 69
StrEqn—Espresso_dtype [StrEqn] TT 69
StrEqn—Espresso_toggletype [StrEqn] TT 69
BoolEqns—Espresso [BoolEgn Group] TT 70
BoolEqn—Espresso [BoolEgn] TT 70
Espresso [I Itype Group [RegType]] BoolEqns 71
Espresso—Sexp [InFile OutFile] OllOutputFile 73
Espresso—BoolEgns [TT] BoolEgns 73
EQN Interface
Functions Arguments Retums Page
StrEqns—EQN [StrEqns EQNtype OutFile] OllOutFile 74
StrEqns—EQN_standard [StrEqns] EQN 74
StrtEqns—EQN_inverter [StrEqgns] EQN 74
BoolEqns—EQN [BoolEgns EQNtype OutFile] OllQutFile 75
BoolEqns—EQN_standard [BoolEgns] EQN 75
BoolEqns—EQN_inverter [BoolEqns] EQN 75

DDD User Manual

Appendix A: DDD Quick Reference

PLA Interface

Functions

Arguments

Returns

MPLA
makestatic
makedynamic

[InFile PLAtype]
[InFile]
[InFile]

(OlilnFile.mpla
InFile.mag
InFile.mag

Altera Interface

| Functions

Arguments

Returns

| BoolEqns—ALTERA

[RegSet BoolEgns OutFile]

OllOutFile

DDD User Manual

Appendix A: DDD Quick Reference

Appendix B: Type Classification

ItrSys := (define CIRCUIT
(lambda (i, i, ...)
(letrec
((S, (lambda (r; 1, ... Ty) €Xpy))
(S, (lambda (r, 1, ... 1) €xp,))

-(.éQ (lambda (r; 1, ... Ty) €Xpy)))
(Sinic Trinit Tainit -+ Tnini))))

where

exp := (let ((id val) ...) exp)
| (if pred exp, exp,)
| (case pred (id, exp,) (id, exp,) ...)
| (S val, ... valy)

id := identifier

val := expression

pred := expression

SingleLoop := (define CIRCUIT
"(lambda (state 1, 1, ... Ty)
(case state
(S, exp,)
(S, exp,)

(Sq €xpQ)))

Select := (define Select
(lambda (s py Py --- Pr Vo Vi - Vn)
(case s
(So Gf po vy ¥y))
(S, Gf p, Gf p, ¥k -..)))

(Sq -

StrEqn := (StrtEqn = (Select s py Py - Pr Vo Vi - V&)
| (StrtEgn <= (Select s py P; --- Pr Vo Vi - VN))

StrEqns := ((StrEqn, = (Select s py P; --- Vo Vi - V&)
(StrEqn, = (Select s py Py .. Vo Vq «o. VX))

(SttEqny = (Select s py Py +- Vo Vi« VN)))

DDD User Manual B-1 Appendix B: Type Classification

expression

Exp

AbsCompName := identifier

Group := identifier
StrName := identifier

FileExt = string

InFile := string

OutFile := string

OpSet =i

RegSet = list

EQNtype = ’standard | inverter
Itype = "stregns | "booleqns
RegType ="d | "toggle
PLAtype := "static | "dynamic

FuncDef := (define FUNCTION
(lambda (args...) exp...))

Order := ((StrName, StrName; ...)
(StrName,; StrName,, ...)
)

BoolEgn := (BoolEqn ((A & B) (C & D))) ;BoolEgn = A&B + C&D

BoolEqns := ((Eqn, ((A & B) (A & !B)))
(Eqn, ...)

(Eqny ...))

DDD User Manual B-2 Appendix B: Type Classification

RTT := ((SttEqnl StrEqn2 ... StrEqnM)

(vO w0 x0 ... z0)
(vl wl x1 ... z1)

(VN wN xN ... zN))

SwEqnl | StEqn2

w(

wl
w2

wN

x0
x1
x2

xN

((% name)

(% output)

(% no. of code
bits)

(.1 no. of inputs)
(.0 no. of outputs)
00..)

{10)

(o)

(1101)

(.end))

% name

% output

% mno. of code
bits

.1 no. of inputs

.0 no. of outputs
00..

1 0

1101
.end

NAME = filename ;

INORDER =il i21i3 ...;
OUTORDER = o0l 02 03 ... ;

ol =..;
02 = ...

HEADER: filename
~ PART: AUTO
-| INPUTS: i11i21i3 ...

- QUTPUTS: ol 02 03 ...
NETWORK: ...
EQUATIONS:

ol = ...

o2 =..;

END$

DDD User Manual

Appendix B: Type Classification

Appendix C: Examples

Example 1: A Single Pulser

;**************'k**
Specification
The SinglePulser senses the depression of the button and asserts
an output signal for a single clock pulse. Additional assertions
of the output are not allowed until after the operator releases
the button.

* *
* *
* *
* *
* *
* *
* The circuit is defined as a two-state machine: FIND, and WAIT, *
* that takes a synchronized input assertion from a push button, =
;* PBsync. The output of the system is O which carries the signal *
;* PBpulse, a synchronized output assertion. The initial invocation *
* of the single pulser algorithm cycles in the FIND state until a *
* true signal is asserted on PBsync. Control is then transferred x
* to the WAIT state with the value ON being asserted on the PBpulse *
* signal. The algorithm cycles in the WAIT state until a false *
* is asserted on the PBsync signal. Control is then transferred *
* *
* *

back to FIND.

