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Abstract

A graph-oriented object database model (GOOD) is introduced. The scheme
as well as the instance of an object database are represented by graphs. The data
manipulation is expressed by graph transformations. These graph transformations
are described by five primitive operations with a natural semantics. Based on
these operations, a number of powerful macros are presented. It is illustrated how
GOOD can be used as a model for an object-oriented database user interface.

Index terms: data model, graph, rewriting system, transformation language,
object-oriented database.

1 Introduction

The current database research trend is towards systems which can deal with advanced
data applications that go beyond the standard “office” database application. This trend
is reflected in the research on extended architectures [10, 32, 36] and object-oriented
databases [6, 7, 23, 36].

Along with this trend, the need for better and easier-to-use database end-user inter-
faces has been stressed [32, 36]. To this end, the two-dimensional nature of a computer
screen should be fully exploited. It seems natural that in order to achieve these goals,
graphs are used as the basic data type.

Graphs have indeed been an integral part of the database design process ever since the
introduction of semantic and, more recently, object-oriented data models [7, 21, 23, 29].
Their usage in data manipulation languages, however, is far more sparse. To deal with
the language component, typically schemes in semantic and object-oriented data models
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are transformed into a conceptual data model such as the relational model [33]. The
required database language features then become those of the conceptual model.

Certain semantic and object-oriented data models are equipped with their own data
language (8, 21]. DAPLEX [31], for example, is a data language for the Functional Data
Model. Even though databases in DAPLEX can be conveniently specified as graphs,
queries are formulated textually and can become quite cumbersome.

The first graphical database end-user interfaces were developed for the relational
model (e.g., Zloof’s Query-By Example (QBE) [37]). The earliest graphical database
end-user interfaces for semantic models were associated with the Entity-Relationship
Model [15, 30, 35]. Subsequently, graphical interfaces were developed for more complex
semantic object-oriented database models [9, 17, 24, 25, 27]. Graph-oriented end-user
interfaces have also been developed for recursive data objects and queries [13, 20, 37).
Unfortunately, most interfaces using graphs as their central tool are rather limited in
expressive power, as far as data languages are concerned.

Most object-oriented database models, on the other hand, offer computationally
complete data languages. However, these languages are mostly non-graphical, usually
in the style of object-oriented programming languages such as Smalltalk [16]. Due to
their expressiveness, these languages do not lend themselves easily as high-level data
languages [6, 36].

It is our purpose to introduce a graph-based object-oriented data model, called the
Graph-Oriented Object Database Model (GOOD). In GOOD, both the representation
and manipulation of data are done graphically, in a very uniform manner. In this
respect, GOOD can fully take advantage of graphical user interfaces. Furthermore,
GOOD’s graphical query language can be shown to be computationally complete “up to
copy-elimination” (cfr. [3]), thus satisfying the expressiveness conditions usually imposed
on object-oriented data manipulation languages.

This article is further organized as follows. In Section 2 we define how graphs
represent the object database schemes and instances. Section 3 introduces the five
primitive operations: node addition, edge addition, node deletion, edge deletion and
abstraction, and a method construct. In Section 4 a number of powerful macros are
defined. Finally in Section 5, we focus on object-oriented concepts.

2 Object base schemes and instances

To introduce the concept of an object base scheme, consider the following example.

Assume that we want to specify a hyper-media system [11] storing documents which
may contain text, graphics or sound information. The (directed) graph in Figure 1 shows
a possible object base scheme for such a system. The oval (rectangular) nodes in this
graph represent printable (non-printable) objects and are labeled with printable (non-
printable) object labels. For example, the oval shaped node with label String represents
a character string. The rectangular-shaped node with label Info-Node represents a node
of information in the hyper-media system.
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Figure 1: The hyper-media object base scheme.




The single (double) arrowed edges represent relationships and are labeled with func-
tional (non-functional) edge labels. A functional edge represents a unigue relationship
between the two nodes it connects. For example the functional edge created indicates
that each info-node has a unique creation-date. A non-functional (also called multival-
ued) edge also represents a relationship between the nodes it connects. However, there
can be multiple non-functional edges leaving the same node. So a given info-node can
be linked to multiple other info-nodes.

An info-node represents a node of information in the hyper-media system. Associated
with this node are a creation date, a last modification date, a name, a comment (either
a string or a number), and possibly other info-nodes.

Since it is typical in hyper-media systems to have various versions of the same docu-
ment, we need a way to keep track of different versions. This is facilitated with version
nodes. A version node indicates that an info-node has obtained a new version. The
node pointed at by the edge labeled old indicates the old version, whereas the edge with
new edge label points to the node corresponding to the new version.

Furthermore, we distinguish two subclasses of info-nodes: (i) the class of data nodes
containing either text, graphics, or sound data, and (ii) the class of reference nodes
specifying references in info-nodes. Since a reference may occur in multiple info-nodes,
the in label is non-functional.

Associated with a graphics node are its height and width, and the actual data stored
as a bitmap. Associated with a text node are its number of words and characters and
the actual data stored as a long string. Associated with a sound node are its frequency
and the actual data stored as a bit-stream.

We are now ready for the formal definition of an object base scheme. Throughout
this article, we assume there are infinitely enumerable sets of nodes, non-printable ob-
ject labels, printable object labels, functional edge labels and non-functional edge labels.
These four sets of labels are assumed to be pairwise disjoint. We also assume there
is a function 7 which associates to each printable object label a set of constants (e.g.,
characters, strings, numbers, booleans, ..., but also drawings, graphics, sound, etc).

