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Using Genetic Algorithms to Design Structures

Sushil J. Louis Gregory J. E. Rawlins *

Abstract

This proposal considers the problem of using genetic algorithms for structure design.
We relax some constraining assumptions that classical genetic algorithms make about
problem representation and describe a designer genetic algorithm that makes use of
differential information about search direction to effectively design structures. Analysis
of performance and some preliminary results are presented, along with directions for
further research.

1 Introduction

The problem of designing structures is pervasive in science and engineering. We can state
the problem as:

Given a function and some materials to work with, design a structure that per-
forms this function subject to certain constraints.

Design is traditionally considered a ereative process and therefore difficult to antomate.
We can think of the human design process as a black box (see figure 1). Input to this
black box consists of all the knowledge that the design engineer possesses. The output
is a structure that performs some useful function. Expert systems which seek to codify
knowledge are currently too brittle and not applicable across a broad range of domains.
However there is a process that has been spectacularly successful in producing a broad range
of robust structures that are efficient at performing a broad range of functions. This is
natural selection, the process of evolution. Its success is evident from the abundance and
diversity of life on this planet.

Genetic algorithms are based on natural selection. They should therefore enjoy similar
success in solving the problem of design. However when naively applied their performance
is less than encouraging. This paper considers the problem of using genetic algorithms to
design structures.

As an example consider the combinational cireuit design problem: Given a set of logic
gates to work with, design a circuit that performs a desired function. Two instantiations
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Figure I: The human design process as a black box.
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IFigure 2: An “n” bit parity checker.
of this problem are the parity problem and the adder problem. A solution to these two
problems is given in most introductory textbooks on digital design (see figures 2 and 3).
Both problems are well-defined, unambiguous, easy to evaluate, and can be scaled in
difficulty. In addition, we can change the number of solutions (the footprint) in the search
space of a particular instantiation by varying the types of gates available. We therelore use
them as a testbed and as a basis for performance comparison of various design strategies.
The next section presents an overview of natural selection and motivates the use of
genetic algorithms on design problems. Section three defines a classical genetic algorithm
and presents problems with using it for design. This leads to what we call a Designer
Genetie Algorithm (DGA) deseribed in section four. Preliminary results, presented in the
fifth section, indicate the usefulness of DGAs.  Finally, we cover application areas, and
directions for future research.
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Figure 1: Natural selection as a sieve

2 Natural Selection

Most of the material in this section can be found in Richard Dawkins’ book on evolution
[5]. In its most general form natural selection means the differential survival of entities.
Some entities live and others die. For this to happen there must be a population of entities
capable of reproduction. Natural selection prunes this population according to the criterion
of survivability (fitness). It acts as a sieve as shown in figure 1. In sexually reproducing
species the unit of natural selection is the gene. The values of a gene are its alleles. However,
sieving by itself is not capable of producing designs like those of the life forms on this planet
in any reasonable amount of time. Natural selection needs reproducing entities to feed
the results of one sieving process on to the next, and so on. It is the continuing cyele of
reproduction and selection (the sieving process) that is responsible for life on carth. The
existence of finite resources leads to competition for these resources and survival ol those
entities that have a competitive advantage. A life form, or phenotype, is a survival machine
built by a set of genes (a genotype) to create a competitive advantage over other forms.
Although it is the phenotypes that are directly competing for survival, it is the genotypes
that get selected on the basis of this competition for further consideration. Let us consider
the eye as an example of the designing power of natural selection.

An eye has evolved independently at least three different times in the course of earth’s
history. All three designs, exemplified by the human eye, the octopus eye and the fly’s eye,
are different. Consider the human eye shown in figure 5.

An eye's resemblance 1o a camera is striking. The iris diaphragm constantly varies the
aperture while the lens focuses light using muscles. This focused image falls on the retina.
where it excites photocells.

Also in the figure is an enlarged section of the retina. Light enters from the left and first
hits the layer of ganglion cells before going on to the photocells.! The ganglion cells gather
information from the photocells and do some sophisticated pre-processing hefore passing it

"The octopus’ eye has the ganglion cells and phiotocells reversed and this may be better design.
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Figure 5: Schematic of a human eve. (from Dawkins' The Blind Watchmaker [2].)




on to the brain. Finally, a rod (a type of photocell) is shown at the bottom.

The most notable structural feature of an eye is the high degree of interdependence
among the various parts. The lens is the right size to be manipulated by the muscles. Both
these parts are the right distance from the retina to focus images properly. The number of
photocells and ganglion cells are dependent on each other and influenced by the size of the
retina. This interdependence is called epistasis and is an important aspect of structures.

We can think of evolution as a search process. It searches a very large space of genotypes
producing structures that are efficient at carrying out functions desirable for survival in their
environment. For example the search space for the X174 viral genotype is of the order of
1219 and this is one of the smallest life forms! This motivated John Holland to define
a Genelic Algorithm, a search process based on natural selection, as a tool for searching
the large, poorly-understood spaces that arise in many application areas ol science and
engineering [19].

