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Abstract

A new formulation for LU decomposition allows efficient representation of
intermediate matrices when pivoting on blocks of various sizes, i.e. during
“undulant-block” pivoting. Its efficiency arises from block encapsulization
that is implicit in the data structure or that is used by the process scheduler,
and defers row/column permutations that destroy such encapsulizations. It
is useful, therefore, for parallel or distributed processing on matrix represen-
tations that encapsulate submatrices as substructures.

A given matrix, A is decomposed into two matrices, plus two permuta-
tions. The permutations, P and @, are the row/column rearrangements usual
to full pivoting. The principal results are (L+U) and (Q DP)™!, where L and
U are proper lower—and respectively upper—triangular, D is quasi-diagonal
following the zero blocks in L + U, and PAQ = (I + L)D(U + I).

An example of a motivating data structure, the quadtree representation
for matrices, is reviewed. Candidate pivots for Gaussian elimination under
that structure are subtrees, both constraining and assisting the pivot search;
block operations there decompose accordingly. Finally, an integer-preserving
version is presented.

1991 Mathematics Subject Classification: 65F05 primary; 68Q22, 65F50
secondary.

CR categories and Subject Descriptors:

G.1.3 [Numerical Linear Algebra]: Linear systems, Matrix inversion,
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0 Introduction

In the context of matrix computations, block algorithms are defined in terms
of operations on submatrices instead of on elements. This paper relaxes the
constraint of uniform size, so that blocks of various sizes, including elements
as 1 x 1 submatrices, can be operands. Such a block algorithm is undulant
when it can alter the sizes of its submatrix operands during a run.

Block algorithms have attracted much attention lately because they are
well suited to high-performance computing. Non-trivial blocks use hierarchi-
cal [8, 7] and distributed memory more effectively than row-based methods,
and manipulations on blocks raise the granularity of parallel processing, ame-
liorating the problem of process scheduling. Moreover, these algorithms offer
better locality on machines where processor-memory access time varies ac-
cording to relative addresses of processor and memory. The efficiency of par-
allel processing improves considerably as more independent, large-submatrix
operations are scheduled onto processors closer to their respective operands.
This desirability of block operations is well known, with matrix-matrix opera-
tions often called Level 3 (BLAS) operations, where matrix-vector operations
are ranked at Level 2.

Staticly sized blocks are used by block algorithms for Gaussian elimina-
tion (GE) under one of two philosophies. They can be used without con-
straint in cases when it is safe not to pivot, for example when the problem is
diagonally dominant or symmetric positive definite. Alternatively, they can
be used heuristically for pivoting, against the rare possibility of collapse, be-
cause a nonsingular residual matrix has no nonsingular and stable-pivot block
of the required size and orientation. Upon such a failure, the partial solution
is abandoned and the problem is reordered and solved again, even though re-
version to scalar pivoting—the simplest of undulant-block strategies—could
complete it. Because such failures are less likely with smaller blocks, the
heuristic approach constrains the need of high-performance for larger operands.

George [9] observes that block pivoting offers a middle ground between
the complicated programming necessary for sparse matrix techniques, and
the fill-in that results from straightforward code using a band or band-like
ordering. Undulant block-sizing is, therefore, developed here in an effort also
to marry his unified approach to sparse/banded problems to the increased
throughput of parallelism, even though the steps just after pivoting on a
large block may be forced onto smaller ones. Nevertheless, a larger pivot
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may become practical again later.

GE either with partial pivoting (GEPP) or even full pivoting (GEFP),
remains the matrix algorithm of greatest interest, for both numeric and sym-
bolic problems. Demmel and Higham [5] present new and generally favorable
results on numeric stability of block algorithms using BLAS3. They consider
error analysis on GE and GEPP, iterative refinement on GEPP, block trian-
gular factorizations on GE, and orthogonal transformations. Of their results,
the one closest to this work is on block-triangular factorizations (GEPP on
staticly sized blocks), which they show can be unstable.

However, the decomposition algorithm described here differs in two re-
spects: it uses undulant blocking and it accommodates full pivoting. More-
over, it uses efficiently any block-oriented matrix representation. Neither
analytical nor experimental results on its stability, fill-in, or speed are in-
cluded here, but strategies are suggested for improving these attributes by
careful selection of pivot blocks.

This algorithm is designed also to accommodate special representations
for sparse and symbolic matrices. Both cases suggest that a zero submatrix
have a trivial representation, and that row/column permutations would be
very expensive; therefore, one concession to full pivoting is to defer permu-
tations. An example of such a representation, as well as the algorithms that
use (L + U), D' decomposition to solve linear systems and to invert matri-
ces, is offered in Section 3. Section 4 extends it to division-free algorithms
necessary for exact and symbolic arithmetic. '

This formulation of classic LU decomposition helps computations subse-
quent to decomposition, encapsulating those intermediate results according
to whatever block structure is provided by the matrix representation. Block
decomposition of the results here retains the relative “geography” in the
parameters; thus, block pivots in the result D’ are represented just as conve-
niently as they were in input A.

The remainder of this paper is in five parts. The first presents a gener-
alization of LU decomposition: (L + U), D’ decomposition; and dependent
algorithms for solving linear systems and matrix inversion that are intended
to use undulant blocking. The second section presents the quadtree repre-
sentation for numeric and permutation matrices. The third shows how such
a representation, which constrains its candidate-pivot blocks, needs this de-
composition. Section 4 shows how to adapt it for exact arithmetic. Finally,
the last section offers conclusions.



1 (L+U),D decomposition

Definition. A matrix A is proper lower (upper) triangular if a;; = 0 for
i < j (respectively,1 > j).

Notation. I denotes the identity matrix of any order. Similarly, 0 denotes
the zero matrix of any order.