(define SinglePulser
(lambda (PBsync)
(letrec
((FIND
(lambda (PBpulse)
(let ((O (out PBpulse)))
(if (PBsync) (WAIT ON) (FIND OFF)))))
(WAIT
(lambda (PBpulse)
(let ((O (out PBpulse)))
(if (PBsync) (WAIT OFF) (FIND OFF))))))
(FIND OFF))))

DDD User Manual Appendix C: SinglePulser

;***

P Derivation Path *
;* The derivation path illustrates the design from the iterative *

:* specification, SP.ITR, to an ALTERA EPLD implementation, SP.ADF *
-***

~

e Se Se S

SP.ITR
; SEéSYS
FadEn gl pops A
; SEL STREQNS
STRFlJQNS_l
1 T] e | PR i
5 | |
H STATE SEL PBPULSE*
e S B s | S I
; STATE REPMAP PBPéLSE*
; I] S :
: STAéE.BIN PBPULSE*.BIN
; | I i
; 58 00T

|
SP.BOOL.MIN
3 I
; " SP.ADF

~a

DDD User Manual C-2 Appendix C: SinglePulser

LRk A A A AR A AR K I A AR I KA KA KA * KRk k Kok Kk ko k ok kk ok ok &k ok sk ok o o ok ok o & & ok & ok ko ke koo ko ok ke ok ok ok

Derivation Script *

The script details the derivation of the SinglePulser. The *
strategy employed in this derivation is to first, derive a *
sequential system from the iterative specification. ©Next, the g
modelling interface is removed, and a signal is factored. Next, *
the stream equations are partially evaluated with respect to the *
*

*

*

*

*

N Ne o Ne Ne N N

* % % o X A o * X X*

~e

selector and projected to a binary representation. Boolean
equations are then generated from the combinators and minimized
using ESPRESSO. Finally, the minimized equations are transduced

;* into ADF-format from which an EPLD implementation is generated.
;*******t**
;>>>Behavior to Structure<<<

(define SP.ITR (ReadFile "SP.SS")) ;The first step derives a
(define SEQSYS (ItrSys—->SeqgSys SP.ITR)) ;sequential system, SEQSYS
(define SEL (car SEQSYS)) ;from an iterative specifi-
(define STREQNS (cadr SEQSYS)) ;cation, SP.ITR.

e S

~e

;>>>Structure to Architecture<<<
(define STREQNS 1 ;The modelling interface, O
(RenameStrEgn ’'PBPULSE-I ’PBPULSE* ;is removed, the signal PB-
(AbstractStrEgqn ‘PBPULSE ;PULSE is factored, and the
(RemoveStrEgn 0O STREQNS)))) ;signal PBPULSE-I is renamed.

(define STATE ;The stream equations, STATE
(PartialEval ;and PBPULSE, are extracted
(ExtractStrEgn ‘STATE STREQNS 1) SEL)) ;from the description and

(define PBPULSE* ;partially evaluated with
(PartialEval ;respect to the selector, SEL.
(ExtractStrEgn ‘PBPULSE* STREQNS_l) SEL))

;>>>Architecture to Physical Organization<<<
(load "SP.REP"™) :Load representations

(define STATE.BIN ; The combinators, STATE
(OptimizeSEL ;and PBPULSE, are projected
(car (ProjectSEL REP.MAP STATE)))) ;using the representations
(define PBPULSE*.BIN ;defined in REP.MAP. The
(OptimizeSEL ;combinators are then
(car (ProjectSEL REP.MAP PBPULSE*)))) ;optimized.

;>>>Boolean Equations<<<
(define SP.BOOL ;Boolean equations are gen-—
(symbolic—>bit ;erated and the symbolic val-
(map SEL->BoolEgns ;ues, WAIT and FIND, are rep-
(list STATE.BIN PBPULSE*.BIN) ;laced with their binary proj-
STATE.MAP))) ;ection defined in STATE.MAP.

;>>>Logic Synthesis<<<
(define SP.BOOL.MIN ;Boolean equations are mini-
(ESPRESSO SP.BOOL ’'boolegns ‘TT)) ;mized with ESPRESSO.

(BoolEgns—>ALTERA ;Transduce to ADF-format for

' (STATE) SP.BOOL.MIN "SP.ADF") ;input to ALTERA EPLD
;jprogrammer .

DDD User Manual Appendix C: SinglePulser

Rk ok ko kkkkkk ok ok Ak kA h kA ok khk hkhkk ok kA ok kA A Ak kA Ak kA Ak kA hkhkhk Ak khk Ak hkh kkh* kkkk*

e Binary Representations =
;* Representations for: REP.MAP - WAIT, OFF = 0 .
;P FIND, ON = 1 * ,
o STATE.MAP - WAIT = 0 = !STATE *
HE FIND = 1 = STATE *
’***

”
(define REP.MAP

‘((wait , (lambda ())
(find , (lambda () * (1)
(off , (lambda ())
(on , (lambda ()

(define STATE.MAP
‘((wait , (lambda () ' (!state)))
())

(find , (lambda " (state)))))

e eSS RS SRR R R R R R R R R R R S

Nl Listing of Intermediate Forms *
;* SEQSYS - The initial sequential system *
;* STREQNS 1 - The stream equations to be implemented *
;* STATE, PBPULSE* - The partially evaluated selectors *
;* STATE.BIN, PBPULSE*.BIN The projected combinators *
+ %k *
:* .
bk -
Hia *
HLs *

SP.BOOL - Boolean equations
STATE.TT, PBPULSE*.TT — ESPRESSO truth table format
SP.BOOL.MIN — Minimized Boolean equations

SP.ADF - ADF-format of the boolean equations
KA A A KA A A A A A A A A A A A AR A A A A A A A A A A A kA Ak Ak kA Ak Ak kA Ak kkkhk Ak hkhkhdhkhrhkhhkhkkhk

; SEQSYS
((define select
(lambda (s p0 v0 vl v2)
(case s
[find (if p0 v0 v1)]
[wait (if p0 v2 v1)]1)))
((o = (select state (pbsync) (out pbpulse)
(out pbpulse) (out pbpulse)))
(pbpulse <= (select state (pbsync) on off off))
(state <= (select state (pbsync) wait find wait))))

; STREQNS 1

((pbpulse* = (select state (pbsync) on off off))
(state <= (select state (pbsync) wait find wait)))

DDD User Manual Cc-4 Appendix C: SinglePulser

(define state
(lambda (s p0)
(case s
[find (if
[wait (if
(define pbpulse*
(lambda (s p0)
(case s
[find (if

wait find)]
wait find)])))

on off)]
off off)])))

(define state
(lambda (s
(case s
[find (if p0 0 1)]
[wait (if p0 0 1)1)))
(define pbpulse*
(lambda (s p0)
(case s
[find (if p0 1 0)]
[wait 0])))

((state ((!p0 &
(!p0 & state)))
(pbpulse* ((p0 & state))))

DDD User Manual

% pbpulse*
% p0 state
$ 0

.