3 An Artificial Model of Natural Selection

A Genetic Algorithm (GA) is a randomized parallel search method modeled on evolution.
GAs are being applied to a variety of problems and becoming an important tool in machine
learning and [unction optimization. Goldberg’s hook gives an exhaustive list of application
areas [14]. Their beauty lies in their ability to model the robustness, flexibility and graceful
degradation of biological systems. Iowever, there has been very little research on their
applicability to design problems. Much of the GA literature concerns function optimization.
Any references to design invariably have to do with optimization of design parameters. In
such problems the structure is given and the object is to optimize some associated cost [2, 21].
For example, in a paper by Goldberg and Samtani [13] a GA minimizes the weight of a 10-
member plane truss, subject to maximum and minimum stress constraints on cach member.
Although such design parameter optimization is important, our problem is to design the
structure itsell. It is interesting and not a little puzzling to note this lack of literature on the
subject. It seems natural to use a genetic algorithm to design structures, since the paradigm
on which they are based is so successful at it. The difficulties lie in the enormous size of
the problem, the epistasis present in the structure, and the biases inherent in current GAs.
Before considering the difficulties in detail, it is helpful to understand the theory behind
genetic algorithms.

3.1 Classical Genetic Algorithms

A GA encodes each of a problem’s parameters as a binary string. An encoded parameter can
be thought of as a gene, the parameter’s values, the gene’s alleles. The string produced by
the concatenation of all the encoded parameters forms a genotype. A randomly generated
set ol such strings forms the initial population from which the GA starts it search. The three
basic genetic operators: selection. crossover, and mutation guide this search. Selection of a
string. which represents a point in the scarch space (think of this as the phenotype). depends
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Figure 6: Crossover of the two parents A and B produces the two children (! and D. Lach

child consists of parts from both parents which leads to information exchange.

on the string’s fitness relative to that of other strings in the population. The genetic search
process is iterative: evaluating, selecting, and recombining strings in the population during
cach iteration (generation) until reaching some termination condition. The basic algorithm,
where P(t) is the population of strings at generation ¢, is given below.

=10

initialize (1)

evaluate /°(/)

while (termination condition not satisfied) do

begin
select (1 + 1) from P(t)
recombine /°(/ + 1)
evaluate ’(/ + 1)
[ =1+ 1

end

Fvaluation of cach string is based on a fitness function that is problem dependent. This
corresponds to the environmental determination of survivability in natural selection. Selec-
tion is done on the basis of relative fitness and it probabilistically culls from the population
those points which have relatively low fitness. Recombination, which consists of mutation
and crossover, imitates sexual reproduction. Mutation just {lips a specific bit which is chosen
probabilistically. (‘rossover is a structured yet randomized operator that allows information
exchange between points. It is implemented by choosing a random point in the selected pair
of strings and exchanging the substrings defined by that point. Figure 6 shows how crossover
mixes information from two parent strings, producing offspring made up of parts from both
parents. We note that this operator which.does no table lookups or backtracking, is very
efficient because of its simplicity. C'rossover, where A and B are the two parents, producing
two olfspring (" and D, is shown in fignre 6 and defined helow:

-1



for ¢ from 1 to crossover-point
begin
copy ' bit from A to (’
copy " bit from B to I
end
for i from (crossover-point + 1) to string-length
begin
copy " bit from B to ('
copy " bit from A to )
end

[Lis easiest to understand GAs from the viewpoint of function optimization. The mapping
[rom genotype (string) to phenotype (point in search space) is almost trivial. As crossover
and mutation manipulate the strings in the population thereby exploring the space, selection
probabilistically filters out strings with low fitness, exploiting the arcas defined by strings
with high fitness.

Holland’s schema theorem is [undamental to the theory of genetic algorithms. A schema
is a template that identifies a subset of strings with similarities at certain string positions.
For example consider binary strings of length 6. The schema 1%%0*1 describes the set of all
strings of length 6 with Ls at positions | and 6 and a 0 at position 1. The “*” denotes a “don’t
care” symbol which means that positions 2, 3 and 5 can be either a | or a 0. Although we
only consider a binary alphabet this notation can be easily extended to non-binary alphabets.
The order of a schema is defined as the number of fixed positions in the template, while the
defining length is the distance hetween the first and last specific positions. The order of
0" is 3 and its defining length is 5. The fitness ol a schema is the average fitness of all
strings matching the schema.

GAs dynamically balance the need for exploration and exploitation through the recom-
bination and selection operators. With the operators as defined above, the schema theorem
proves that relatively short, low-order, above average schema get an exponentially inereas-
ing number of trials or copies in subsequent generations. This means that schema that are
of short defining length and of low order, relative to the length of the string, play a large
part in biasing genetic search. Holland proved that the strategy of exponentially increasing
allocation of trials is near-optimal. This leads to a statement about the way (GAs work, the
building block hypothesis which states:

A genetic algorithm seeks near-optimal performance through the juxtaposition
ol shorl, low-order, high-performance schema (called building blocks).