An object base scheme is a five-tuple S = (NPOL, POL, FEL, NFEL, P) with
e NPOL a finite set of non-printable object labels;
o POL a finite set of printable object labels;
o FEL a finite set of functional edge labels;
o NFEL a finite set of non-functional edge labels; and

P C NPOL x (NFEL U FEL) x (NPOL U POL).

An object base scheme is represented by a directed graph with two kinds of nodes:
oval-shaped, labeled by a label of POL, and rectangular-shaped, labeled by a label of
NPOL, and two kinds of edges, functional edges (shown as “—”), labeled by labels of



FEL, and non-functional edges (shown as “—-7”), labeled by labels of NFEL. For every
triple in P we have an edge in the graph.

We now turn to object base instances. Succinctly speaking, an object base instance
defined over an object base scheme is a directed graph satisfying the constraints specified
in the scheme.

In Figures 2 and 3 we show an example of a hyper-media object base instance over
the object base scheme shown in Figure 1.! First notice how each printable node has
an associated constant. To make Figure 2 more readable, we have duplicated certain
printable nodes. For example, the printable node with label date and value Jan 12,
1991 is repeated seven times. In reality, only one such node appears in the object base
instance, obviously with six edges arriving at it. In Figure 2 we have marked the info-
nodes with names Pinkfloyd and the The Doors with the numbers 1 and 2 respectively.
These nodes are redisplayed in Figure 3 in dotted outline. They contain the actual data
nodes in these info-nodes.

The info-node in the left upper corner of Figure 2, represents a document about music
history. It is attached with functional edges to a creation date, a last modification date,
a name, and a comment node. This node is furthermore linked (via non-functional
edges labeled with linked-to) to three other info-nodes, i.e., info-nodes representing rock
history, classical music history, and jazz history, respectively.

The version node is connected to two info-nodes. The new edge points to the info-
node containing the new version and the old edge points to the old version. Notice how
the new and old info-nodes are both linked to the info-node containing information about
the rock group The Doors. This reflects the property that this information is preserved
across the two versions. The single reference node indicates that the info-node with
name The Beatles is a reference in the Jazz info-node.

Some edges specified in the object base scheme can be absent from a node in the
object base instance. For example, the info-node with name The Doors has no comment
associated with it. This is a convenient way to allow for incomplete or nonexisting infor-
mation. There could be even Info-Nodes without any outgoing edges. They would rep-
resent Info-Nodes that have no known name, comment, creation date and last-modified
date. Further, if these nodes have neither incoming edges, we only know their existence:
no relation with other facts stored in the database is known.

As a final remark, notice how the graph representing the hyper-media object base
instance is connected. In general, however, an object base instance over the hyper-media
scheme does not have to be represented by a connected graph.

We are now ready to formally define object base instances.

Let S = (NPOL, POL, FEL, NFEL,P) be an object base scheme. Formally, an object
base instance over S is a labeled graph T = (N, E) for which

o N is a finite set of labeled nodes; if n is a node in N, then the label A(n) of n must

!We should note that we do not intend to present this typically large and complex graph as such to
the user. To display its contents, more organized representations, such as tables, can be used.
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Figure 2: An example of a hyper-media object base instance.
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be in NPOL U POL; if X(n) is in NPOL (respectively in POL), then n is called o
non-printable node and is represented by a rectangular-shaped node (respectively a
printable node and is represented by a oval-shaped node);

o each printable node n in N has an additional label print(n), called the print label;
print(n) must be a constant in w(A(n));

® E 15 a set of labeled edges; if e is a labeled edge in E, then e = (m, @, n) with m and
n in N, the label a = A(e) of e in FELU NFEL, and (M(m), a, A\(n)) € P; if A(e)
is in FEL (respectively in NFEL), then e is called a functional edge (respectively
a non-functional edge);

e if (m,e,n;) and (m, o, n;) € E, then A(n;) = A(ny) (i.e., the labels of all nodes
connected by a edges to the node m have to be equal); moreover, if a € FEL, then
n; = nsp.

e if A(n1) = A(n3y) is in POL and if print(n,) = print(n;) then n; = n,.

3 The transformation language

The GOOD data transformation language is a graphical database language. It contains
six graph transformation operators. Four of these correspond to elementary manipula-
tions of graphs: addition of nodes, addition of edges, deletion of nodes and deletion of
edges. The fifth operator, called abstraction, is used to group objects on the basis of
some of their properties. The sixth operator, called method call, corresponds to method
calls in object-oriented database systems. As will be evident from the examples, these
operators can be used to query, to update as well as to restructure object bases.

Throughout this article, we will apply the operators to the object base instance of
Figure 2 (and continued in Figure 3), unless explicitly specified otherwise.

The specification of all operators relies on the notion of pattern. A pattern is a
graph used to describe subgraphs in an object base instance. Consider the graph in
Figure 4. This graph is a pattern over the hyper-media object base scheme. Intuitively,
it describes an info-node, created on Jan 14, 1991, with name Rock which is linked to
another info-node. Formally:

A pattern over an object base scheme S is a finite object base instance over S, with the
ezception that a pattern may contain printable nodes without print labels.

In order to specify the subgraphs in an object base instance corresponding to a
pattern, we need to introduce the concept of embeddings. The pattern in Figure 4 can
be embedded within the instance of Figure 2 in two different ways (see Figure 5 and
Figure 6). Formally,

Let S be an object base scheme, let T = (N, E) be an object base instance over S and let
J = (M,F) be a paitern over S. An embedding of J in T is a total mappingi: M — N
preserving all labels, i.e., node labels, edge labels as well as print labels (where specified).

8
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links-to

Rock
Info-Node String

Figure 4: An example of a pattern

We can now start with the discussion of the six operators of the GOOD transforma-
tion language.