o0 1

1 1 4

.end

Appendix C: SinglePulser

; SP.BOOL.MIN

B e e o o e e e e e e e B T T T o o o e e . e e

k(state ({(1p0}}))
(pbpulse* ((p0 & state))))

; SP.ADF

e T S U —— ——— — — e e e e e e e

HEADER: SP.ADF
PART: AUTO

INPUTS: CLOCK, PO
OUTPUTS: PBPULSE*, STATE

NETWORK :

CLOCK = INP (CLOCK)

PO = INP (PO)

STATE , STATE = RORF (STATEd, CLOCK, GND,GND,VCC)
PBPULSE* = CONF (PBPULSE*c,VCC)

EQUATIONS:
PBPULSE*c = PO & STATE ;
STATEd = !P0O ;

ENDS

DDD User Manual C-6 Appendix C: SinglePulser

Example 2: A Black Jack Machine

R e e e T T S o e P
Specification *
The BlackJack machine simulates a dealer’s actions in a black jack*
game, as specified in The Art of Digital Design, by Winkel and %
Prosser. An external agent presents cards, C, one at a time; a *
full handshake is implemented for external synchronization - a hitx*
signal, H, and a card ready signal, R. The machine continues to *
play as long as its score, Score, is at most 21, or greater than *
16. The BlackJack machine may revalue an ace to either 1 or 11. *
A set of status signals, S - stand, and B - broke, H - hit, *
communicate with the external agent. *
’-****'k'k**************‘k***************'k****k***************************
(define BJ
(lambda (Rin SWin)
(letrec
((get (lambda (C H S B Score A R Rd)
(let ((O0 (display Score H S B))
(Go (Rin))
(Cd (cardvalue (SWin))))
(if R
(if Rd
(get ? ff S B Score A Go R)
(if (or S B)
(add Cd ff ff ff zero ff Go R)
(add Cd ff ff ff Score A Go R)))
(get ? tt S B Score A Go R)))))
(add (lambda (C H S B Score A R Rd)
(let ((O (display Score H S B))
(Go (Rin))
(Cd (cardvalue (SWin))))
(if (ace? C)
(if A
(tst ? f£f S B (addto Score C) A Go R)
(use ? £ff S B (addto Score C) A Go R))
(tst ? £f£f S B (addto Score C) A Go R)))))
(use (lambda (C H S B Score A R Rd)
(let ((O (display Score H S B))
(Go (Rin))
(Cd (cardvalue (SWin))))
(tst C £ff S B (addace Score) tt Go R))))
(tst (lambda (C H S B Score A R Rd)
(let ((O (display Score H S B))
(Go (Rin))
(Cd (cardvalue (SWin))))
(1f (Sgtl6? Score)
(if (Sgt21? Score)
(if A
(tst C £f£f S B (cancelace Score) ff Go R)
(get C £f£ S tt Score A Go R))
(get C ff tt B Score A Go R))
(get C £f£f S B Score A Go R))))))
(get C H S B Score A ff Rd))))

Se Se Sa o Ya Se o Sa o Se Se o Se o he N

* % ok ok ¥ o o ¥ * A

DDD User Manual Appendix C: BlackJack Machine

rhkhkhkhkhkhhkhkhhhhhhhhhhdhhhhkhhhhhhdkhhhkhhkhhkhhkdhhhhhhhhhhhhhk ok hhk bk hhhkhkhkhhd*k

i Derivation Path =
;* The derivation path illustrates the design from the iterative *
;* specification, BJ.ITR, to an implementation decomposed into three *
;* parts, PREDS.EQN, CONTROL.EQN, and SLICE 0..4.RTBA. o

P R R R R b b e o e S R

’

; BJ.ITR

:

; SEQSYS 1

7 |

3 SRR +

; I |

; SEL 1 STREQNS 1

d [STREQNS 1.1

; || STREQNS_1.2

; STREQNS 1.4 | STREQNS 1.3

1 I= 1 STREQNS 1.4

; STATE lis 1l STREQNS_1.5

g | || |

> e + + —————— +

z I I

; | SEQSYS 2

7 I |

: | S S T +
; I I I
;STATE.MAP NEXTSTATE SEL_Z CMD .MAP STREQNS_2 STREQNS.MAP

T T T T e T TR T

Sa Sa Se

; PRED

~

; PRED

NEXTSTATE .BOOL ENCODE

| [
NEXTSTATE .MIN ENCODE

|
|
I
I
S.BOOL A4==———— o 4
|

DDD User Manual

——————— + Fmm e ———}
I

.BOOL STREQNS 2.0RG
|

.MIN ¥ R +

SLICE 5.BOOL

I
|
I I
SLICE 5.MIN SORB?B.BOOL |
I
———————————— o o e e e e e o |

|

I
S.EQN CONTROL .EQN SLICE 0..4.RTBA

c-8 Appendix C: BlackJack Machine

;***
r

Derivation Script
;***

;Behavior to Structure

(define BJ.ITR (ReadFile "BJ.ss"))
(define SEQSYS 1 (ItrSys->SegSys BJ.ITR))
(define SEL 1 (car SEQSYS 1))

(define STREQNS 1 (cadr SEQSYS 1))

;Structure to Architecture

(define STREQNS 1.2 ;Factor H, Go, 0, Cd
(RemoveStrEqns " (Go O Cd)
(AbstractStrEgn ‘H STREQNS 1)))

(define STREQNS 1.3 ;Expand cancelace, addace
(ExpandFunction
" (define cancelace
(lambda (score)
(addto score -1l0Optace)))
(ExpandFunction
" (define addace
(lambda (score)
(addto score 1l0Optace))) STREQNS 1.2)))

(define STREQNS 1.4 ;Factor addto
(AbstractOperations
"adder ' (addto) STREQNS 1.3))

(define NEXTSTATE ;Derive nextstate combinator
(PartialEval

(ExtractStrEgn ‘STATE STREQNS 1.4) SEL 1))

(define STREQNS 1.5 ;Factor state, addex0-i,
(RemoveStrEgns ;adder0-v0

" (STATE ADDERO-I ADDERO-V0) STREQNS 1.4))