One corollary to the schema theorem (and the building block hypothesis) is that high
performance schema of long defining length, but of low order do not play a signiticant role
in biasing genetic search. This constraint has important consequences in applying genetic
algorithms to the problem of structure design.



3.2 Applying Genetic Algorithms to Structure Design

Using a genetic algorithm for designing a structure is like playing with a mechano set (a
child’s construction kit). Given some low level building blocks, the task is to put. them
together so that they perform a certain function. Using this analogy, a GA used for design
can be considered a manipulator. It manipulates low-level “tools™ or building blocks, playing
with their arrangements, until it finds the required structure. Encoding therefore consists of
finding a set of low-level tools for the GA to manipulate. With this as a basis, consider the
problems that can arise.

First, a necessary condition for a GA to build a structure is that there should be at
least one and preferably many evolutionary paths leading to the desired structure. This
means that a GA (or any search method) may perform poorly in designing highly specific
structures. In other words, any search method will perform poorly in optimizing a function
that is zero at all points but one [1].

Next, because of the encoding, structures may not be exploitably related to those sur-
rounding them in structure space. GAs search for and exploit any similaritiesin the encoding.
An encoding that does not reflect relationships in the problem space can cause the GA to
flounder, as it does not follow “the principle of meaningful building blocks,”  one of two
principles to follow in encoding a problem for a GA[11]. The mapping from genotype to
phenotype is now much more complex. We can compare the structure of an eye (a structure
phenotype) with a point in the search space (a phenotype in function optimization) to get
an idea of this complexity. Epistasis in phenotypic structures therefore plays an important
part in determining the suitability of classical genetic algorithms to structure design. In-
terdependence in phenotypic space may not be reflected in the genotype (unless it is very
carefully encoded) and may cause a GA to be mislead.

Finally, since we are working with structures, we often work in more than one dimension.
Physical structures exist in three dimensions and may often be made up of many kinds of
lower level building blocks. Higher dimensionality and a large alphabet increase the search
space tremendously.

Representation or genotypic encoding is a key issne. The biases generated by the encoding
play a major role in determining success.

3.3 Bias in Traditional Crossover

The bias toward short schema is both a feature and a bug of the traditional crossover
operator. ‘lo see why, consider the probability of disruption of a schema. Let I/ be a
schema, () its defining length and O(H) its order. Then the probability that the crossover
point falls within the schemais 6(4H)/(1 — 1) where [ is the length of the string containing
the schema. This is exactly the probability that crossover will disrupt the schema. Since
the probability of disruption is proportional to the defining length. schema of long defining
length tend to be disrupted more often than their shorter counterparts. However, in epistatic
domains, schema of arbitrary defining length need to be preserved. Therefore the bias
towards short schema becomes a bug, and not a feature of crossover. This means that if an



encoding does not ensure that low order building blocks have short defining length the GA
will find it difficult to make progress. On the other hand, in problems with low epistasis, a
GA will perform well.

One way out of this is to use inversion. Inversion rearranges the bits in a string allowing
linked bits to move close together.? To implement inversion, the encoding is changed to
carry along a tag which identifies the position of a bit in the string. With the tags specilying
position, it is now possible to cut and splice parts of a string allowing bits to migrate and
come together. Inversion-like reordering operators have been implemented by Goldberg and
others [12, 26] with some good results.

The problem with using inversion and inversion-like operators is the decrease in compu-
tational feasibility. If [ is the length of a string, inversion increases the search space from
2! to 2. Natural selection has geological time scales to work with and therefore inversion
15 sufficient to generate tight linkage. We do not have this amount of time or the resources
available to nature. To combat the problem of disruption in highly epistatic design prob-
lems we would like to remove the bias toward short schema and allow low order schema of
arbitrary defining length to bias search in useful directions.

Another approach is to use a new crossover operator like punctuated crossover or nni-
form crossover. Punctuated crossover relies on a binary mask, carried along as part of the
genotype, in which a 1 identifies a crossover point. Masks being part of the genotypic string,
change through crossover and mutation. Experimental results with punctuated crossover did
not conclusively prove the usefulness of this operator or whether these masks adapt to an
encoding [22, 23].

Uniform crossover exchanges corresponding bits with a probability of 0.5. The probability
of disruption of a schema is now proportional to the order of the schema and independent of
defining length. Experimental results with uniform crossover suggest that this property may
be useful in some problems [25]. However, in design problems we would like nol to disrupt
highly fit schema whatever the defining length of such a schema.

A second point needs to be made. Natural selection works by Dbiasing search in any
direction that shows the slightest improvement in survivability. This directional information
is implicit in the number of competing alleles that exist in a population, and in nature,
cannot be stored anywhere. Classical genetic algorithms and their operators, mimicking
natural selection are also bound by these constraints.