3.1 Node addition

Suppose that we want to identify the info-nodes to which the info-node with name
Rock and date Jan 14, 1991 is linked. Therefore, reconsider the pattern in Figure 4. As
indicated before, there are two such info-nodes identified by the two different embeddings
of this pattern in the hyper-media object base instance. The first node is the info-node
with name The Doors and created on Jan 12, 1991. The second node is the info-node
with name Pinkfloyd and created on Jan 14, 1991. A way to identify these two nodes is
to associate with each one a new node. This can be accomplished with a node addition
operation. The specific node addition for this example is displayed in Figure 7. This
figure contains two distinguishable parts: the first part is the pattern in Figure 4 (this
pattern will be called the source pattern) and the second part, indicated in bold, specifies
the types of nodes and edges to be added. Intuitively, the effect of this operation is that
for each embedding of the source pattern, a new node and a new edge are added to the
instance and linked to the proper node identified by the embedding. Figure 8 shows
that part of the hyper-media object base affected by this node addition.

The node addition is more general than suggested by this first example. In its most
general form, it can introduce objects that represent aggregates of multiple nodes in the
object base instance under consideration. Consider the pattern in Figure 9. It specifies
info-nodes with name Rock and for which a creation date exists. Furthermore, these
nodes have to be linked to other info-nodes which also have a creation date. (As can
be verified, there a four embeddings of the source pattern in the hyper-media object
base instance of Figure 2.) Assume that we are interested in the pairs (in general, the
aggregates) of creation dates of such info-nodes. This can be accomplished by the node
addition (Figure 10). The four added nodes will have the node label pair, and will be
attached with functional edges (labeled parent and child) to the appropriate creation

9
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Figure 5: A first way to embed the pattern of Figure 4 within the instance of Figure 2
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Figure 7: An example of a node addition operation

dates.

As can be seen from the two previous examples, node additions only introduce non-
printable nodes. This is based on our assumption that printable nodes exist without
having to be explicitly added by GOOD transformation language operations. Further-
more, node additions only introduce functional edges. This implies that a node addition
operation imposes a one to one relationship between the nodes that are being added and
the embeddings that satisfy the source pattern, the reason of course being that there
can only be one edge with a specific functional label leaving a newly added node.

We are now ready for the formal definition of a node addition.

Let T = (N,E) be an object base instance and J = (M, F) a pattern over object base
scheme S (J will be called the source pattern of the node addition). Let my,..., m, be

nodes in M. Let K be a non-printable object label and let s, ..., oy, be functional edge
labels.

The node addition
NA[Js S)I: K: {(ala ml): ey (am mn)}]

results in a new patiern J' over a new scheme S, and a new instance I' over S', defined
as follows:

o J'=(M' F') where M’ is obtained by adding to M a new node m with label K ; F'

is then obtained by adding to F the labeled functional edges (m, c;, m;),...,(m, o, m,);

o S' is the minimal scheme of which S is a subscheme? and over which J' is a
pattern; and

o 7' is the minimal object base instance (up to isomorphism) over S’ for which

2Subscheme and subinstance are defined with respect to set inclusion.
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Figure 8: The result of a node addition
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function NA[7,S,T, K, {(a;,m,),...,(on, m,)}];
=10 = T8 :=5;
augment J' as in the definition;
augment S' with non-printable object label K, and for 1 < £ < n:
functional edge labels oy and triples (K, oz, A(my));
for each embedding i of 7 in T do
if not exists a K-labeled node n in I' with outgoing edges (n, ay,3(my)), 1 < £<n
then add such a node n and edges (n, oy, i(my)) to I
return (J',8',T")
end

Figure 11: Procedural semantics of node addition.

1. T is a subinstance of IT';

2. for each embedding i of J in I, there ezists a K-labeled node n in I' such
that (n, o,4(m,)),...,(n, an,i(m,)) are functional edges in I’; and

3. each edge in I' leaving a node of T is also an edge of T.

Node addition is always well-defined if the o; are all distinct.

Like the formal definitions of the other GOOD operations that will be presented in
this section, the above definition of node addition is given in a “declarative” style. To
show that the definition corresponds to a “procedural” semantics, we give an algorithm
to compute the result of a node addition operation in Figure 11. The algorithms for the
other operations are similar.

3.2 Edge addition

The node addition operator can be used to introduce new objects into an object base.
The edge addition operator, in contrast, is a tool to build relationships between the
objects already in an object base instance.

Consider the info-node in the hypermedia object base instance with name Pinkfloyd
and creation date Jan 14, 1991. This node is connected to two other info-nodes (see
Figure 3). These info-nodes correspond to data nodes, one of type text, the other of
type sound. Now assume that we want to associate the creation date of the Pinkfloyd
info-node with the info-nodes representing the text and sound data. This can be accom-
plished with the edge addition operation shown in Figure 12. This figure contains two
distinguishable parts: the first part is the source pattern which selects the appropriate
info-nodes, and the second part, indicated with the bold edge labeled data-creation,
specifies the types of edges to be added. If we assume that a document has a unique
creation date, we may assume that this edge is functional. Figure 13 shows that part of
the hyper-media object base affected by this edge addition.

15
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Figure 14: Adding a single node labeled Created on Jan 14, 1991
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contains
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Info-Node Date

Figure 15: Linking to Created on Jan 14, 1991 the info-nodes created on Jan 14, 1991

Combinations of node and edge additions are useful for generating objects corre-
sponding to sets. Assume that we want to determine the set of all info-nodes created on
Jan 14, 1991. This can be done in two steps. The first step consists of introducing an
object which will denote this set. This is accomplished with the node addition shown in
Figure 14 (notice how the source pattern is simply the empty pattern, and consequently
only one node is added here). The result of this node addition consists of the introduc-
tion of a single non-printable node with label Created on Jan 14, 1991. The second step
consists of connecting to this newly created node all the info-nodes created on Jan 14,
1991. This is accomplished with the edge-addition shown in Figure 15. Notice that this
edge addition introduces non-functional edges. This is necessary since in general there
is more than one info-node created on the indicated date.