(define SEQSYS 2 ;Optimize
(OptimizeSEQSYS SEL 1 STREQNS 1.5))

(define SEL 2 (car SEQSYS 2))

(define STREQNS_2 (cadr SEQSYS_2))

;Architecture to Physical Organization

(load "bj.rep") ;Load representations

(define NEXTSTATE.BIN ;Map nextstate to binary

(map OptimizeSEL ;representation.
(ProjectSEL STATE.MAP
(renameSEL "STATE 'k NEXTSTATE))))

(define ENCODE.BIN ;Map select to binary

(map OptimizeSEL ;representation.
(ProjectSEL CMD.MAP
(renameSEL ‘SELECT 'CMD SEL 2))))

DDD User Manual c-9 Appendix C: BlackJack Machine

(define STREQNS 2.BIN ;Map stream equations to a
(ProjectStrEqns ;binary representation.
STREQNS.MAP STREQNS_ 2 (addl WORDSIZE)))
(define STREQNS 2.0RG ;Organize stream equations
(Group STREQNS 2.BIN DATAPATH.ORG)) ;into bit-slices.

;Logic Synthesis

B s ot P Bt e s Pt ot e ot ot ot i P

(define SLICE 5.BOOL ;Generate boolean equations
(StrEgns->BoolEqgns ;for SLICE_5, NEXTSTATE, and
(slice 5 STREQNS 2.0RG) ’d)) ; ENCODE.

(define NEXTSTATE.BOOL
(symbolic->bit
(map Sel->BoolEgns NEXTSTATE.BIN) STATE.SYMMAP))

(define ENCODE.BOOL
(symbolic->bit
(map Sel->BoolEqns ENCODE.BIN) STATE.SYMMAP))

(define SLICE_5.MIN ;Minimize equations
(ESPRESSO SLICE_5.BOOL ’boolegns ’'SLICE_5))

(define NEXTSTATE.MIN
(ESPRESSO NEXTSTATE.BOOL 'boolegns 'NEXTSTATE))

(define ENCODE.MIN
(ESPRESSO ENCODE.BOOL ’boolegns ‘ENCODE))

;Generate RTBA cells for SLICE 0 to SLICE_ 4.

(StrEqns->RTBA SEL 2 (slice 0 STREQNS_2.0RG) "SLICE_0.RTBA")
(StrEqns—->RTBA SEL 2 (slice 1 STREQNS 2.0RG) "SLICE 1.RTBA")
(StrEqns—->RTBA SEL_2 (slice 2 STREQNS_2.0RG) "SLICE_2.RTBA")
(StrEgns->RTBA SEL 2 (slice 3 STREQNS_2.0RG) "SLICE 3.RTBA")
(StrEgns->RTBA SEL 2 (slice 4 STREQNS_2.0RG) "SLICE_4.RTBA")

(BoolEgns—->EQN ;Generate EQN-format to be
(append ENCODE.MIN ;input to a PLA cell
NEXTSTATE.MIN ;generator.

SLICE_5.MIN
SORB?.BOOL) ’static "CONTROL.EQN")

(BoolEgns->EQN ;Generate EQN-format to be

PREDS.BOOL ‘static "PREDS.EQN") ;input to a STANDARD cell
;generator.

DDD User Manual c=-10 Appendix C: BlackJack Machine

;******************"k'k*'k***

Hiks Binary Representations *
;**‘k‘k***********

(define wordsize 4)

(define stregns.map

*

;DEFINED STREAM EQUATIONS

(state
(rd

(r

(a
(score
(b

(s
(h-1i
(c

(adder0-vl

; INPUTS
(cardrdy
(sw
(adder0
(Go
(Cd

; CONSTANTS

, (lambda
, (lambda
, (lambda
, (lambda
, (lambda
, (lambda
, (lambda
, (lambda
, (lambda
, (lambda

, (lambda
, (lambda
, (lambda
, (lambda
, (lambda

(

(
(
(
(
(
(
(
(
(

)

)
)
)
)
)
)
)
)
)

(make-reg
" (xd}))
"(xr)))
(a)))
(make-reg
" (b)))
(s)))
(h*)))
(make-reg
(make-reg

np n 2)))
"gscore,"

(addl wordsize))))

"c." wordsize)))
"adder-b." wordsize)))

" (cardrdy)))

(make-reg
(make-reg
"(Go)))

(make-reg

"sw." wordsize)))
"adder." (addl wordsize))))

"Cd." wordsize)))

;state assignments
(get , (lambda ()
(add , (lambda (
(use , (lambda (
(tst , (lambda (

(nat->bv
(nat->bv
(nat->bv
(nat->bv

;constants

(1l0ptace

, (lambda

(-10ptace , (lambda

(zero
(?

, (lambda
, (lambda

r (1
r(o
r(O

r(?

(tt
(£f

' (1))
£ (0)))))

, (lambda
, (lambda

(define datapath.org

" ((score.0 adder-b.

(score.l adder-b.

(score.2 adder-b.

(score.3 adder-b.
(score.4)

(a b s h* rd r)))

.0)
«1)
.2)
«3)

(define state.ma

*((get , (lambda
(add , (lambda
(use , (lambda
(tst, (lambda

) " (0
) (0
) ‘(1
)

P
(
(
(
() (1

DDD User Manual Appendix C: BlackJack Machine

Binary Representations (cont)

(define sorb?
(define preds

bool " {(p2 ((s} (b)))))
.bool

score.l)

Lo-JoambWNhE O
N S e e S S e e
N Y et N e " o
— e N e e e e e e

))

)
'k.0)

"((pb ((score.4 & score.2 &
(score.4 & score.3)))
(p5 ((score.4 & score.3)
(score.4 & score.2)
(score.4 & score.l)
(score.4 & score.0)))
(pd ((a)))
(p3 ((c.3 & !c.2 & c.1 & c.0)))
(pl ((xd)))
(PO ((x)))))
(define cmd.map
‘((v0O , (lambda () (nat->bv
(vl , (lambda () (nat->bv
(v2 , (lambda () (nat->bv
(v3 , (lambda () (nat->bv
(vd , (lambda () (nat->bv
(v5 , (lambda () (nat->bv
(ve , (lambda () (nat->bv
(v7 , (lambda () (nat->bv
(v8 , (lambda () (nat->bv
(v9 , (lambda () (nat->bv
(define state.symmap
‘((get , (lambda () " (!k.1l &
(add , (lambda () "(!k.1 &
(use , (lambda () " (k.1 &
(tst , (lambda () "(k.1 & k.0))

DDD User Manual

))
k.0)))
))
)))

Cc-12

; (or s b)
;sgt21?