Definition. Two matrices, A and B, are said to be disjoint if
Vi,j(a,‘j =0V b,‘j = 0)

Definition. A square matrix A is quasi-diagonal [6] if it has square subma-
trices (cells) along its main diagonal with its remaining elements equal to
Zero.

This more obscure term is used instead of block-diagonal to emphasize
that the blocks along the diagonal can differ in size, as Faddeeva illustrates.
“The determinant of a quasi-diagonal matrix is equal to the product of the
determinants of the diagonal cells, on the strength of a notable theorem by
Laplace [6].”

If D is an n xn quasi-diagonal matrix with b nonzero blocks then, following
the block decomposition, one can partition the basis of the underlying vec-
tor space, decomposing it into b mutually complementary subspaces. Thus,
problems on D can be decomposed into b small, independent problems: one
in each subspace.

The proper lower triangular matrix, L, associated below with a quasi-
diagonal matrix, D, will have zero submatrices exactly where D has nonzero
matrices. Therefore, the above decomposition on the vector space underlying
D can be applied to I+ L, as well. The same can be said for associated upper
triangular matrices, U.

Definition. An (L+U), D’ decomposition of A, nonsingular, is the quadru-
ple, (P,Q,L + U,(QDP)™") where

e P and @ are permutations;
e L is proper lower triangular and U is proper upper triangular;

e D is quasi-diagonal and disjoint from both L and U;
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o PAQ = (I+L)D(U +I).

It is trivial to separate (L + U) into unit upper and unit lower triangular
matrices, I + L and U + I, but this is never necessary.

Notation. Subscripts n, m, s, should be read as “north, middle, south;”
and w, c, e as “west, central, east.”™

Algorithm 1 (Pivoting nonsingular A to (P,Q, A’, D').) Full, undulant-
block pivoting is assumed, although no strategy for selecting pivot blocks is
yet addressed. The quadruple of results from repeated pivoting on a matrix
A is described recursively as follows.? If A is void then the result is (7, 1,0, 0).
Otherwise, let the block decomposition of A, isolating the k x k pivot

block, A, be labeled

7 Ok ke
? Anw Anc Ane
A= k Amw Amc Ame
n—k—1\ Asw Asc A

se

where A is n x n and A, is 7 X j. The trivial case has i =0 = 7 and k = n.
Then

0 @ Anw Anc Ane D, O

y a8 E 0) ; ; ;
(P,Q,A,D)—<(Pw o p )L 0|4 0 4] 0 D

where P, is (n — k) x i, P.is(n—k) x (n—k —1), Qn is j X (n — k), and
Qs is (n — k — j) x (n — k). These values can be computed as follows: first

1 4-1
'Dmc - Amc

is solved recursively (with good accuracy); then the pivot row and pivot
column are completed using Level 3 operations,

(Amw  Ame) = D (Amw  Ame)

1Using these enumerated types, instead of integers, for block indexing dodges debates
about zero-based vs. one-based indexing, obscures ordering among blocks, and avoids any
implication that, say, 5 could be a useful block index.

2Versions of these algorithms for quadtrees (cf. Section 2) have been programmed in C
and in Haskell, the international functional programming language [11], but code would
add little to them and Figure 2.

Dy,
0
D,



A:w Anc A
(A;c) = (A,c) Druci

n A:tw A:u D:w.r D:ne
(e 2 (gn)s G ) (o))

results from recursive pivoting on the (n — k) x (n — k) problem

Any  Ane Anc\ ;1 )
(A,w A,e)_(Asc)(Amw Amc),

that can also be derived using Level 3 operations. O

finally,

The subtrahend in the last expression can alternatively be computed as

(J) CAma o).

A permutation, P or @, can be efficiently represented in structures other
than the matrix used here, e.g. a list of indices for its I entries. The next
section defines a general matrix representation that is especially cheap for
permutation matrices [17], as well as a scheme for indexing of both trivial
and non-trivial I submatrices.

In the special case that ¢ = 0 = j at every level in the recurrence, the
algorithm might be called “undulant-block Gaussian elimination.” Figure 1
illustrates Algorithm 1 in this case. In this case it is easy to see that P =
I, Q =1, A= L+U, D = D™, and that these form the (L + U), D’
decomposition of A, by conventional GE.

However, a permutation of the same example in Figure 2 can retain the
same pivots in the same order, (R, S, T'), to yield the pivoting shown under
GEFP. The (now nontrivial) permutations, P and @, are shown separately
in Figure 3.

Theorem 1 . Let (P,Q,A’,D') be the result from Algorithm I on nonsin-
gular input A. Then the (L+U), D' decomposition of A is (P,Q,PA'Q,D").

Proof: If A is nonsingular then the recursive pivoting is defined and P and @

are permutation matrices, by construction. If an oracle had provided P and
Q before Algorithm 1 began, then we could have permuted A, for instance
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Figure 1: Undulant-block elimination.
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Figure 3: Permutation matrices from pivoting in Figure 2.

from Figure 2, to PAQ, and the same pivoting on it would have followed
the main diagonal, as in Figure 1, to yield (L + U) and D~'. Thus, L (U)
is proper lower (respectively, upper) triangular; D is quasi-diagonal, disjoint
from both L and U; and

PAQ = (I + L)D(U + I).

However, because no permutations occur in Algorithm 1, permuting A before
it is equivalent to permuting both its A’ and D’ results afterwards

PAQ = L+U;
PD'Q = D

Therefore, D' = (QDP)™'. O

Corollary 1 . D' in Algorithm 1 is a rearrangement of a quasi-diagonal
matriz to fit the structure of the pivots, as selected.