To solve these problems, we use a masked crossover operator to remove the bias toward
short schema and make use of explicit directional information to efficiently bias search.

4 Masked Crossover

We define an operator that directly makes use of the relative fitness of the children, with
respect to their parents, to guide crossover. The relative fitness of the children indicates the

“Inversion occurs in nature and serves a similar function. Genes and their alleles are linked if their
expression 1s dependent on one another. Tight linkage is established when linked alleles are close together.
Such alleles are called co-adapted alleles.
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Figure 7: Masked crossover. The bits that are exchanged depend on the masks. This allows
preservation of schema ol arbitrary defining length

desirability of proceeding in a particular search direction. The use of this information is not
limited to our operator, and can be used in classical GAs with very minor modifications.
For example: one way to improve traditional crossover operators is to keep a sorted list of
previous crossover points that produced highly fit children.

Masked crossover (MX) uses binary masks to direct crossover. Let A and B be the two
parent strings, and let (" and D be the two children produced. Maskl and Mask?2 are
a binary mask pair, where Maskl is associated with A and Mask2 with B. A subscript
indicates a bit position in a string. Masked crossover is shown in figure 7 and defined helow:

copy Ato ('and Bto D
for : from 1 to string-length
begin
if Mask2; =1 and Maskl; =0
copy the i bit from B to (
if Maskl; =1 and Mask2; =0
copy the i'* bit from A to D
end

Masked crossover tries to preserve schema identified by the masks. Let A be called the
dominant. parent with respect to (', and B the dominant parent with respect 1o D). This
follows from the definition of masked crossover since during production of (', when corre-
sponding bits of A and B are the same, the bit from A is copied 1o (. The traditional way
of analyzing a crossover operator is in terms of disruption. The probability of disruption £,
of a schema [l due to masked crossover is dependent on the masks. Assuming a random
initialization of masks this probability is given by the number of ways that the bit positions
in both parent masks corresponding to 1 can be combined to disrupt 1 in the following
generation. The total number of ways of combining the mask bits corresponding to [/ is:

Il



T = 92x0(H)

The number of ways of disrupting #H is 7. minus the number of ways of preserving .
Pu. For each bit position in H, there are three ways of preserving it, therefore:

P, = 30U

50 the probability of disruption is:

L P
o ’f'__
92xO(H) _ 30(H)
= 52X O(IT)

=% = (F{_)(){H}

This probability of disruption is only for randomly initialized masks and does nol depend

on o(H).

4.1 Masks

Intuitively, I’s in the mask signify bits participating in schema. MX preserves A’s schema
in (" while adding some schema from B at those positions that A has not fixed. A similar
process produces ). Scarch biasing is done by changing masks in succeeding generations.
Instead of using genetic operators on masks, we use a set of rules that operate bitwise on
parent masks to control future mask settings. Since crossover is controlled by masks, using
meta-masks to control mask string crossover then leads to meta-meta masks and so on. 1o
avoid this problem we use rules for mask propagation. Choosing the rule to be used is
dependent on the fitness of the child relative to that of its parents.
We define three types of children:

The Good Child: has fitness higher than that of hoth parents.
The Average Child: has fitness between that of the parents.

The Bad Child: has fitness lower than that of both parents, or equal to one or botl
parents.

With two children produced by each crossover, and three types of children there are a
total of 3% or nine possibilities, with associated interpretations and possible actions on the
masks. [owever, since the order of choosing children does not matter, the number of cases
falls to six (see figure 8).



Case Rule

Both good MF,,
Both bad M Fy
Both average ME..
One good, one bad M FEy,

One good, one average MFy,

One average, one bad || MF,,

Figure 8: Six ways of pairing children and associated mask rules.

4.2 Rules for Mask Propagation

In this section we specily rules for mask propagation. In each case a child’s mask is a copy
of the dominant parent’s except for the changes the rules allow. The underlying premise
guiding the rules is that when a child is less fit than its dominant parent, the recessive
parent contributed bits deleterious to its fitness. We encourage search in the area defined
by these loci. The idea is to search in areas close 1o one parent with information from the
other parent providing some guidance.* A mask mutation operator that flips a mask bit with
low probability is assumed to act during mask propagation. We provide three representative
mask [unctions rather than all, to give an intuitive understanding of their form. These are
M Fy,, used when both children are good, M Fy, which is used when both children are bad,
and M I, used when one child is average and the other is bad.

Let Pl and P2 be the two parents, PM1 and PM2 their respective masks. Similarly,
('l and ("2 are the two children with masks (‘M1 and ('M2. The modifications to masks
depend on the relative ordering of 1, P2, ("1 and (2. In this section’s figures, the “#”
represents positions decided by tossing a coin.

l. MF

9y°
Case: Both children are good.
Summary: Very encouraging behavior and as such is reflected in the mask set-
tings below and in figure 9. The parents’” masks are OR’d to produce the children’s
masks, ensuring preservation of the contributions from both parents.
Action:
— ("M 1: OR the masks of PM1 and PM?2. If there are any 0's left in ("M,
toss a coin to decide their value.
('M2: Same as for ("M].
— PM1: No changes except for those produced by mutation.
— PM?2: Same as for PM1.