;sgtl6?

;a
; (ace? c)
rxd

e

Appendix C: BlackJack Machine

;*'k'.‘r‘k*'k************‘k**********************************'k'k'k‘k'k***********
;i\'

Listing of Intermediate Forms 3
rhkkkkhkhkhkhkhhkhhkhkhkhkhkhhkhhhhkhkhkhkhkhkhhkhkhkhkhkhkhhkhhhhkdhhkhkhhkhhkhhkhhkhhhhohhohkhokhhkhhhhhkk

’

((define select
(lambda (s p0 pl p2 p3 p4 p5 p6 v0 vl v2 v3 vd v5 v6 v7 v8 v9 v10)
(case s
[get (if p0 (if pl vO0 (if p2 vl v2)) v3)]
[add (if p3 (if p4 v4 v5) v4)]
[use v6]
[tst (1if p5 (if p6 (if p4d v7 v8) v9) v10)])))

((cd = (select state r rd (or s b) (ace? c) a (sgtlé? score)
(sgt21? score) (cardvalue (swin)) (cardvalue (swin))
(cardvalue (swin)) (cardvalue (swin)) (cardvalue (swin))
(cardvalue (swin)) (cardvalue (swin)) (cardvalue (swin))
(cardvalue (swin)) (cardvalue (swin))
(cardvalue (swin))))
= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) (output score h s b) (output score h s b)
(output score s b) (output score h s b)
(output score b) (output score h s b)
(output score b) (output score h s b)
(output score b) (output score h s b)
(output score b)))
(rd <= (select state r rd (or s b) (ace? c) a (sgtlé6? score)
{sgt21? scoxre) rrErrrxxrxrxT))
(r <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) go go go go go go go goO go go go))
(a <= (select state r rd (or s b) (ace? c) a (sgtlé? score)
(sgt21? score) a ff a a a a tt ff a a a))
(score <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) score zero score score
(addto score c) (addto score c) (addace score)
(cancelace score) score score score))
(b (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) b ff ff b b b b b tt b b))

(s (select state r rd (or s b) (ace? c) a (sgtlé? score)
(sgt21? score) s ff ff s s s s s s tt s))

(h <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) ff ff £f tt ff f£f f£f £f £f ££f f££f))

(c <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) 2 cdcd ? 2 2 ccccc))

(state <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) get add add get tst use tst tst get
get get))

(go = (select state r rd (or s b) (ace? c) a (sgtl6? score)

(sgt21? score) (rin) (rin) (rin) (rin) (rin) (rin) (rin)
(rin) (rin) (rin) (xrin)))))

DDD User Manual c=13 Appendix C: BlackJack Machine

e

SUTYDEBl YOBLYORTg D XTpuaddy

(utx) 39b
(utx) 3eb
(utx) 39b
(utx) 183
(utx) is3
(utx) asn
(utx) 183
(utx) 3eb
(utx) ppe
(utxT) ppe
(utx) 39b

ob s3je3s

e+ ODODODO

oo
0o

4

q
q
313

+

q

q

H
NnoHHOKONDONOPO

q (21008 8adeTaouURD)

2I008
21008
2I008

+

(21005 90EPPE)

q ,Ao 9I00S oO3ppe)
q (0 21008 O3pp®eE)

2I008s
2I00S

0I3Z
21008
21008

)
coHooddPH oo o

ob
ob
ob
ob
ob
ob
ob
ob
ob
ob
ob

HHMHHMHMHHHHNNYN

N
s
H

-
Q

nnnnnnunnnonon

Loccccacoaaa

21008 3nd3no)
2100s 3nd3no)
210058 3nd3no)
9x100s 3nd3no)
81008 3nd3ino)
8x100s 23nd3no)
8x100s 3nd3no)
81008 3ndano)
21005 3nd3no)
@1008 3Ind3no)
81008 3nd3no)

((utms)
((uTms)
((utms)
((utms)
((utms)
((utms)
((utms)
((utms)
((utms)
((utms)
((utms)

Tenuep I9s()

anTeapaeo)
anTeApPIRD)
anTeApIed)
anTeApIed)
onTeApIeD)
enTeApIeD)
anTeApIeD)
anTeapIed)
snTeaApIed)
snTeApIeDd)
anTeapIed)

po

aaa

(0T

-~

((rd <= (select state r rd (or s b) (ace? c) a (sgtlé? score)
(sgt21? score) rrrrrrrrrrrx))
(r <= (select state r rd (or s b) (ace? ¢c) a (sgtl6? score)
(sgt21? score) go go go go go go go go go go go))
(a <= (select state r rd (or s b) (ace? ¢) a (sgtl6? score)
(sgt21? score) a ff a a a a tt ff a a a))

(score <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) score zero score score adder(adder0
adder(0 adder(0 score score score))

(b <= (select state r rd (or s b) (ace? c) a (sgtl6? score)

(sgt21? score) b ff ff bbb b b tt b b))
(s <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) s ff ff s s s s s s tt s))
(h-i = (select state r rd (or s b} (ace? c) a (sgtl6? score)
(sgt21? score) ff £f ff tt ff ff ff ff ff ff £ff))
(c <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) 2 eded ? 2 2 ccc c c))
(state <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) get add add get tst use tst tst get
get get))
(adder(0-i = (select state r rd (or s b) (ace? ¢) a (sgtlé? score)
(sgt21? score) noop noop noop noop addto addto
addto addto noop noop noop))
(adder0-v0 = (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) ? ? ? ? score score score score 2,
? ?))

(adder0-vl = (select state r rd (or b) (ace? c) a (sgtlé? score)
(sgt21? score) ? 2 2 ? ¢ ¢ 1l0ptace -10ptace ?

score i state adder0-i adder0-v0 adder0-vl
score b ff ? get noop ? ?