We are now ready for the formal definition of the edge addition.

Let T = (N,E) be an object base instance and J = (M, F) a pattern over object base
scheme S. (J will be called the source pattern of the edge addition). Let my,..., my,,

mj,...,m, be nodes in M and let o, ..., o, be arbitrary edge labels.
The edge addition

EA[J,S,Z,{(m1,a1,m}),...,(m,, an,m.)}]

results in a new pattern J' over a new scheme S', and a new instance I' over S’, defined
as follows:

o J' = (M F') where M' equals M and F' is obtained by adding to F the labeled

edges (my, a;, m}),. .., (Mg, a,, m.);

o §'is the minimal scheme of which S is a subscheme and over which J' is a pattern;

17



Classical Music

Info-Node Dame String

Y

Figure 16: Example of a node deletion

o 7' is the minimal instance over S’ for which I is a subinstance of I', and such
that for each embedding 1 of J in I, (4(m1), ay,1(m})),. .., (i(m,), an,i(m’)) are
labeled edges in I'.

Observe that the result of an edge addition is not defined if the addition of the re-
quired edges would yield different edges with (i) the same label and leaving the same
node and (ii) that either are functional, or arrive in nodes with different labels. Un-
fortunately, given an arbitrary GOOD program, i.e., a sequence of GOOD operators,
statically checking the “consistency” of an edge addition in the program is undecidable
in general, as can be shown using results from [2, 26]. So in general, some limited run-
time checks have to be performed. In practice, one can always construct a program in
such a way that the edge additions are guaranteed to succeed.

3.3 Node deletion

In order to remove objects from an object base instance, the GOOD transformation
language has the node deletion operator.

Suppose that we are no longer interested in the info-node corresponding to classical
music in the hyper-media object base. Removing this information can be accomplished
by the node deletion shown in Figure 16. Again this figure has two distinguishable parts.
The first part is the source pattern which as always determines the relevant embeddings.
The second part consists of a single node (in double outline) specifying the nodes to be
deleted. Figure 17 shows that part of the hyper-media object base affected by this node
deletion. The info-node with name Classical Music as well as the edges leaving it have
been deleted. Notice also how as a result of this node deletion, the info-node with name
Mozart has become isolated in the object base. In general of course, one node deletion
will remove several nodes.

The node deletion operator can also be useful in queries that involve negation. As-
sume that we want to tag all data info-nodes that do not contain any sound data. This
can be accomplished in a two step process involving a node addition and node deletion.
The first step, shown in Figure 18, attaches to each data info-node a node with label No
Sound. The second step, shown in Figure 19, removes the tag nodes of data info-nodes
containing sound data. The remaining tagged info-nodes are those that do not contain
sound data. Figure 20 shows the relevant part of the hyper-media object base obtained
by this process.

We are now ready for the formal definition of a node deletion.
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Figure 18: Tagging data info nodes
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Figure 19: Removing tags of info-nodes containing graphics nodes
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Figure 20: The result of a node addition and a node deletion
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Let S be an object base scheme. Let T = (N,E) be an object base instance and J =
(M, F) a pattern over S. (J will be called the source pattern of the node deletion). Let
m be a non-printable node in M.
The node deletion
ND[J,S,Z, m]

results in a new pattern J' over a new scheme S', and a new instance I' over S', defined
as follows:

o J'=(M'"F') where M' is obtained by removing from M the node m; F' is then
obtained by removing from F all labeled edges involving m;

e &' equals S; and

o T' is the mazimal instance over S' for which I' is a subinstance of I, and such
that for each embedding i of J in I, i(m) is not a node of I'.

3.4 Edge deletion

In order to disassociate certain relationships between objects, the GOOD transformation
language has the edge deletion operator.

Suppose we modified the info-node with name Music History on Jan 16, 1991. Con-
sequently, we need to update the last-modified property from Jan 14, 1991 to Jan 16,
1991. This can be done in two steps. The first step, shown in Figure 21, involves the
deletion of the edge with label last-modified from the info-node with name Music History
(notice how this edge is represented as a doubly outlined edge in the source pattern).
The second operation, shown at the bottom of Figure 21, adds a new edge resulting in
the intended update. The result of these two operations is shown in Figure 22. Although
this is not illustrated in this example, it should be clear that it is also possible to remove
non-functional edges.

We are now ready for the formal definition of an edge deletion.

Let S be an object base scheme. Let T = (N,E) be an object base instance and J =
(M, F) a pattern over S. (J will be called the source pattern of the edge deletion). Let
(my,0y,m}),..., (Mg, an,m.) be labeled edges in F.

The edge deletion

ED[J,S,I, {(m1, aq, m;); sy (mﬂ-: Qn, m:u)}]

results in a new pattern J' over a new scheme S', and a new instance I' over S', defined
as follows:

o J' = (M',F') where M’ equals M and F' is obtained by removing from F the
labeled edges (my, i, m}),...,(m,,a,,m’);

e S’ equals S; and
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Figure 21: Example of an update with an edge deletion followed by an edge addition

o 1' is the mazimal instance over S' for which I’ is a subinstance of T, and such
that for each embedding 1 of J in I, (i(m;), e,i(m})),. .., (3(m,), an,i(m’)) are
not labeled edges of T'.