Algorithm 2 ((L + U), D’ decomposition.) Use Algorithm 1 to compute
(P,Q,A’,D'") from A, and apply the permutations once to return

(P,Q,PAQ,D).D

There are three reasons that the block pivoting illustrated in Figure 2
is favored over traditional pivoting strategies (e.g. GEPP). First, the block
structure of A’ and D’ in Figure 2 exactly follows the geography of the chosen
pivot blocks, to save intermediate storage under any matrix representation
that uses block decomposition. Secondly, the permutations in Algorithm 2
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reorder both L and U. Since their sum is disjoint, it suffices to permute
A’ just once; only two other permutations are required in Algorithm 3 or
4. Last, it demonstrates full pivoting, desirable to improve the chances for
finding a large pivot among candidates of various sizes.

Section 3 presents a block-oriented data structure that compactly rep-
resents the decomposition of D' in Figure 2, but not of D~! in Figure 1.
Moreover, it can easily represent and manipulate L + U, computed from
Figure 2 by Algorithm 2 to appear exactly as in Figure 1, because the only
special blocks there are zeroes, and so represented especially compactly. The
following two algorithms are particularly fast when large diagonal blocks of
L + U are zero, and when the associated nonzero blocks of D’ are packed.

Algorithm 3 (Solving a linear system.) Solve AZ = b using this refor-
mulation:

PAQ = (I+L)D(U +1I)

implies

PYI+L)Q ™ (QDP)P'U+1Q'E=5
1. Compute the (L 4+ U), D’ decomposition of A using Algorithm 2.
2. [forward substitution] Solve (I + L) = Pb=¢.
e If L + U =0 then §y=_¢.

e Otherwise, partition®

_ an+Unw E - .?f; - (C-;z)
“U‘( W Lsewse)’ y‘(y})’ ‘“=\e&)

-

e Recursively solve (I + Ly )yn = Cn-
e Recursively solve (I 4+ Lg)ys = é — Wyn.
3. [backward substitution] Similarly, solve (U + I)Z = P(D'(Q%))-

4. Permute Z = QZ. O

3E and W should be chosen for compact representation under the matrix representa-
tion; secondarily, one might choose E and W to be of about equal size, or to force either
Lpy + Upy or Lse + Use to be entirely zero.



Algorithm 4 (Matrix inversion.) Invert
A=P I+ D[Q Y (QDP)P U+ DR
1. Compute the (L + U), D’ decomposition of A using Algorithm 2.
2. f L+ U =0 then A™' = (QP)D'(QP);

3. Otherwise compute L' = (I 4+ L)™' and U" = (U + I)™! recursively;
then A™' = Q(U'(PD'Q)L)P.

e Partition L + U as in the previous algorithm.

e Recursively compute
Lnyw = (I+ Lpw) ™ Ly = (I 4 Lse) ™
U = (Unw + 1)U = (Use +1)7

e Then
T ( L:w.- 0 ) - U= (U:a.w _U:awEU.;e>
B _L;eWL:zw L;e ’ - 0 U;e .
O

A single recurrence can yield (L' —I)+ (U’ —I) directly from L+ U using
fewer processes; the program is left as an exercise for the reader. A second
exercise is to modify Algorithm 2 to return D~ in place of D', specifically
to accelerate Step 3 of Algorithm 4; does Step 2 improve similarly?

A design criterion of these algorithms—to avoid permutations on interme-
diate matrices—has been met. Algorithm 1 uses none none; Algorithms 2,
3, and 4 require minimal permutations. Moreover, in all algorithms only
two permutations, P and @, are needed; under partial pivoting one of them
becomes I. After the serious row/column rearrangement in Algorithm 2,
Algorithm 3 permutes only vectors. After the Algorithm 2 rearrangement,
Algorithm 4 trivially rearranges a quasi-diagonal matrix and then uses a
second serious row/column rearrangement to complete the inverse.

The primary goal of these algorithms, to implement LU decomposition
with variously large Level 2 and 3 (block) operations, is achieved in Algo-
rithm 1. Figures 1 and 2 might suggest that the disjoint results, A’ and
D', be summed to form a compact result. They are held separate, however,
because that sum is not easily separated after the rearrangement (because
of undulant block sizing); some large Level 2 and 3 (block) operations would
also be splintered in Algorithms 3 and 4.
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2 Quadtrees and undulant-block pivoting

Algorithm 1 is a generalization of generic LU decomposition. If it is restricted
so that k is fixed at all levels of the recursion, then it implements conventional
(non-undulant) block pivoting; if £ = 1 everywhere, it implements scalar
pivoting. If it is further restricted with j = 0, then P = I and it uses
partial pivoting. If, furthermore, i = 0 then Q = I, pivoting disappears, and
Algorithm 1 implements traditional GE.

The generalization was necessary in order to discuss block pivoting with
undulant (varying) k. In order to take best advantage of efficient Level 2
and 3 (block) operations, we want k to be large at some steps even though it
may be forced smaller at others. However, if the choice of ¢, 7, k is unrestricted
then pivot selection can become more difficult than the underlying linear
problem. For instance, P in Figure 3 has only one (of nine) contiguous 2 x 2
block that is nonsingular, and hence a pivot candidate; a search for it that
also tested eight other candidates overwhelms the effort actually to eliminate
it. That is, complete searches like this may actually be counterproductive,
especially in sparse matrices and when undulance permits default to scalar
pivots.

This section reviews the quadtree representation of matrices [14], which
motivated the generalized Algorithm 1. It decomposes full matrices as bal-
anced quaternary trees. Sparse matrices are accommodated by providing a
distinguished null representation for an entirely zero (sub)matrix (c¢f. hyper-
matrices [4]). Moreover, the pivot search only considers those blocks that
coincide with subtrees as pivot candidates..

Postulate. A d-dimensional array is represented as a 2%-ary tree.

In all of the following, the orders of matrices and sizes of vectors are taken
to be powers of two. Arrays of other sizes can be embedded efficiently into
these using zero padding, which Algorithm 1 will treat as “eliminated” ab
initio.