Zero £t £f add noop

score ff 1% add noop

score b tt ? get noop

adder0 b f£ ? tst addto

adder0 b ff ? use addto

adder0 b £f tst addto l0ptace
adder0 b £f tst addto -10ptace
score tt . E£ get noop ?

Q
(o]

H t

score b £f get noop ?
score b ff get noop ?

HERHHHHHHRHRHKR
PP L YW

DDD User Manual C-15 Appendix C: BlackJack Machine

((rd <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt2l? score) r r X r Lt Lr))

(r <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) go go go go go go go go go go go))

(a <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) a £ff a a a a tt £ff a a a))

(score <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) score zero score score adder(adder0
adder0 adder(Q score score score))

(b <= (select state r rd (or s b) (ace? c) a (sgtl6? score)

(8gt21? score) b ££ £f b b:b b b tt b b))
(s <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) s ff £ff s s s s 8 8 tt s))
(h-i = (select state r rd (or s b) (ace? c) a (sgtlé? score)
(sgt21? swore): £f EEEL &t £f £Ff £Ff ff £f ff ff})
(c <= (select state r rd (or s b) (ace? c) a (sgtl6? score)
(sgt21? score) 2 cdied 2 2 2 vecc ¢ €))
(adder0-vl = (select state r rd (or s b) (ace? c) a (sgt1l6? score)
(sgt21? score) ? ? ? ? ¢ ¢ 1lOptace -10ptace ? ?
2)))

rd r a score b s h-i ¢ adderO-vl
0) r goa score b s ff 2?2 ?
1) = wgo ffizere £f £E:f£f icd 2
2) r goa score €E£f £f £ff cd ?
3) r goa score b s tt 2?2 ?
4) r go a adderO b s ff ? ¢
5) r goa adder0 b s ££f 7?7 <c
6) r go tt addexr0 b s ff c¢ 1l0ptace
7) r go ff adder0 b s ff ¢ -1l0Optace
8) ¥ .go a -sgore: th s (EE sl
9) r goa score b tt ff ¢ ?
10) r goa score b s ff c¢c ?

DDD User Manual c-16 Appendix C: BlackJack Machine

((define select
(lambda (s p0 pl p2 p4 p5 p6 v0 vl v2 v3 v4 v5 v6 v7 v8 v9)
(case s
[get (if p0 (if pl v0 (if p2 vl v2)) v3)]
[add v4]
[use v5]
[tst (if p5 (if p6 (if pd4 v6 v7) v8) vI)]}))

((rd <= (select state r rd (or s b) a (sgtl6? score) (sgt2l? score)
r rrrrrrxzrrxr))
(select state r rd (or s b) a (sgtl6? score) (sgt2l? score)
go go go go go go go go go go))
(select state r rd (or s b) a (sgtl6? score) (sgt2l1l? score)
a ff a a a tt f£ff a a a))

(score <= (select state r rd (or s b) a (sgtl6? score) (sgt2l? score)
score zero score score adder(Q adder(Q adderQ score
score score))

(b <= (select state r rd (or s b) a (sgtl6? score) (sgt2l1l? score)

b ff ff b b b b tt b b}}
(s <= (select state r rd (or s b) a (sgtlé6? score) (sgt2l? score)
s ff ff s s s s s tt s))

(h-i = (select state r rd (or s b) a (sgtl6? score) (sgtZ2l? score)

£f £Ff £f tt ff £f £f ff £f ff))

(c <= (select state r rd (or s b) a (sgtlé6? score) (sgt2l? score)

? eded'? 2 €& ¢ e

(adder0-vl = (select state r rd (or s b) a (sgtl6? score)

(sgt21? score) ? ? ? ? c l0ptace -1l0ptace ? ?

adder(0-vl

£f ff

b s
adder0 b s ?
adder0 b s 1l0ptace
adder0 b s -1l0ptace
score tt s ?
score b tt ?
score b s ?

HHHHHKHHKHHKHHKHKRH

DDD User Manual Appendix C: BlackJack Machine

P e e e e —

STREQNS .

2.BIN

state r
(sgt21?
adder.0 adder.0
state r rd (or s
score.l 0 score.
score.l score.l
state r rd (or s
score.2 0 score.
score.2 score.2
state r
(sgt2l?
adder.3 adder.3
state r rd (or s
score.4 0 score.
score.4 score.d
e r rd (oxr s b)

rd (or s b) a (sgtl6? score)
score) score.0 0 score.0 score.0 adder.0

score.0 score.0 score.0))

b) a (sgtl6? score) (sgt2l? score)
1l score.l adder.l adder.l adder.1
score.l))

b) a (sgtl6? score) (sgt2l? score)
2 score.2 adder.2 adder.2?2 adder.?
score.2))

rd (or s b) a (sgtl6? score)
score) score.3 0 score.3 score.3 adder.3

score.3 score.3 score.3))
b) a (sgtl6? score) (sgt2l1l? score)
4 score.4 adder.4 adder.4 adder.4

? Cd.0ed. 0 2 ? e.0

state r rd (or s b)

2 Cd.1l. Cd.1 2 7 e.l

State r rd- (or s b}

2 Cd.2 €d.2 2 7 &2

state r
(sgt21?
state r
(sgt21?
state r
(sgt21?
state r
(sgt21?

r rd (or s b) a (sgtlé6? score)

state r rd (or s b)
7 Cd.3 Cd.3:2 Zheed ©.3,¢.3 6.3 ©.3))
(sgtl6? score)

rd.- (ox
score)
rd (or
score)
rd (or
score)
rd (or
score)

score.4))

a (sgtl6? score) (sgt2l1l? score)
G0 6.0 . 0))

a (sgtl6? score) (sgt2l? score)
Cal~rcl e e L))

a (sgtl6? score) (sgt2l? score)
CL2.C2 C.2 ©.2))

a (sgtl6? score) (sgt2l1l? score)

b) a
2 3

ARSI) LIS I /) BRCES I /) RSN I /)

?

c.0-0 @ 2

?

bi a (sgtl6? score)
21?2001 L1 2 2 2))
b) a (sgtlé6? score)
2 92,2012 7 72))
b) a (sgtl6? score)
2?7 2 @3 1.0 2 P 2))
(sgt21? score)

?))