3.5 Abstraction

GOOD is designed to support object identity. This means that objects can be distin-
guished independent of their associated values or properties. Sometimes, however, it is
desirable to “abstract” over objects that share the same values or properties. The oper-
ator supporting this technique in GOOD is the abstraction operator. The abstraction
operator creates objects that are defined by those values or properties under considera-
tion, '
Reconsider the hyper-media scheme specified in Figure 1. This scheme allows for
the maintenance of different versions of info-nodes. Now consider Figure 23. This
figure displays a sub-instance of an hyper-media object base instance different from
the one displayed in Figure 2 and Figure 3. As can be seen, the info-nodes pointed
at by the version nodes share info-nodes to which they are linked. In fact, in some
cases, info-nodes share the same set of other info-nodes, as do for instance the first and
third info-nodes from the left. In order to “abstract” over info-nodes which share the
same set of nodes, consider Figure 24. This figure contains two node additions and an
abstraction operation. The two node additions are used to tag the info-nodes over which
the abstraction will take place. An abstraction operation consists of three distinguishable
parts. The first part (in solid lines) is the source pattern. The second part (in dashed
lines) specifies the type of set equality (i.e., info-nodes are grouped together if they are
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Figure 23: A sequence of versions of related information

linked to the same set of info-nodes). The third part (in bold lines) specifies the type of
nodes and edges to be added as the result of the abstraction operation. The semantics
of this operation is simply that for each group of info-nodes being linked to the same
set of info-nodes, a new node with label same-info is introduced and linked to all the
members of the group by edges with label contains. The result of this operation is
shown in Figure 25 (for clarity, we have omitted the T and interested nodes).

We are now ready for the formal definition of the abstraction operation.

Let S be an object base scheme. Let T = (N,E) be an object base instance and J =

(M, F) a pattern over S. (J will be called the source pattern of the abstraction). Let

n be a non-printable node in M. Let K be a non-printable object label, and let o, B be

non-functional edge labels. Intuitively, the abstraction creates sets (labeled K ). Each set

contains all the objects n that match the pattern J and that have the same o properties.
More formally, the abstraction

AB[J,8,I,n,K, L, e, 8]

results in a new pattern J' over a new scheme S', and a new instance I' over S’, defined
as follows:

o J'= (M, F') where M’ is obtained by adding to M a new node m with label K ;
F' is then obtained by adding to F the labeled non-functional edge (m,(,n);

o S'is the minimal scheme of which S is a subscheme and over which J' is a pattern;

e I' is the minimal instance over S' for which
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Figure 25: Instance after an abstraction operation
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1. T is a subinstance of IT';

2. for each embedding v of J in I, there exists a K-labeled node p in I' such
that (p,B3,4(n)) is a non-functional edge of I';

8. if (P, B,a1) and (p,B,qz) are both in I’ then for each noder in I', (qy, o, r) €
E' & (qq,a,r) € E'; and

4. each edge in I' leaving a node of T is also an edge of T.

Observe that abstraction is always well defined. The third condition captures the
essence of the concept of abstraction.

The reader may wonder why we define abstractions only over one single multivalued
property. It could indeed be useful to group together objects that agree on a set of
functional or multivalued properties. However, it can be shown that abstraction over
functional properties is expressible using the other GOOD operators introduced in this
section. Furthermore, abstraction over multiple properties can always be reduced to
abstraction over one single property. More details on the expressive power of abstraction
are given in [14].

3.6 Methods

As in any high-level programming language, it is useful to incorporate in the GOOD
transformation language, a programming construct to allow the grouping of a sequence
of other operations. Furthermore, the object-oriented approach in software engineering
advocates the principle of encapsulation, where code is associated to objects of a given
receiver class. All this is supported in GOOD through methods.

Reconsider the node addition specified in Figure 18 and the node deletion specified
in Figure 19. This sequence of operations identifies the data info-nodes without sound
data nodes. We can specify this sequence within a single method. Consider Figure 26.
The top part of this figure is a method specification. It contains, within a regular
diamond-shaped node, the name the method (in this case Soundless). This node has
an edge (without a label) that points to the class of the receiving objects (in this case
the info-nodes). If the method has additional parameters, they are also indicated (in
this case there are no parameters). The bottom part of Figure 26 contains the sequence
of operations to be performed by the method (in this case the above mentioned node
addition and node deletion). These operations are specified exactly as before, except for
the addition of diamond shaped nodes. These diamond shaped nodes serve to identify
the receiving object of the corresponding method call (they are essentially the analogues
of the self variables in object-oriented programming languages).

Now consider Figure 27, which represents a method call. Intuitively, the Soundless
method is applied to all info-nodes. The result of this method call is exactly the same
as if the two operations in the method body were applied separately. Notice how the
diamond-shaped node and the arrow pointing to the receiving object are drawn in bold.
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The main reason for this notation stems from the fact that method calls can be in-
voked within method bodies. The bold notation then serves to distinguish between the
receiving objects (pointed at by regular diamonds) and method calls (bold diamonds).

As is the case with all previously introduced GOOD operations, a method call can
be invoked in the context of a source pattern. For example, suppose we want to call
the method Soundless only for those info-nodes that were created on January 14, 1991.
This can be accomplished with the method call in Figure 28.

As previously mentioned, methods may involve parameters. Consider specifying a
method to update the last modification date of an info-node. A natural parameter to
this method is the proposed modification date. The method specification and method
body shown in Figure 29 fulfill this task: the method specification identifies as receivers
info-nodes and as parameter a date. The method body specifies that the current last-
modification property of the receiver should be dropped (using an edge deletion) and
replaced by the date supplied by the parameter (using an edge addition). The method
call shown in Figure 30 changes the last modification date of the info-node with name
Music History to Jan 16, 1991.