Data Structure [Binary tree representation of vectors]. A vector of
size 27, represented as a binary tree of depth p, is

e homogeneously zero and represented as 0;

e represented by the appropriate non-zero scalar when p = 0;
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e otherwise represented as a pair of subvectors, (north, south), each of
which is size 2P~!, at least one of which is non-zero.

Definition. The Ahnentafel index [3] of an entire vector is 1. If the Ah-
nentafel index of a subvector is i, then the Ahnentafel index of its north son
is 21, and the Ahnentafel index of its south son is 21 4 1.

~ This is the familiar “level order” indexing of a binary tree, where the
2 nodes at Level i are indexed left-to-right from 2° up to 2°*! — 1. In the
following, all indices* are Ahnentafel indices.

Data Structure [Quadtree representation of matrices]. A matrix of
order 2P, represented as a quaternary tree of depth p, is

e homogeneously zero and represented as 0;
e represented by the appropriate non-zero scalar when p = 0;

e otherwise represented as a quadruple of submatrices, (northwest, north-
east, southwest, southeast), each of which is order 2°~', at least one of
which is non-zero.

An alternate definition of this structure allows the elementary non-zero
items to be uniformly larger than 1 x 1. For instance, a system of time-
dependent differential equations does well with an elementary block of size
3 x 3 [4, p. 5]. Memory bandwidth may make it practical to use even larger,
sequentially allocated “elementary” blocks.

Definition. The index of an entire matrix is (1,1). If the index of a sub-
matrix is (i,7), then the index of its northwest quadrant is (2:,25), of its
northeast quadrant is (2¢,25 + 1), of its southwest quadrant is (2i + 1,2j),
and of its southeast quadrant is (2i + 1,25 + 1). The first index of each index
pair is the row index; the second is the column index.

4In practice, the significant bits in each Ahnentafel index are reversed. That is, the
node at Level 0 is indexed 1; the left son of Node i at Level j is indexed i+27, and its right
son by i 4 27+1. The reversal allows a bottom-up index to be build easily, using doubling
and addition at each node, and to be discharged simply by descending the binary tree
using integer quotient remainder on 2 (i.e. shift and even?) at each level.
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Data Structure. A permutation matrix of order 27, represented as a qua-
ternary tree of depth p, is

e homogeneously zero and represented as 0;
e the identity matrix and represented as I;

e otherwise represented as a quadruple of submatrices, (northwest, north-
east, southwest, southeast), each of which is order 2°7*.

Moreover, if indices, (1, j) and (m,n), of two I blocks in a permutation matrix
satisfy either equationi = 2m+4sorj =2 n+sfor0 < s < ok thenm =1
andn =j.

The last clause establishes the “Eight Rooks Problem” orientation of [
blocks in permutation matrices.

Corollary 2 . No nonterminal node in a quadiree matriz has 0 as all four
of its quadrants. Similarly, no permutation matriz has both northeast and
southwest quadrants 0 while both its northwest and southeast are simultane-
ously either 0 or I.

The indices of the pivot blocks are sufficient to determine Permutations
P and Q. For example, R, S, and T in Figure 2, are respectively indexed
(6,4), (2,3), and (7,5). An I entry at (2,3) is further refined to (4,6) and
(5,7) (its northwest and southeast sons are I), yielding the index sequence:

(614)1 (416>a (517): (715>‘

Projecting on the first components yields the sequence, 6,4,5,7, appearing
in the index sequence of I entries in P of Figure 3:

(436)7 (5?4)? (6’5)" (71 7)'

Projecting on the second components yields the sequence, 4,6,7,5, which
appears in the index sequence of I entries there in Q:

(4,4), (6,5), (7,6), (5,7)-

A Haskell [11] declaration for a Matrz that unifies both permutation and
ordinary matrices appears below. It is a constructed data type that has four
alternatives: 0, a 1 x 1 scalar matrix, a list of four quadrants, and I for
permutation matrices. Appendix A exhibits code for simple operations on it
that take advantage of the algebraic properties of 0 and 1.
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type Quadrants a = [Matrx a] --list of *four* submatrices.
data Matrx a = ZeroM | ScalarM a | Mtx (Quadrants a)
| IdentM --used only in permutations.

3 Applying the decomposition to quadtrees

Convention. When applying Algorithm 1 to the quadtree representation,
the values of i, j, k,n there are restricted. The second two must be powers of
2; 29 = k < n = 2P. Furthermore, the first two must be multiples of k; e.g.
0<i=ck <n.

Theorem 2 . The pivot block selected from an n X n quadtree matriz by
Label (1, 7,k) in Algorithm 1, has an Ahnentafel indez ((n+1)/k, (n+7)/k).

Proof: The number of larger quadrants in the matrix, nodes above that
block in the tree, is Socicign/k)2° = n/k — 1. The number of equivalently
sized blocks in its row but to its west is i/k. So its row index, including itself,
is (n/k—1)+:/k+1. O

Theorem 3 . When A in Algorithm 1 is represented as a quadtree and split
into four subtrees, A,. intersects ezactly one of the subtrees.

Proof: The convention on i, j, k, and n implies either that k£ = n and Ap, =
A, or that k < n/2 while i, j are multiples of k; then Ap,, is located within
one of A’s four quadrants. O

Theorem 4 . Algorithm 1 can be programmed recursively following the
quadtree decomposition, as in Appendiz A.

Proof: The key to the program is Theorem 3. Once the pivot has been iden-
tified, it either coincides with the matrix A (see Algorithm 3), or it is within
one quadrant, and the algorithm can be applied recursively. The follow-
ing modification to Algorithm 1 elucidates the recurrence with two changes:
the size, n, is maintained as an invariant power of 2 by padding zeroes in
place of (middle and central) eliminated blocks, and the quadrant recursion
is sketched, using the new indices h and v, read “vertical” and “horizontal”.
Since the pivot, A, is entirely within one quadrant, it orients the other
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three: horizontal vertical, and diagonal from it. The diagonal quadrant is,
thus, A, and the vertical (and horizontal) block is further decomposed: west,
central, east (respectively north, middle, south). In the following sketch, the
pivot appears northwest and the diagonal block is southeastern; with full

pivoting any of three other orientations are also possible.