((score.0 <= (select
(score.l <= (select
(score.2 <= (select
(score.3 <= (select
(score.4 <= (select
(c.0 <= (select stat
(c.1 <= (select
(c.2 <= (select
(c.3 <= (select

2
(adder-b.0 = (select
(adder-b.1 = (select
(adder-b.2 = (select
(adder-b.3 = (select
(rd <= (select state
r E E
(r <=

go go

(a <= (select state

a0 a

(b <= (select state

b 0o

(s <= (select state

s 00

(h* = (select state

' 00O

DDD User Manual

Y ¥ E X o)

(select state r rd (or s b) a (sgtl6? score)

(sgt21? score)

go go go go go go go go))

r rd (or s b) a
aaloOaaa))
r rd (or s b) a
bbbblbhb))
rd {ox: s b} a
s s s s 1 s))
rd (or s b) a

5
s
T
100000 0)))

Cc-18

(sgt1l6? score) (sgt2l? score)
(sgt16? score) (sgt2l? score)
(sgtl6? score) (sgt2l? score)
(sgtl6? score) (sgt2l? score)

Appendix C: BlackJack Machine

SUTYOBN YOBLYORTH (D XTpusddy 61-0 Tenuen Iasn aadd

0 s gqeob 1 é ¢ w ¢ €'0 Z'O T°'D0 ('O p'oIODS £'9IODS g oI0DS [°2I00S (°3I100s (6
0T gqeob 1 ¢ ¢ & ¢ £'D 'O T1°'©2 (0°'D p-oI0DS £'9I0DS Z'2I0DS [°dI0DS (°2I00s (B
0s T eob 1 & o) & ¢ £'D 'O 1'D ('O p°oIODS £'3IODS Z°2I0DS [°9I0DIS (21005 (L
0sqoob z 0 T 1 0 €2 z'2 1°'D ('O p'ISppe £ IIppe Z'I9ppe T IIppe 0 IPpe (9
0sqTob 1 1 0 1 0 €'2 Zz'o 1°'D ('O p°Isppe £ IIppe Z'ILppe ['IIppe Q°I3ppe (G
0sqgqeob 1 €0 z°o 1°2 0°2 ') ¢ ¢ ¢ p'Ioppe ¢'Ioppe Z'Iappe ['Iappe (' Iappe (b
I sqeob 1 i é P2 & é m : { p'oI0DS E£'9I0DS Z'9I0DS ['8I00S (°3I00s (€
00O0®o0b I i & ¢ $€'PD Z°PD I'PD 0°PD b oI00S £°9I0DS Z'9I0DS [°3I0OIS ('8I0DS (Z
0000O©OB I ¢ é é & S'Pd Z'PD T PO 07DD 0 0 0 0 0 (1
0 sqeob I i é ¢ i i 2 b2 ¢ p-oI0D0S £'@I0DS Z'9IO0DS [°8I00s ('2I03s (0
U S q® I pl £'q-I9ppE Z°'q-I19ppe ['q-I9ppe ('g-ISPpe €£°'D g'D 10 ('O p’'2I0DS £'3I0DS Z°3I0DS T'93100S ('8I03S

(select state r rd (or s b) (ace? c¢) a (sgtl1l6? score) (sgt2l? score)
0 score.0 score.0 adder.0 adder.0 adder.0 score.0 score.0
score.0))
(adder-b.0 =
(select state r rd (or s b) (ace? ¢) a (sgt1l6? score) (sgt2l? score)
7 2%e0 002 2 %))
(c.0 <=
(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l1? score)
Cd.0 Cd.0 ? ? ¢.0 ¢.0 ¢.0 c.0 c.0))]

[(score.l <=
(select state r rd (or s b) (ace? ¢) a (sgtl6? score) (sgt21? score)
0 score.l score.l adder.l adder.l adder.l score.l score.l
score.l))
(adder-b.1 =
(select state r rd (or s b) (ace? c) a (sgt1l6? score) (sgt2l? score)
2727 Roweed L1 7R 2Y)
{C.]1 <=
(select state r rd (or s b) (ace? ¢) a (sgt16? score) (sgt2l? score)
Cd.1 Cd.1 ? 2 ¢c.1 c.1 ¢.1 c.1 c.1))]

[(score.2 <=

(select state r rd (or s b) (ace? c) a (sgt16? score) (sgt21? score)

0 score.2 score.2 adder.2 adder.2 adder.2 score.?2 score.?2
score.2))

(adder-b.2 =
(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l? score)
72 7e¢.201 772
(c.2 <=
(select state r rd (or s b) (ace? ¢) a (sgt16? score) (sgt2l? score)
Cd.2 €Cd.2 ? 2 c.2 ¢.2 ¢.2 €.2 €.2))]

[(score.3 <=

(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l1? score)
0 score.3 score.3 adder.3 adder.3 adder.3 score.3 score.3
score.3))
(adder-b.3 =
(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l? score)
27 231 0?8 2))
(c.3 <=
(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l? score)
Cd.3 €d.3 ? ? ¢.3 ¢.3 ¢.3 c.3 ¢.3))]

[(score.4 <=

(select state r rd (or s b) (ace? c) a (sgtl6? score) (sgt2l1? score)
0 score.4 score.4 adder.4 adder.4 adder.4 score.4 score.4
score.4))]

DDD User Manual C—=20 Appendix C: BlackJack Machine

[(a <=
(select

(b <=
(select

(s <=
(select

(h* =
(select

(rd <=
(select

(r <=
(select

state
rE E

state
go go

DDD User Manual

r rd (or s b) (ace? c) a

al0aaa))
r rd (or s b) (ace? c) a
bbblbhb))
r rd (or s b) (ace? c) a
s s s s 1 s))
r rd (or s b) (ace? c) a
000O0O00))
r rd (or s b) (ace? c) a

rTrYrerrr))
r rd (or s b) (ace? c) a
go go go go go go go))])

c-21

(sgtl6?

(sgtl6?

(sgtl6?

(sgtl6?

score)

? score)

score)

score)

score)

score)

(sgt21?

(sgt21?