Methods can also be used to specify recursive processes. Suppose that we want to
remove all the old versions of an info-node. Since we do not a priori know the number
of old versions of a specific info-node, it is impossible to perform this task by only using
the first five operations of the GOOD transformation language. We next show how
methods can be used to overcome this problem. Consider the method in Figure 31.
The method specification introduces the method Remove Old Versions with as receivers
info-nodes. The method body consist of three operations. The first operation involves
a recursive call (bold diamond-shaped node) which removes all the old versions of the
current receiver (pointed at by the regular diamond-shaped node). Notice that the
recursion halts when a receiver info-node does not have a previous version. The bottom
two operations actually perform the appropriate node deletions. First the version node
directly associated with the receiver is deleted. Then the no longer useful version node
is removed.

We are now ready for the formal definition of the method concept.

A GOOD method is a named procedure. It has parameters, a method specification, and
a method body. Let S be an object base scheme.

The method specification contains the method’s name and parameters. Formally, the
method specification of a method M is a pair (sam, Ram), where sy is a total function,
SmiLym — NPOLU POL, with La, a finite (possibly empty) set of labels in FEL. sp
associates with each of its labels a parameter. Ryy € NPOL is the node label of the
receiver. Graphically, M is represented by a diamond-shaped node that is labeled by M,
with a labeled outgoing edge for each label B € Ly to a node labeled by sa(B), and an
unlabeled outgoing edge to a node labeled by Rr(. No two edges point to a same node.

The method body specifies the implementation of the method. Formally, the method
body Baq of a method M is a sequence of parameterized operations. Parameterized
operations are normal operations (i.e., NA, ND, EA, ED, AB or MC (method call,
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Figure 26: An example of a method
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Info-Node

Figure 27: An example of a method call

Soundless

Jan 14, 1990

Info-Node Date

Figure 28: An example of a method call in the context of a source pattern

see further)) or normal operations where the source pattern J is augmented with one
diamond-shaped node labeled by M, called the M-head-node, and with edges leaving that
node. At most one edge for each label B of Ly can leave the M-head-node. It has to
point to a node labeled by sp(B). Furthermore, there can be an unlabeled outgoing edge
to a node labeled by Rpq. No other edges can leave the M-head-node.

The method call is the operation that invokes the ezecution of the method body in
a context specified by a pattern and actual parameters. Formally, let T = (N,E) be
an object base instance and J = (N',F) a pattern over S. Let M = (s, Rnm) be
the specification of a method over S, g be a total function, g: Ly — N’ where g(8)
must have the label sp(B), let n be a node in J with node label Ryq. The method call
MC[J,S,T, M, g,n] is graphically represented by the pattern J augmented with a bold
diamond shaped node, labeled M, and a bold edge for each B € Ly to the node g(f) and
a bold edge to n.

The semantics of the method call is then that the steps in the body of the method are
ezecuted consecutively, but only for these nodes in the instance under consideration that
maich the nodes in the pattern to which the method parameters point and only with the
actual values of the parameters.

Formally, the method call

MC[7,S5,T,M,g,n]

results in a new scheme S' and a new instance I' over S' defined as follows. Consider

the node addition NA[J,S,T,K,{(8,9(8))IB € Lu} U {(Ba,n)}] = (Jo,S0,T0). Let
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Figure 30: A method call to change the last modification date of the Music History
info-node

(P01, PO, ..., POy) be the method body. We define for every parameterized operation
PO; an operation OPER; as follows:

e If PO; is a normal operation then OPER; is the same operation as PO;, ezcept
that an isolated node labeled K is added to the source pattern of OPER;;

o If the source patiern of PO; contains a diamond-shaped node labeled by M, then
OPER,; is the same operation as PO;, except that the diamond-shaped node of the
source pattern of PO; is substituted by a rectangular-shaped node labeled by K.

Let now (S;,1I;) be the result of ezecuting PO; on (S;_1,T;_1). The ezecution of these
operations eventually results in (S,Zi). Let ND[Jk, Sk, Tk, m] = (Trs1, Skt1s Zrs1),
where Jx is the pattern that has no edges and only contains one node m labeled K.
Finally S’ is defined as Sky1 in which all the triples with first component K are deleted
and I’ is defined as Ty, .

3.7 Interpretation modes of the transformation language

The GOOD transformation language describes transformations of database graphs. In
an actual implementation, these transformations can be interpreted in different ways:
as queries, as updates, as scheme manipulations, or as restructurings. We associate to
each execution of a GOOD program one such interpretation mode. The semantics of a
program depends on the associated interpretation mode.

In query mode, the execution of the program does not affect the stored instance
or scheme of the database. The program only describes the result of the query. In
update mode, the execution of the program affects the instance but not the scheme of
the database. The resulting instance is described by the program, while the scheme
remains unchanged. In scheme manipulation mode, the database instance only changes
through complete deletions of a whole class or property. Finally, in restructuring mode,
the scheme and the instance of the database fully transform.

A complete description of these interpretation modes is given in [4].
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Figure 31: An example of a recursive method to delete old versions of an info-node
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4 Macro operations

This section will introduce a variety of additional graphical operations for the GOOD
transformation language. These operations make data manipulation more succinct, as in
[12, 5]. However, they do not increase the expressive power of the GOOD transformation
language. This is demonstrated by explaining for each macro operation how it can be
expressed using the standard operations of Section 3.