Let the block decomposition of nontrivial A, isolating the pivot block A,

and diagonal block A, be labeled
7 E nf2—k—j7 n/2

? Anw Anc Ane Anh

A= k Amw Amc Ame Amh
nf2—1—k Ay  Ase Ao A

n/2 Ave  Aue A | Aw

where Aisn X n, Apeis i X j, Amc is k X k, and Ay, is n/2 x n/2. Then

0 Q.
g 0 1 0|0 I 0
(PaQaA:D) _< (Pw 0 Pe Ph), 0 Qs b]
0 Qo
A:-l.w A:I.c A;ze :u'z D :w.: 0 D :‘te :lh
A:nw 0 A:ne :nh 0 D:nc 0 0
A;w Afsc A;e ;h ’ D :w 0 D ;e ;h
Ay A Al | A D,, 0 D,|Dy

where P, is (n — k) x i, P.is (n — k) X (n/2 — k —1), Py is (n — k) X (n/2),
Qnisjx(n—k),Q,is (n/2—k—j) x (n—k), and Q, is (r/2) x (n — k).

These values can be computed as follows: first

I A1
‘Dmc e Amc

is solved recursively; then the pivot row and pivot column are completed:

(A:nw 0 A:nelA:nh)=D:nc(Amw 0 A"“elAmh);

A:zc A"‘-C

0 0 '
A;c - A-’ c Dmc .
A:JC AW—‘
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0 Qﬂ- A:aw 0 A:;e :-;h D :lw 0 D :w D :1,'1
0 0 0fO 0 O 0 0 O 0 0o 0 O 0
P, 0 P.|P. )| 0 Qs || AW O AL |Aw |’| Dew O Di | Do

0 Q” A:rw 0 A:Jc | A:.rh D :Jw 0 D :.:e I i.-h

results from recursive pivoting on the n x n problem

Anw 0 Ane Anh Anc
0 0 O 0 0
Ao 0 Ap | A |7 | e | (Ao O Al A ).
Auw 0 Ave | Auh Avc

The bars in this sketch illustrate how recursive computations in the pivot
quadrant (to the northwest here) can proceed independently of the other

quadrants. Then, with minimal transfer of information: Dj,, and ( A; 0 A
mc mw

me

Ane
to the vertical quadrant and similarly D}, and ( 0 | to the horizontal
AJC

quadrant, compute ( Al A A ) and | A
sh
ously; and propagate A,. and A'mh to the diagonal quadrant to compute
A!, as a block (or quadrant) “flop.” O
Ahnentafel indices are useful here to locate padding that represents elim-
inated elements in this version of Algorithm 1. A similar mechanism was
used in the code for scalar Jordan elimination [15].

, perhaps simultane-

Corollary 3 . Algorithms 2 and 3 can be programmed recursively following
the quadtree decomposition.

The code for Algorithm 1 is symmetric with respect to orientation of
the recurrence. In order to maintain the structure of the matrix, eliminated
portions of the matrix are retained within A’ in place of zero padding, but
are tagged—much like the shading of areas in Figure 2.

For the pivoting illustrated in Figure 2, the results from (L + U), D’ de-
composition are illustrated by L+ U at the bottom of Figure 1 and D’ at the
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bottom of Figure 2. Both of them fit the quadtree representation well. D’ is
preferable to D! of Figure 1 because the block decomposition exactly fits
the quadrant representation. Thus, subsequent multiplications on in in Algo-
rithms 3 and 4 are localized to subtrees coincident with represented blocks of
quasi-diagonal D. L+U is represented as efficiently as A’ in Figure 1 because
the only special blocks that cross quadrant boundaries are zero anyway; their
representation is compact whether or not they are further decomposed. Thus,
when Algorithms 3 and 4 cleave L and U by halves, rather than according to
the pivot geography, there is minimal additional overhead for these zeroes;
it is a small price to obtain the benefits in numeric accuracy (binary-tree
association of addition) and in parallelism (subprocesses of equal size) from
a balanced decomposition of the recursions that follow Algorithm 2.

The search for the next pivot can be distributed across the traversal that
is implicit in each pivot step [15]. The idea is to use the tree as a search tree
with decorations at each node pointing toward the preferred pivot within that
'submatrix; as each node is visited the decoration results from a tournament
round indicating which of its four sons (or itself) is the locally preferred pivot.
Zero and eliminated submatrices are disqualified from the local tournament.

Because this decomposition is targeted toward block operations (like those
in Appendix A), it is important that the matrix not be permuted during
decomposition, so that uneliminated blocks retain their integrity, locality,
and—as often as possible—their decorations.® Therefore, the candidates
pivot blocks must, themselves, be subtrees. For example, S cannot be a
pivot candidate in Figure 1 because it crosses subtree boundaries, but in
Figure 2 it is. Algorithm 1 assures that the 5~* and 0 blocks resulting from
Pivot S in Figure 2 land at exactly the same geography (indexing) in A’ and
D' as that of S. Thus, the identification of S as a block assures the efficient
representation of the resulting eliminations.

Moreover, the payoff from S’s integrity in Figure 2 continues in Algo-
rithm 3, where the matrix-vector (respectively, matrix-matrix) product de-
composes so that S multiplies a single subvector (submatrix); both sub-
operands are already represented as subtrees. In contrast, rearranging D' to
D! as in Figure 1 splits S across four quadrants, the Algorithm 3 product
no longer has such nicely encapsulated factors, and so it loses its locality.