2. M IFy:

“Note that in MX, this is done without regard 1o defining length.
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Rule MFgg
PM1 Before PM2
|11 1Jo]1]Jo]1]oJo]o]o| [1]J1Jol1J1Jol1JoJol1] o]
PM1 After PM2
(A1 1ol 1Jo] 1 o] oJoTO] | 1[iJo[1J1Jol1JoJol1]o]
CM1 M2
| al ol a] s o] #] 1] #] #] 1] #] L] ifiJafaf#l1]#][#] 1] #]

Figure 9: Mask rule M F;: Example of mask propagation when both ('l and ('2 are good

Rule MFy,

PM1 Before PM2 -

[ATi] 1ol 1[o][1]o] o] o]0 | A[aToliTiJoTaJoTJof1] o]
PM1 After PMNM2

[1]1[#[#[1 ]Jo[1]O]Jo]#]0O] [ 2[1]#][#]1]Jo]J1]|O0]JO[#]0O]
CM1 Assume P2 = P1 CM2

[#]#[1Jo[#[o] #][0o]o[ 0]O] [IT1J o] I[1JOT1JOJOT1]0]

Figure 10: Mask rule M [},: Example of mask propagation when both C'I and (2 are bad.

Case: Both children are bad.

Summary: Discouraging behavior and must be guarded against in future. Each
parent contributed bits that were detrimental to the children’s fitness. MX has
not set up the parents masks correctly. Changes are given below and shown in
figure 10.

Action:

— ('M1: This mask should reflect the undesirability of the current search direc-
tion. Contributions from P2 were detrimental, therefore ("M 1 should search
in the area of P2’s contribution which is specified by the loci where PAM1; is
0 and PA2; 15 1. Set these loci in ("M 1; to 0. 1If P2 > Pl in litness, toss a
coin to set the bits of C'M1 at those locations where both PM1; and PM?2;
are 1.

— ('M2: A similar rule applies to (' M2,

— PM1: P2’s contribution to ('l led to a bad child. The ('l positions copied
from P2 need to be explored in P1. These loci are those for which PAll; was

I



Rule MFE,,, (Part 1)

PM1 Before PM?2

[1[1]1]Jo]1Jo] 1 o] o] o]0 | i Jol1[1JoJ1Jolo]1 [ o

Cl =Pl =C2 <= P2

PM1 After PM2

[l iT#[#[ 1ol 1 [oJo[#]0O] |t i#[[#[a]#[#] 1]# ]
CM 1 cM2

| #[ #[ 1] o] #[ o] #] o] o] o] 0] [AlaT# [ 1i[iJo[ 1[o][O0]1]0O]

Figure 11: Mask rule M [, Part 1: Iixample of mask propagation when (1 is bad and (12

is average. (('l < Pl < ("2 < P2)

0 and PM?2; was L. Therefore set these loci in PM1; by tossing a coin. In
addition, PAM1 specified loci that were detrimental to (2. Therelore when
PM1;is 1 and PM?2; is 0, set these locations by tossing a coin.

— PM?2: A similar rule applies for PM?2.

% MFy:

Case: One child is bad while the other is average. Assume that ('] is bad and

('2 is average.

Summary: There are two sub-cases. If ("2’s fitness is less than that of P2 we
can conclude that PI’s contribution was deleterious, and that 2M2 needs to
be augmented with I's at those positions that were copied from Pl to (2 (see
figure 11). If ("2 fitness is less than that of P1, P1’s contribution increased ('2's
fitness, so preserve P’1’s contribution in ("2. The masks are shown in figure 12.

Action:

— When C1 < P1 <« C2 < P2:

* ("M 1: Very similar to M Fy’s ("M 1. This mask should reflect the un-
desirability of the current search direction. Contributions from 2 were
detrimental, therefore ("M 1 should search in the area of °2°s contribu-
tion which is specified by the loci where PAM1; is 0 and PAM?2; is 1. Set
these loci in ("M 1; to 0. Since P2 > Pl in fitness, toss a coin to set the
bits of ("M 1 at those locations where both PAM1; and PM?2; are |.

* ("M?2: As P1’s contribution decreased ('2s fitness, set ("A12; by tossing a
coin when PM1;is | and PM2; is 0, searching around P1’s contribution.