4.1 Generalized addition and deletion operations

The generalized addition is syntactically as well as semantically a generalization of the
node and the edge addition. Its graphical appearance is as follows. Besides the usual
pattern, bold edges correspond to the underlying edge addition. Furthermore, several
bold nodes may appear, which correspond to the underlying node additions. Note that
bold multivalued edges leaving bold nodes are allowed now: they correspond to the
underlying edge addition. The effect of generalized addition is as follows: first, the
underlying node additions are executed in parallel; then, the underlying edge addition
is performed. The general technique to simulate a generalized addition in GOOD, is to
create an intermediate node for every embedding of the pattern using an auxiliary node
addition operation with functional edges to each node of the pattern. The intermediate
nodes are then used for each of the node additions. The augmented pattern thus obtained
is then used for the edge addition. Finally the intermediate nodes are deleted.

The generalized deletion generalizes the node and the edge deletion. It has the same
form as these, but any number of edges and any number of nodes can be drawn in double
outline. The effect is obvious. The general technique to simulate a generalized deletion
in GOOD is similar to that of simulating generalized addition: intermediate nodes are
created for every embedding of the pattern, and are then used to perform the various
deletions consecutively.

The generalized operations are quite useful in practical situations. An example of
generalized addition is given later in this section.

4.2 Negation

The pattern embedding technique checks for the presence of nodes and edges in a par-
ticular combination. For some transformations, however, we need the absence of nodes
or edges. Consider for instance the query: “Give the set of the names of the info-nodes
with a creation date that is different from its last-modified date”. This query, a general-
ized addition, is shown in Figure 32. The crossed edge indicates that we are interested
in the patterns that have no last-modified edge between the indicated nodes (similarly
one can consider patterns with crossed nodes). As already suggested in Section 3.3, the
general technique to simulate patterns with a crossed part in GOOD utilizes deletions.
Figure 33 simulates the query of Figure 32. First, intermediate nodes are created for
every embedding of the non-crossed part of the pattern. Then the intermediate nodes
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Figure 33: Simulation of negation in GOOD.
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Figure 34: A range query

are deleted that are associated to an embedding that can be enlarged to the complete
pattern. The intermediate nodes that are left represent the desired embeddings.

4.3 Ranges in patterns

Frequently, queries involve checking whether certain values are in a given range. As an
example consider the request to determine the info-nodes created between January 1,
1990 and January 31, 1990. A straightforward extension of the GOOD model allowing
the usage of (external) functions or predicates specified over printable objects would
allow one to handle this query as shown in Figure 34.

4.4 Recursive addition operations

Suppose that we want to compute the transitive closure of the links-to property. Con-
cretely, we want to add an edge labeled rec-links-to between any two Info-Nodes that
are connected by links-to edges. The first operation of Figure 35 is a standard edge
addition, specifying the direct links. The second operation is a recursive edge addition.
The starred edge indicates that the edge addition is repeated as long as new rec-links-to
edges can be added. Similarly, one can consider recursive node addition. Note however
that this can result in an infinite sequence of node additions. As already suggested in
Section 3.6, the general technique to simulate recursive operations in GOOD utilizes
recursive method calls. The method in Figure 36 simulates the recursive edge addi-
tion of Figure 35. The first operation in the method body uses the given pattern with
corresponding method parameters, and performs the “underlying” non-starred opera-
tion. The second operation in the body calls the method recursively. The pattern is
augmented with a crossed part that corresponds to the starred part of the recursive
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Figure 35: Computing transitive closure using recursive edge addition.

operation: this expresses the stopping condition for the recursion.

4.5 Regular expressions in patterns

The edges in a pattern can be labeled by regular expressions representing sets of strings
that start and end with an edge label and that alternate edge and node labels. An edge
label a can also be inverted to a~'. For example, Figure 37 shows the query : “Associate
to each info-node I the name of the info-nodes to which I is recursively linked, or to
which I recursively refers”. There is a general technique to simulate regular expressions
in GOOD, which employs recursive edge addition.

4.6 Filters

A filter only consists of a pattern, depicted in a rectangle labeled “filter”. Its effect is the
removal of all nodes and edges that are not in the image of an embedding of the pattern.
The general technique to simulate a filter in GOOD, is to create an intermediate node
for every embedding of the pattern in the same way as for the generalized operations.
The absence of these intermediate nodes is then used to delete the necessary nodes and
edges.

4.7 Updates

Updates are frequently employed operations in database management. It is therefore
very desirable to have a macro for updates. A straightforward suggestion for such a
macro is given in Figure 38, for the update of the last-modification date of the info-node
with name Music History to Jan 16, 1991. As already shown in Section 3.6, updates
can be expressed using methods.
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Figure 36: Simulation of recursion in GOOD.
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Figure 37: Regular expressions in patterns.
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Figure 38: An update.
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Figure 39: A GOOD query utilizing inheritance.

5 GOOD as an object-oriented data model

It turns out that GOOD is well-suited as a basis for an object-oriented database model.
To illustrate this, we show how GOOD can account for some object-oriented features,
as described in [6].

5.1 Complex objects and object-identity

Complex objects are typically built from primitive objects [1, 6] according to certain
object constructors, such as tuples, sets and lists. Clearly, GOOD supports such complex
objects.

The notion of object-identity refers to the existence of objects in the database inde-
pendent of their associated properties. As stressed from the outset, object-identity is a

basic feature of GOOD.

5.2 Inheritance

All object-oriented databases support some form of inheritance, i.e., it is customary to
define new classes as subclasses of existing ones (e.g., [23, 36]), therefore organizing the
classes in a class hierarchy.

In the GOOD model, classes can be associated with object labels in schemes. Func-
tional edge labels can then support the notion of subclass. However, it is clear that not
all functional edge labels in an object base scheme can be interpreted as a subclass-
relationship. Therefore, we will mark the functional edges in the scheme graph we wish
to interpret as subclass edges (we will implicitly assume that the subclass edges do not
form a “cycle” in the object base scheme).