5Not to mention that row/column permutations on these tree structures are deceptively
expensive and, therefore, to be avoided.
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Issues to be considered in selecting pivot candidates are arithmetic (sus-
taining stability of floating-point computation, or avoiding large intermediate
results when using big integers), minimizing fill-in (for sparse matrices), and
increasing the size of the chosen pivot block (for parallelism), but these crite-
ria are not always consistent. Demmel’s and Higham’s [5] example of unstable
block LU factorization demonstrates one conflict: between good arithmetic
and larger pivots. Fortunately, there are fewer subtrees in a quadtree repre-
sentation than there are subblocks in the matrix of corresponding size, so the
search for a good pivot is confined. A heuristic is now presented to illustrate
how the quadtree structure can be used to identify larger pivot blocks.

Definition. A matrix of order 2P is nown-singular if p < 2 and it is nonsin-
gular, or if p= q+ 1, and one of its four quadrants of order 2? is 0, and the
two adjacent quadrants are nown-singular.

It is intended that nown-singular blocks have determinants that are easily
computed bottom-up, and easily screened as pivot candidates. This definition
provides base cases of 1 x 1 and 2 x 2. Alternatively, any 3 x 3 block might
also be included as basic because its determinant is so easily computed.

The term, “nown-singular,” is chosen to suggest that, under the quadtree
matrix representation, such blocks are easily known to be non-singular. How-
ever, not every uneliminated, non-singular quadrant will be nown-singular
and so a pivot candidate; therefore, this is a fast, but partial, filter for pivot
blocks. Even wheh a non-zero matrix is not nown-singular, some submatrix
of it must be; undulant-block pivoting will treat it as a pivot candidate.

Theorem 5 . Every nown-singular matriz is non-singular.

Theorem 6 . FEvery non-singular iriangular matriz of order 2P is nown-
singular.

Corollary 4 . Every non-singular, 2 x 2, block-triangular matriz of order
2P is nown-singular.

Theorem 7 . The inverse of a nown-singular matriz is nown-singular.

Definition. The known-determinant of a matrix is the magnitude of its
determinant if it is nown-singular, and zero otherwise.

A non-zero known-determinant not only identifies a candidate pivot block,
but it also measures on whether it is a stable one. Under undulant-block
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pivoting some ordering is needed to compare two blocks of different sizes.
Something like Wilkinson’s results on scalar pivots should extend to undulant
block algorithms [5]. The ability to compute a block’s determinant so cheaply
suggests that computation of other scaled measures are also tractable: for
instance, the geometric mean of a block’s eigenvalues or the harmonic mean®
of its scalar pivots.

4 Exact-arithmetic decomposition

Integer solutions for linear systems are important in rational arithmetic and
symbolic computation. The usual algorithm is due to Bareiss [1], whose
solutions are optimal in the sense that the denominator is the determinant,
d, of the input matrix, A. That such a denominator is necessary can be
observed by considering (the much less efficient) Cramer’s rule. A solution
that derives solutions exclusively using integer addition and multiplication up
to this final quotient, is said to be division-free. If the denominator there is
no larger than that determinant, then the division-free solution is considered
to be optimal. While Bareiss’s solution is division-free and optimal, it seems
to require intensive, nonlocal computation that is more typical of algorithms
for non-sparse matrices. The problem of adapting his algorithm to sparse
quadtree representation is left open.

This section extends the (L + U), D' decomposition to exact arithmetic.”
Any use of Gaussian elimination for such problems is likely sub-optimal,
because the implicit, independent solutions on L and U from an (L+U),D
decomposition can each introduce a denominator of d to the solution; d occurs
as a denominator in both L and U. That is, we can expect the denominator
common to such a division-free solution to be d* at least.

If all pivot blocks are nown-singular, then the cumulative denominator is
the product of all their known-determinants. In order to restrain its growth,
therefore, one should seek a candidate pivot block with a small® known-

6Suggested by Yugo Kasiwagi.

7 At this writing the algorithms reported in this section have not yet been implemented.

8An strange antithesis is that pivoting under exact, an floating-point, arithmetic re-
quires “smaller” pivots to constrain growth of that denominator, rather than “larger” ones
to assure stability. Nevertheless, the algorithms for pivot search and their goal of on-time
accuracy remain the same.
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determinant—one, if possible. Moreover, it is desirable common divisors
among the elements of a matrix be factored out.

Algorithm 5 (Greatest common divisor of a matrix’s elements.) If A
is ZeroM then gcd A = 0; if A is ScalarM ¢ then gcd A = [i|. If A is
Mtx [nw,ne, sw,se] then

ged A = ged(ged(ged nw, ged ne), ged(ged sw, ged se)).0

That is, the gcd of a matrix can be computed as the matrix is built. It might
be stored as a decoration at the root of a quadtree, for use when the matrix
is borrowed.

In this section, all matrices L, D, U, F, A are integer matrices. They cor-
respond to real matrices of the same shapes from Section 1, (which are tem-
porarily renamed I, D, U, etc. here.) Following the naming of Section 1, we
seek a decomposition:

PAQ= I+ LF Y)W DF ") F'U+I)

where D' = (PDF1Q)™", P,Q are permutation matrices, L,U are proper
lower, upper triangular matrices, D is block diagonal whose blocks corre-
spond to successive pivots, and F is a diagonal matrix of factors, the deter-
minants of those pivots.

Algorithm 6 (Pivoting nonsingular A to (P,Q,L + U, D', F).) Thein-
put parameters are (d, A), where d is the cumulative denominator. The quin-
tuple (P,Q, A", D', F) results from recursive pivoting on a factor d
(initially 1) and an integer matrix A, described recursively as follows. If A
is void then the result is (I, 1,0,d,0).

(Optionally use Algorithm 5 to eliminate the factor gcd(d,ged A) from
input; however, Algorithm 6 is no longer division-free.)