* PM1: P2s contribution to ("'l led to a bad child. The ('l positions
copied from P72 need to be explored in 1. These loci are those for which
PM1; is 0 and PA2; is 1. Therefore set these loci in PAI1; by tossing



Rule MFE,,, (Part 2)

PM1 Before PM2
[1[ 1] 1Jo]1Jo][1JoJoloJo] [i[rJofaTiJolrJolol 1 o]

Cl = P2 = C2 = P1

PM1 After PM2

Ll 1if# i J1Jo] 1 JoJo]i] o] a1l ol#[1JoJ1[oJoJ#] O]
CM1 M2

| #| #[1] o[ #]o| #] ol oJoT o] [AJaT a1 Jol 1 olo]1]0]

Figure 12: Mask rule M I, Part 2: Ixample of mask propagation when 1 is bad and (2
is average. (('l < P2 < (2 < Pl)

a coin. In addition, PM1 specified loci that were detrimental to (2.
Therefore when PM1; is | and PM2; is 0, again set these locations by
tossing a coin.

* PM?2: Since P1’s contribution led to a decrease in fitness, set PM2; to
I for those loci for which PM1; is 1 and PM?2; is 0. To help lix positions
currently 0, toss a coin to fix those loci in PM2; for which both PM;
and PM?2; are 0.

— When C1 < P2 < C2 < P1:

* (/M1: Same as the action for M1 when ('l < Pl < ("2 < P2. Except
that as Pl > P2, we do not take any action when both parent masks
have a | at some position.

* ('M?2: To preserve P1’s contribution, when PM1; is 1 and PAM2; is () set
("M2; to 1.

* PM1: Those bits that contributed to (' but not those that helped ("2
need to be modified. Therefore for those loci where PM1; is | and PM?2,
is 0, toss a coin to decide PM1;. P2s contribution was detrimental so
when PA?2;is | and PM1; is 0 set PM1; to 1.

* PAM2: Set PM?2; by tossing a coin for those loci that contributed to ('1.

These are examples from one of several different sets of rules possible.  Many mask
propagation rules can be defined. In fact a GA can search the space of mask rules to
find a suitable set. This may be overkill, since the number of rules is usnally quite small,
simpler methods will suffice. Results, outlined in the next section. indicate that a significant
performance increase is obtained from even the simple set of rules above.

With mask propagation through mask rules, directional information is explicitly stored in
the masks and used by the crossover operator to bias search. The main features of our masked
crossover operator are then, storage and use of directional information, and independence

16



from defining length of schema. We think of masked crossover as a golden mean between the
disruptiveness of uniform crossover and the bias toward short schema of classical crossover.
Compared to the size of the search space when using inversion, 21, a genetic algorithm using
MX searches only 2%,

Masked crossover presents a problem when using classical selection procedures. The
classical strategy of allowing the children produced to replace the original population will
not allow a genetic algorithm using masked crossover to converge. Masks will tend to disrupt
the best individuals while searching for promising directions to explore because of the nature
ol the rules guiding mask propagation. Therefore onr selection procedure is a modification
of the CHC selection strategy. 1 the population size is N, the children produced double the
population to 2N. I'rom this, the N best individuals are chosen for further consideration
[10]. We use this elilist selection strategy to guarantee convergence. Another problem which
may occur is that although MX preserves schema of arbitrary defining length, the fitness
information itself may be misleading.  Such problems are called deceptive. When fitness
information is misleading we expect a GA using masked crossover to perform worse than a
GA using crossover operators that do not use such information. This is borne out by results
[rom the adder problem,

A Designer Genetic Algorithm (DGA) therefore differs from a Classical Genetic Algo-
rithm (CGA) in the crossover operator (masked crossover) and in the selection strategy
(elitist) used.

[dentifying and overcoming deception, is an important arca of research, not only for
structure design but also for the field of genetic algorithms. Theoretically, deception is
identifiable by mathematical analysis. However, from a practical standpoint, this analysis
is prohibitively expensive. Messy genetic algorithms (MGAs), developed by Goldberg to
handle deception, need to identily deceptive schemas to be applicable [17, 18], We suggest
an approach satistying both criteria, using designer genetic algorithms.

Deception can be statically identified using the ANODE algorithm suggested by Goldberg
[15, 16]. Recent results indicate that the Nonuniform Walsh-Schema Transform (NWST) [3]
can dynamically analyze a GA. Using the NWST in concert with the normal operation of
a GA, we can collect runtime statistics needed to identify deception. Furthermore, we can
improve efficiency by removing some of the determinism in the ANODE algorithm. This
will not significantly alter effectiveness as long as the probability of correctly identilying
deception is greater than that of incorrectly identifying it. In other words, we propose to let
a DGA collect runtime statistics on encoding (through the NWST) and use these statistics
to set masks. Whenever the DGA detects deception either through a periodic check of these
statistics and/or a decrease in rate of progress, the algorithm identifies deceptive schema with
the help of the statistics collected and the masks. It then allows an MGA to work on just
these schema and solve the deception at this level. The DGA then continues, appropriately
seeded with the optimal schema produced by the MGA. Our current research follows this
approach and [ocuses on combining DGAs with MGAs.
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Figure 13: A mapping from a one-dimensional genotype to position in a two-dimensional
phenotypic structure.