For example, we can consider the isa edges in the hyper-media object base of Fig-
ures 1-3 between References and Info-Nodes as subclass edges. The effect to the user is
the same as if all properties of Info-Node-objects were also attached to the corresponding
Reference-objects. The user can now apply Info-Node operations directly to References.
For example, in order to obtain all references to Jazz, the user may specify the query of
Figure 39 (observe that this is a generalized addition, as introduced in Section 4). Since
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Figure 40: Simulation of inheritance in GOOD.

name is not a property of Reference, GOOD will translate this query internally into the
query of Figure 40. Similarly, a method can be called on objects belonging to subclasses
of the method’s specified receiver and parameter classes. Note that, while designing a
GOOD scheme, the user must be very careful to define the isa-links unambiguously.

In other words, using inheritance in formulating GOOD queries comes down to
working in a virtual instance obtained by explicitly adding the properties of the target
nodes of an #sa-link to the source nodes as well. Clearly, this transformation can be
expressed by a method the body of which consists of a number of consecutive edge
additions. Hence one can argue that isa-links actually define a view of the object base
the user can work with to formulate his or her queries.

5.3 Method interfaces and encapsulation

From a user’s perspective, methods as defined in Section 3.6 have two major disadvan-
tages:

1. In order to understand the effect of a method, the user has to examine the method
body. Needless to say, this can be a very painful job, especially if the method body
contains intermediate operations manipulating information that is not explicitly
known to the user.

2. Methods can have side effects. In order to compute the desired effect of the
method, intermediate operations in the method body will generally have to intro-
duce some “temporary” nodes and edges, which are irrelevant to the final result.
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In the examples exhibited thus far, these superfluous nodes and edges were even-
tually deleted in the final part of the method body. As a general practice however,
this solution is unacceptable. One can easily forget to delete a side effect, which

can have far-reaching consequences, especially since method bodies can contain
(other) method calls.

Both problems can be dealt with by modifying the definition of a method. Apart
from the method specification and the method body, we add a third component: the
method interface. The method interface is a (usually small) scheme which, intuitively
describes the desired effects of the methods. More formally, Let S be a scheme, T an
instance over S and M a method with interface R. Let S’ and I’ be the scheme and
instance resulting from applying the method M to S and T in the sense of Section 3.6,
i.e., without taking into account the interface. In our modified version of methods, the
resulting scheme S$” is now the union of § and R (i.e., the smallest graph of which both
S and R are subgraphs) and the resulting instance I"” is the restriction of I’ to S” (i.e.,
the largest subinstance of I’ which is an instance over S”).

Observe that the object base scheme resulting from a method call can now be com-
puted without any knowledge of the method body. For instance, consider a method to
compute the number of days between two given dates, the specification and interface
of which are shown in Figure 41. Given the user knows the meaning of the labels used
in Figure 41, he can now employ the method D without having to have any knowledge
whatsoever about the method body. In other words, the method interface serves to hide
implementation details for the user.

Using the method D, it is now easy to write a method that, for each info-node,
computes the number of days elapsed since its last modification (Figures 42 and 43).
Observe that the Elapsed-nodes, the introduction of which can be seen as a side effect
of calling the method D, will not appear in the resulting instance, even though they are
not deleted in the method body, as these nodes do neither occur in the original scheme
nor in the method interface.

An important property of object-oriented methods is that they provide encapsu-
lation. GOOD methods with interfaces provide encapsulation, in the sense that the
scheme of the result only depends on the original scheme and the method interface.
Hence knowledge of the method body is not needed and unwanted side effects can be
avoided.

5.4 Computational completeness

Programs in GOOD are built from the five basic operators, node (edge) addition, node
(edge) deletion and abstraction, and the compound construct of methods. When we
restrict the language to use only node (edge) addition and node (edge) deletion, we
obtain a language capable of expressing the relational algebra [28]. By adding abstrac-
tion, we are as expressive as the nested relational algebra [28], and stay within PTIME
complexity. Finally, the full language with methods is sufficiently strong to simulate
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Figure 41: Specification and interface of a method to compute the number of days
elapsed between two dates.
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Figure 42: Method specification and interface of a method to compute the number of
days elapsed since the last modification of an info-node.
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Figure 43: Method body of a method to compute the number of days elapsed since the

last modification of an info-node.
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arbitrary Turing Machines, as can be shown using results from [18, 34]. In fact, it can
be shown that the GOOD transformation language is computationally complete “up
to copy elimination” [3, 22|, a notion raised in the recent literature which seems to be
inherent to languages that employ generic creation of objects.

6 Discussion

Although GOOD programs are written in a procedural way, the basic operations node
(edge) addition (deletion) have a declarative nature. Indeed, the pattern of such an
operation can be seen as the condition part of a rule, while the bold or outlined part
corresponds to a rule’s action (in this case the addition or deletion of nodes or edges).
This simple mechanism for visualization of rules provides a basis for the development
of graph-based, declarative, object-oriented database languages.

Another direction for future work is toward a better understanding of the expressive-
ness of the GOOD transformation language. As pointed out in Section 5.4, the language
is computationally complete “up to copy elimination”. However, in certain cases, it ap-
pears that copy elimination is not really needed. This occurs for example when the
input database is ordered, or when the output is disjoint from the input [3]. It would be
interesting to characterize the transformations that can be expressed in GOOD exactly,
without the need for elimination of copies.

Finally, at the University of Antwerp, efforts are being made to implement the GOOD
system. A detailed account on the design of a concrete user interface based on GOOD is
given in [4]. We will couple this interface with a relational database system, allowing for
a translation of the GOOD transformation language into a powerful query language such
as Prolog or embedded SQL. Details on this translation will be given in a forthcoming

paper.
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