Otherwise, let the block decomposition of A, isolating the pivot block
A, be labeled as in Algorithm 1, and let (det An,.) = f so that J = fA,}
is also an integer matrix.

i Ok m=kj

3 Anw Anc Ane
A= k Amw Amc Ame 3

-2

n—k—1i\ A As A
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Then

0 I 0 0 Qn AL A:‘tc AL
<P:Q1A11DI1F) =< (P 0 P): I 0 ’ A:nw 0 A:ne ’

0 Q) \A, A, A
D, 0 D,
" o o |.(5 )
D, 0 D

where P, is (n — k) x i, P.is(n—k) x (n—k —1), Qnis j X (n — k), Q, is
(n—k —j) x (n — k), and f is interpreted as a k x k scalar matrix. These

values can be computed as follows: first J and f are solved recursively and
D!, is defined as dJ.
Dy, = dJ = (df) A

then the pivot row and pivot column are completed,

(Any Ame) = Do (Amw  Ame)

Al A
(A"“) = (Asc) D

Qﬂ) (A:nu A:w) (D:lw D:w) f>
(ro p2 (@) G ) (in o)
results from recursive pivoting on the (n — k) x (n — k) problem: df and
Anw Ane _ Anc ’ 7 .
£ ()= (47) (e )

(optionally using Algorithm 5 within the subtraction.) Then L +U = PA'Q
as in Algorithm 2. O

finally,

Theorem 8 . Algorithm 6 is weakly correct.

Proof: If Algorithm 6 halts, then it yields permutations P and Q. The
rest of this argument presumes that they have been provided by an oracle
a priori, and is cast as if the input, 1 and PAQ, were provided in place of
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1 and A. Thus, the north and west blocks Ay, Anc, Anes Amuw, Asw would be
void, and we may limit ourselves to the simpler block decomposition

Ao Ame
dim ( A Ay )

at each step of the recurrence. No pivoting is required and Figure 1 applies.

Now suppose that Algorithms 1 and 6 are run simultaneously on an in-
teger matrix, pivoting on geographically corresponding blocks. A “bar” no-
tation is used to identify data for Algorithm 1; “unbarred” variables denote
corresponding data for Algorithm 6. It can be shown by simple induction on
the number of pivot steps that Algorithm 1 and Algorithm 6 correspond in
the following way:

A=A
Do =Dy,
A=A, fA,, =AL,;
fdAT, = A

From these equations, and the arrangement of F' and A’ during the recur-
rence, the following equations hold after pivoting:

L= 0 =F'0;D7 =DF =FD.

a

In the following applications of the integer (L + U), D’ decomposition, it
will be useful to precompute the greatest common divisors of collections of
adjacent elementsin F. When F is stored as a binary vector or as a quadtree
matrix, this is best done with one bottom-up traversal of F, storing the gcd
and lcm of each subtree at its root.

Algorithm 7 (Exact solution for a linear system.) Given an integer ma-
trix, A, and an integer vector, b, solve AZ/f = b for integer vector, , and
integer denominator, f.

1. Apply Algorithm 6 to (1, A), yielding (P, Q, L+ U, D', F), and use this
reformulation:

A(F/f) = PY(I+LFY)Q Y (QDF'*P)PY(F\U+Q '(Z/f) = b.
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2. [forward substitution] Solve for integer (¥, ) from (¢, d) to satisfy:
(I + LF™')§/e = Pb=¢/d
with d initially 1.
o If L + U = 0 then (7, ¢) = (c,d).
e Otherwise, partition

L+U=(Lw+b’nw E );

w Lye + Use

_ an 0 - C-;t
r= (% p)i e=(3)
e Recursively solve (I + Lnw Fi7t)yn/€n = ¢ /d to obtain (yr, e,) and

let e = lem(d, e, lem Froy).
e Recursively solve (I 4 Lo F;1)ys = & /d— W Flyn/en. The right-

uw
hand side is rewritten [ré; — Wyn(sF.1)]/e where r = e/d; s =
e/en, making the numerator integral. Then the solution is

(= (%))

3. [backward substitution] Similarly, solve for integer (Z, f):
(F'U + 1)3/ = P(D'(Q))/e.

4. Permute 7 = Q7 to get the result (Z, f).

O

When binary vectors are used to represent the intermediate solutions, ¥
and 7, and if minimization of f or elementwise reduction of Z/f to lowest
terms is desired, then each subtree (subvector) should be decorated at its root
with the greatest common divisor of its two components (cf. Algorithm 5).
This is best done bottom-up as a vector is built.

Algorithm 8 (Exact matrix inversion.) Similar to Algorithm 7; see Ap-
pendix B.O
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5 Conclusions

Not so long before the serial addressing of a Fortran array fixed our attention
on row/column operations, undulant-block decomposition was recognized [6]
as an important way to divide-and-conquer matrix problems. More recently,
block organization re-emerged [10] for sparse matrices [9] and as a tactic to
improve locality, a problem that manifested itself earlier as page faults [7],
and lately as block transfers among local memories of a multiprocessor [8].

The idea of distributing the search across the preceding pivot [15] is not
new [13, p. 154], but it is interesting that its disuse there was not attributed
to limitations of architecture, but rather (at that time, before RISC) to the
limitations of the programming language. Not only can contemporary pro-
gramming styles better handle functions that return multiple results [11],
they are also better designed to use tree structures that can stash interme-
diate results at internal nodes.

We have implemented several kinds of undulant-block pivoting on quadtrees
using the following global strategy: compute local measures and run a tour-
nament to bubble the best choice up the quadtree as it is rebuilt during the
preceding pivot step. Since a good sparse-matrix algorithm avoids visiting
too many elements, it is useful to store some of these measures as decora-
tions at interior nodes to enhance the impact of sparseness: much of the
matrix is not traversed at each step. Several different attributes identify a
favorable candidate for a pivot block: large magnitude for floating point sta-
bility, small magnitude for integer arithmetic, large size for parallelism, and
minimal Markovitz measures to reduce fill-in.