5 Results

A designer genetic algorithm’s performance is compared with that of a classical GA on the
adder and parity problems. In all experiments, the population is made up of 30 genotypes.
The probability of crossover is 0.7 and the probability of mutation is 0.01. These numbers
were found to be optimal through a series of experiments using various population sizes and
probabilities. The graphs in this section plot maximum and average fitnesses over ten runs.

Jach genotype is a bit string that maps to a two-dimensional structure (phenotype)
embodying a circuit as shown in figures 13 and 11. We need 3 bits to represent 8 possible
gales. A gale has two inputs and one output. If we consider the phenotype as a two
dimensional array of gates S, a gate S;;, gets its first input from S;;_; and its second from
one of Sigy -y or Si_y -y as shown in figure 11. An additional bit associated with each gate
encodes this choice. If the gate is in the first or last rows, the row number for the second
mput is calculated modulo the number of rows. The gates in the first column, S;y receive
the input to the circuit. Connecting wires are simply gates that transfer their first input to
their output. The other gates are AND, OR (inclusive OR), NO'T' and XOR (exclusive OR).

We determine the fitness of a genotype by evaluating the associated phenotypic structure
that specifies a circuit. If the number of bits is n, the circuit is tested on the 27 possible
combinations of n bits. The fitness function returns the sum of the correct responses. This
sum is maximized by the algorithm. For the 1-bit parity checker, the binary numbers 0 to
I5 are inputs to the decoded cireuit. If the cirenit is correct, its fitness is 16, which means
that the circuit correctly finds the parity of all the 16 possible 1-hit. numbers. For the adder
problem the input is a set of 2, n-bit numbers. The output is an n + | bit sum. For a 2-bit
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Figure 14: A gate in a two-dimensional template, gets its second input from either one of

Input

two gates in the previous column.

adder, the maximum fitness would he 3 x 2 or 48.

We compare the performance of classical GA using “elitist selection with a DGA on a
2-bit adder problem, the graphs in figures 15 and 16 show that the classical GA does better.
although the difference is not great. This is not very encouraging. However, il we look at
the solution space we see that solutions to the adder problem involve deception. A problem
is deceptive to a GA, when highly fit low-order schema, lead away [rom highly fit schema
of higher order. As explained earlier, since MX uses fitness information to bias search, it is
more casily mislead than traditional crossover.  Although a problem is deceptive, it does
nol mean that no solutions can be found. Figures 17 and 18 show solutions to the 2-hit
adder problem found be a designer genetic algorithm and classical genetic algorithm. As
wire gates ignore their second input, only one input is shown for such gates. The gate at
position Sys is shown unconnected because it does not affect the oulput,

We now consider the parity problem. The encoding described in figure 13 will violate
the principle of meaningful building blocks with regard to the solution to the parity problem
as shown in figure 2. Since diagonal elements of S (the phenotype) are further apart in the
string, any good subsolutions (highly fit, low order schema) found will tend to be disrupted
by traditional crossover. MX however, will find and preserve these subsolutions as its por-
lormance is independent, of defining length. To observe performance under these conditions,
we restrict the number of gate types available to the GA to three and do not allow a choice
of input (the second input is now always from the next row, modulo the number of rows).
Although this reduces the size of the séarch space, traditional crossover disrupts low-order
schema and therefore performs worse than the DGA. Figure 19 and figure 20 show this for
a 1-bit parity checker. (In cases where there were no restrictions the performance of hoth
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Figure I7: A 2-bit adder designed by a designer genetic algorithm.
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Figure 18: A 2-bit adder designed by a classical genetic algorithm.
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Figure 19: Performance comparison of maximum fitness per generation of a classical GA
versus a DGA on a 4-bit parity checker.

GAs were comparable.) The difference in performance gets larger as the problem is scaled
in size. Figure 21 and figure 22 compare the maximum and average fitness performance
on a 5-bit problem. In the 5-bit experiments the choice of gates was still restricted to the
same three as in the previous example. However, input choice was allowed, increasing the
number of solutions in the search space. When allowed all possible gates, the performance
difference is less, and is due to the large increase in the number of possible solutions and
therefore a lesser degree of violation of the meaningful building block principle (see figures
23 and 24). However, as the problem becomes more epistatic, masked crossover does better
than traditional crossover because it uses differential information about child litness to bias
search independent of schema defining length. Hypothesis testing using the student’s ¢ test
on our experimental data proves that MX is significantly better than CX at a confidence
level greater than 95% [11].

In the comparisons above we ignored the effect of selection. Figures 23 and 214 compare the
performance of: 1) a GA using traditional crossover and selection, 2) a GA using traditional
crossover and elitist selection, and 3) a DGA on a 5-bit parity problem. The same parameter
set as in the previous examples is used although we set the number of gate types to six,
increasing the number of possible solutions. This was done in the hope of coaxing better
performance from the GA using traditional selection and crossover. The figures clearly show
the importance of selection strategy.