(sgt2l?

score)

score)

score)

score)

Appendix C: BlackJack Machine

(define state

(lambda (s p0 pl p2 p3 p4 p5 p6)

(case s

[get (if p0 (if pl get (if p2 add add)) get)]

[add (if p3 (if p4 tst use) tst))

[use t

st]

[tst (if p5 (if p6 (if p4 tst get) get) get)])))

T M

I3

((define k.1
(lambda (s
(case s
[get
[add
[use
[tst

(define k.0
(lambda (s
(case s
[get
[add
[use
[tst

DDD User Manual

p4 p5 p6)

0]

1]

1]

(if p5 (if p6 (if p4 1 0) 0) 0)]1)))

PO pl p3 p4 p5 p6)

(if p0 (if pl 0 1) 0)]
(if p3 (if p4 1 0) 1)]
1]

(1f p5S (if p6 (if p4 1 0) 0) 0)1))))

Cc-22

Appendix C: BlackJack Machine

(define select
(lambda (s p0 pl p2 p4 p5 p6 v0 vl v2 v3 v4 v5 v6 v7 v8 v9)
(case s
[get (if p0 (if pl v0 (if p2 vl v2)) v3)]
[add v4]
[use Vv5]
[tst (if p5 (if p6 (if p4d v6 v7) v8) v9)])))

((define cmd.3
(lambda (s
(case s
[get
[add
[use
[tst (if p5 (if p6 0 1) 1)1)))
(define cmd.2
(lambda (s p5 p6)
(case s
[get 0]
[add 1]
[use 1]
[tst (if p5 (if p6 I 0) 0)])))
(define cmd.1
(lambda (s p0 pl p2 p5 p6)
(case s
[get (if p0 (if pl 0 (if p2 0 1)) 1)]
[add 0]
[use 0]
[tst (if p5 (if p6 1 0) 0)1)))
(define cmd.0
(lambda (s p0 pl p2 p4 p5 p6)
(case s
[get (if pO (if p1 0 (if p2 1 0)) 1)]
[add 0]
[use 1]
[tst (if p5 (if p6 (if p4 0 1) 0) 1)1))))

DDD User Manual Appendix C: BlackJdack Machine

NAME = CONTROL.EQN;
INORDER =
abr s p2;
QUTORDER =
cmd.0 = !'k.0 & p2 & !pl
| k.1 & !p4 & pb
| 'k.0 & !p0
| !'p5 & k.1
| k.1 & ¥k.0 2
cmd.l = !'k.1 & 'k.0 & !p2 & !pl
| p6 & p5 & k.1 & k.0
| 'k.1 & !k.0 & !p0 ;
cmd.2 = p6 & p5 & k.0
| k.1 & k.0
| 'k.1 & k.0 ;
cmd.3 = k.1 & k.0 & !pb
| !'p5 & k.1 & k.0 ;
k.0 = p4 & p6 & p5 & k.0
| 'k.0 & !pl & pO
| p4 & !'k.1 & k.0
| 'k.1 & k.0 & !p3
| k.1 & 'k.0 ;
k.1 = p4 & p6 & p5 & k.0
| k.1 & !'k.0
| 'k.1 & k.0 :
a=!cmd.3 & !cmd.2 & !'cmd.0 & a
| 'cmd.3 & !cmd.1 & !cmd.0 & a
| 'cmd.3 & cmd.1l & cmd.0 & a
| emd.3 & !emd.2 & !cmd.l & a
I

h*:

r =

rd =

DDD

!'emd.3 & cmd.2 & !cmd.l & cmd.0 ;
lcmd.2 & !cmd.1 & !cmd.0 & b
cmd.3 & !emd.2 & !cemd.l & b
!lemd.3 & ecmd.2 & b
!lemd.3 & ecmd.l & cmd.0 & b
'emd.3 & ecmd.2 & cmd.1l & cmd.0 ;
'emd.3 & !cmd.2
'!lemd.2 & !cmd.l1 & go
'emd.3 & go ;

!'emd.2 & !emd.1 & r
'emd.3 & r© ;

User Manual C-24

& cmd.l & cmd.0 ;

pl p4 p6 p0 p5 p3 go cmd.0 cmd.1l cmd.2 cmd.3 k.0 k.1

P2 s rbak.l k.0 cmd.3 cmd.2 ecmd.1l emd.0 h* rd ;

Appendix C: BlackJack Machine

s = !lemd.2 & lemd.1 g 'emd.0 § s
N | emd.3 & !cmd.? & lemd.1 & s
| emd.3 & !emd.2 & !emd.1 & !emd. O
| 'emd.3 & cmd.2 & s
Y | 'emd.3 & cmd.1 ¢ cmd.0 & s ;
P2 = s | b ;

NAME = PREDS.EQN;

INORDER = score.4 score.2 score.l score.3 score.0 a c.3 ¢.2 ¢c.1 ¢.0
rd r ;

OUTORDER = p6 p5 P4 p3 pl po ;

P6 = score.4 & score.? & score.l
| score.4 & score.3 :
PS5 = score.4 g score.3
| score.4 & score.?
| score.4 & score.l
| score.4 & score.(;
p4d = a ;

P3 =c.3 & !¢c.2 § c.1 & e.0 ;
pl = rd :;

p0 = r ;

DDD User Manual C=25 Appendix C: BlackJack Machine

« SLICE 0..4

PREDS —

CONTROL —

Realization

The realization was decomposed into three physical blocks. Each block was gen-
erated using a different VLSI layout tool demonstrating a mixed layout solu-
tion. BLOCK 1: SLICE_0..4.RTBA: A RTBA implementation of Score, C, and addto.
RTBA (Register Transfer Bus Architecture) [10] defines a layout style designed
to maximize register transfers within a single bit slice, and the incorporation
of arithmetic functional unit. BLOCK 2. PREDS.EQN: A standard cell implementa-
tion of the status predicates, sgt16?, gt2l?, and ace?, were derived using OCT
Tools MISII and the MSU standard cell library ([13]. BLOCK 3: CONTROL.EQN: A
PLA implementation of ENCODE, NEXTSTATE, A, B, S, H*, Rd, R, and the RTBA con-
trol logic. A PLA was generated using the Berkeley VLSI Tools PLA generator,
eqntott and MPLA [12] .

DDD User Manual C-26 Appendix C: BlackJack Machine