Repeated reorderings of the matrix during elimination is avoided because
the quadtree matrix representation makes them expensive. However, a good
a priori ordering (before elimination begins) remains an open problem. Cer-
tainly such an ordering is desirable to assemble dependencies as much as
possible into one quadrant, rather than allowing them to remain distributed
randomly across the matrix.

Quadtree matrices offer a uniform representation that allows a single
algorithm to perform reasonably well on both sparse and dense matrices, on
both uniprocessors and on parallel processors. However, it requires a heap
resource (that is, a memory full of nodes for linked allocation, as well as a
storage manager for it) that is unusual in algebraic languages like Fortran,
but is conventional to languages like Lisp, Scheme, and Smalltalk, and even in
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operating systems. The heap sometimes becomes a system-level resource in
such environments, where multitasking or hardware support has sometimes
been provided to enhance heap management.

As parallel architectures become more available, new multiprocessor algo-
rithms like these will help create a demand for heap-based multiprocessing.
Architectural support for storage management will be necessary in order to
ameliorate the interprocessor synchronization required to manage it. The
algorithms presented here represent a large number of problems that build
and abandon large intermediate structures, and that have already motivated
the architectures of huge machines. Yet all the structures discussed here are
trees or dags, rather than arbitrary graphs; so a strategy as simple as refer-
ence counting, for example, is sufficient to manage a multiprocessor heap for
this large class of problems. These algorithms are being used to benchmark
such heap-managing hardware [16].

This paper shows how to implement undulant-block pivoting in general,
and shows that it fits well the quadtree representation of matrices. Quadtrees
restrict the search for pivot blocks, even under full pivoting, and admit a
speedy heuristic for identifying non-trivial, non-singular pivot blocks of var-
ious sizes, as well as a strategy for managing arithmetic on them. Thus,
they illustrate one way to implement undulant-block efficiently. Tests on its
performance are in progress and early results are most encouraging [2].
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A Quadtree representation in Haskell.

type Quadrants a = [Matrx al --list of *four* submatrices.
data Matrx a = ZeroM | ScalarM a | Mtx (Quadrants a)
| IdentM --used only in permutations.

instance (Num a) => Num (Matrx a) where

fromInteger 0 = ZeroM

fromInteger 1 = IdentM

negate 0 =0

negate (ScalarM x) = ScalarM (negate x)

negate (Mtx quads) = Mtx (map negate quads)

X + 0 =X --NB:addition won’t handle IdentM

0 ty = ¥

ScalarM x + ScalarM y = case xty of 0 -> 0

Mtx x +
x -
0 T
ScalarM x -
Mtx x -
0 *
_ *
1 %
b 4 %
ScalarM x *

--Except
Mtx x *

z -> ScalarM z
Mtx y = case zipWith (+) xy of [0,0,0,0] -> 0
quads -> Mtx quads

0 =x
y = negate y
ScalarM y = case x-y of 0 -> 0
z -> ScalarM z
Mtx y = case =zipWith (-) xy of [0,0,0,0] -> 0
quads -> Mtx quads

- =0
0 0
vy =y -=NB: multiplication accepts IdentM
1 =X
ScalarM y = ScalarM (x*y)
with infinitesimal floats: case x*y of 0->0; z->ScalarM z
Mtx y = (case zipWith (+)

(zipWith (*) (colExchange x) (offDiagSqsh y))

(zipWith (%) b (prmDiagSqsh y))

of [0,0,0,0] -> 0
quads -> Mtx quads

) where colExchange [nw,ne,sw,se] = [ne,nw,se,sw]
prmDiagSqsh [nw,ne,sw,se] = [nw,se,nw,sel]
offDiagSqsh [nw,ne,sw,sel [sw,se,sw,sel
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B Exact matrix inversion.

Algorithm 8 (Exact matrix inversion.) Invert
A=A/1=PYI+LFYQ Y (QDF'P)P(F'U+1)Q .

The solution is a ratio of integer matrix and a scalar denominator, f.

1. Compute the exact (L + U), D' decomposition of A using Algorithm 6:
(P,Q,L +U, D', F),

2. f L+ U =0 then let f =lcm F' and
ATt = QFT'PD'QP = (Q(fF)P)D'(QP)/f;

3. Otherwise compute L'/d = (I + LF~)™! and U'/e = (F7'U + 1)}
recursively; then A™! = Q(U'(PD'Q)L')P/(de).

e Partition L + U as in the previous algorithm.

Recursively compute
Lpyy/dn = (I + Low Fiy) ™" L [dy = (T + Lo ) ™5

Ublen = (FoiUnw + I) 4 UL [es = (F it Use + 1)

Let d = dnd,lem F,,,; € = e eslem Fy,

Then the following are integer matrices:

—L. W([(lcm F,,)Fr) LY, (d/ds)L%. )’
U' s ( (e/en)U;w _U;w[(lcmFﬂw)Fﬂw]_lEUée)
0 (e/es)Use '

When f = (det A) is known a priori, divide every element of
U'(PD'Q)L' by h = de/f to get B. Otherwise let f = de;h = 1.

The final result is (PBQ, f). (Further reductions may yet be
possible using Algortihm 5.)
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Reduction to lowest terms is particularly important when Algorithm 8 is
applied to non-trivial pivots in Algorithm 6. In that case, some reduction is
assured without any gcd computation at its last step because the determinant
is known. If no reduction is performed, then e = d at every step of the
recurrence and f can grow rapidly. Therefore, it becomes the more important
to choose pivots to minimize the magnitude of elements of F, especially to
the northwest, i.e. at the earlier pivots. Thus arises a preference to pivot
on blocks with unit determinant, which would be limited to pivots on 1,
itself (or its equivalences under symbolic computation), if scalar pivots were
the only choice. However, undulant-block pivoting admits other candidates:

for instance (; S) is an excellent nown-singular pivot. With luck, larger

“unitary” pivots will be found.
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