The next two figures show examples of correct circuits for the 1-bit parity problem. A
DGA produced the circuit in figure 25 and a classical genetic algorithm produced the circuit
in figure 26. The unconnected gates in the last column do not contribute to the output,

S
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Figure 20: Performance comparison of average fitness per generation of a classical GA versus
a DGA on a 4-bit parity checker.
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Figure 21: Performance comparison of maximum fitness per generation of a classical (GA
versus a DGA on a 5-bit parity checker.
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Figure 22: Performance comparison of average fitness per generation of a classical GA versus
a DGA on a 5-bit parity checker.
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Figure 23: Performance comparison of maximum fitness per generation of a classical GA
using traditional selection, a classical GA with elitist selection, and a DGA on a 5-bit parity
checker.



therefore their connections have been left ont. Both algorithms had the full complement of
gates available.

5.1 Conclusions

To show the effectiveness of a designer genetic algorithm we need to satisfy two conditions:
I Show that there exist encodings on which a DGA outperforms a classical GA.
2 Show that there do not exist encodings on which a classical GA outperforms a DGA.

The first condition is met by our results. Experiments with the standard test suite of five
functions first used by DeJong empirically support the second condition[8]. Masked crossover
and elitist selection result in an increase in the computational cost. We can calculate the
increase in cost per generation as the sum of two costs.

o Cost of sorting the population. Sorting can be done in O(nlogn) on the average.
e Cost of mask propagation. This is a constant depending on the length of the string.

A designer genetic algorithm increases the domain of application of genetic algorithms by
relaxing the emphasis on schema of short defining length. We see that using masked crossover
mitigates the problem of epistasis while elitist selection is crucial to good performance. The
increase in cost in using a DGA is by at most a constant factor per generation. Comparing
the performance of the two (GAs on a problem also gives significant insights about properties
of the scarch space. I the performance difference is large, it indicates that highly fit, low-
order schema are mostly of large defining length and /or the number of solutions in the scarch
space is low. The number of solutions is called the footprint. As the footprint decreases,
performance difference gets larger.

Deception also plays a role in determining performance. Traditional crossover may do
better on deceptive problems becanse it uses no information about search direction. However,
since we now have a good tool with which to recognize and isolate deception we can take
remedial action using messy genetic algorithms at only those points that require such action.
By combining designer genetic algorithm with messy genetic algorithms we hope to extract
the best properties of each.

6 Applications and Further Research

Application arcas include VLSI layout design, network architecture design and of course,
function optimization. Current applications of GAs in industry are mostly in the arca of
[unction optimization. Although GAs have enjoyed some success, their implementations are
ad-hoc at best and do not make use of the full power of genetic search. The basic problem is
again one of representation. As has been stressed before, GAs work best when the encoding
follows the principle of “meaningful building blocks.” Unfortunately finding such an encoding
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Figure 24: Performance comparison of average fitness per generation of a classical GA using
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checker.
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Figure 25: A Circuit designed by a designer genetic algorithm that solves the 1-bit parity
problem.
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Figure 26: A Circuit designed by a classical genetic algorithm that solves the 4-bit parity
problem.

is not trivial and is something of an art [14]. Most industrial implementations such as the
systems developed at Lockheed and General Electric [21, 2] do not pay attention to this
principle and lead to mixed or bad results. DGAs however are not constrained by such
principles and do not care about the aesthetic sense of GA programmers. As such they
promise to exploit the full potential of genetic search, increasing the domain of successful
application.

Another application arca envisioned for a DGA is in the design and analysis of pro-
tein structure. A protein is a sequence of amino acids. This one dimensional sequence is
transformed into a three-dimensional shape that determines the function of a protein. The
functional shape arises out of the complex interactions among the constituent amino acids
and the environment. Since the number of amino acids in a protein may be in the hundreds,
predicting the three dimensional structure of a protein and thereby its function is extremely
difficult and remains one of the open problems in microbiology. DGAs seem tailormade
for this problem since the phenotype or structure of the protein is very epistatic. Amino
acids very far apart on the one-dimensional sequence may interact with each other in the
three dimensional functional structure. Current work already follows a similar evolutionary
approach as summarized in a recent Scientific American article[l].

Much work remains to be done before the DGA becomes a tool in an application’s
toolbox. This proposal only considers binary masks which piggyback on their associated
strings, a constraint that needs exploration. Non-random initialization of masks to simulate
traditional or uniform crossover is an interesting area yet to be explored. we can use an
independent population of masks to chart directional trends and allow non-binary masks to
assign weights to alleles. Future research will therefore be focused on global and non-binary
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masks and their possible combination. Various selection schemes need to he weighed for
optimal performance. The use of special operators, for niche formation and speciation [7],
dominance and diploidy [11], and the conditions for their use in designing structures need to
be evaluated. Identifying and overcoming deception, is an important arca of rescarch, not
only for structure design but also for the field of genetic algorithms in general. We hope to
combine DGAs with MGAs as described in the previous section, to synthesize an algorithm
that is impervious to many of the problems that plague current GAs. Finally, mathematical
analysis must be done to put the DGA on a firm foundation.
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