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Abstract 

In parallel computer systems, the efficient use of local memory by each processor 

often affects overall program performance. This is especially true with most scientific 

computations, where many nested loops process data that is usually stored in shared 

or distributed memory. If references are repeatedly made to array elements placed 

in external memory, the amount of time spent accessing the external data will be 

greater than the time required to move the data into local memory and to access it 

there. This is especially true if block transfer instructions are used to copy data from 

external to local memory. This thesis develops algorithms to generate instructions 

that make local copies of external data, and provides results of experiments on a 

parallel machine. 

These algorithms are based on the tessellation process which divides the set of 

d-dimensional array elements referenced in a nested loop of depth n into (~) subsets. 

Each subset provides information about the locations of the array elements in the 

subset. The information from all subsets is used to determine whether all the ref-

erenced array elements form contiguous blocks, and to make local copies of external 

data in the case of non-contiguous blocks. The tessellation process simplifies these 

tasks by reducing the problem size. If the referenced array elements form contiguous 

blocks, external data can be localized by means of fast block transfer. If not, external 

data can be copied word-by-word into local memory with low overhead using the 

information from the tessellation process. Experimental results are presented that 

show the algorithms' effectiveness in localization of external data. 
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Chapter 1 

Introduction 

1.1 Parallel Architectures 

Computer architectures, based on the multiplicity of instruction and data streams 

[23], are classified in four classes: 

• Single instruction stream single data stream (SISD) 

• Single instruction stream multiple data stream (SIMD) 

• Multiple instruction stream single data stream (MISD) 

• Multiple instruction stream multiple data stream (MIMD) 

The SISD is the architecture of traditional sequential computers. The MISD is so 

abstract that no real machine has been developed [41]. Most parallel machines built 

today fall into the other two categories: either the SIMD or MIMD class. The SIMD 

machines, called array processors because most of them are used in processing arrays 

of data, consist of an array of processors under the general supervision of a front-end 

processor that is usually a sequential machine. The front-end processor executes scalar 

operations, while the rest of the processors handle the vector operations. The front­

end processor issues commands that cause the array processors to operate on different 

data simultaneously. Illiac IV [12], Goodyear MPP [29] and the Connection Machine 

[35] are all in the SIMD class. However, many contemporary parallel computers 

1 
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can be found in the MIMD class which consists of several SISD class machines that 

may be coupled, either tightly or loosely. Processors in an MIMD machine execute 

different computations at the same time, communicating with each other through 

shared memory or by some other communication protocols. In this thesis, the MIMD 

machine is the target machine and thus the terms "parallel computer" and "MIMD 

machine" are used interchangeably. 

A memory hierarchy is built into many parallel computer systems. The hierar-

chy exists because it is often necessary to coordinate the different processing speeds 

between processors and memory modules, especially in high speed supercomputers. 

Major memory components in the hierarchy are the (scalar) registers, vector registers, 

cache memory, local memory and shared memory; some of them are hierarchically 

organized according to their processing speed, i.e., from fast and low level memory to 

slow and high level memory. These memory components are managed by hardware 

or software. Cache memory is generally managed by hardware, whereas the other 

components are manipulated by software. In fact, registers are generally handled by 

the compiler at the machine instruction level, and local and shared memories are con­

trolled by the programmer through variable declaration or dynamic allocation features 

that are provided by high level programming languages. Therefore programming in 

a high level language is mainly concerned with shared and local memory allocation, 

but not with the register allocation problem, which is the job of compilers [1]. 

Parallel computer systems are characterized by the structure of the memory hier­

archy, which produces the following classification [44]: 

• Shared memory system 

• Distributed memory system 

• Hybrid system 
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A shared memory system has a global memory at the highest level in the hierarchy. 

Shared memory is accessible to all processors; therefore, processors can communicate 

with each other by using a location in the shared memory. It usually consists of 

different parts called banks. For example, there are 128 banks in Cray-2 [17]. This 

bank architecture allows different processors to access the shared memory at the 

same time, which makes data interleaving (see [41] for example) possible for better 

performance, provided that the processors do not try to access the same memory 

bank simultaneously. Shared memory and processors are connected via a bus or 

switch network. For example, the Alliant FX/8 has a bus connected shared memory 

[6]; the NYU Ultracomputer uses a type of multistage interconnection network, called 

an Omega network, to connect between shared memory modules and processors [30]. 

Both systems provide a logically complete connection between memory banks and 

processors. In such an organization, all shared data can be stored in shared memory 

from which parallel processes fetch the data required for computation. However, this 

. type of organization has its own drawbacks, particularly when all processors issue 

requests for data in shared memory at nearly the same time. Then, the connections 

will most likely suffer either from bus saturation or from hot spot contention [60] [51]. 

To overcome these potential problems, the memory system is organized with either 

cache or local memory. For example, the ETA-10 has 32M bytes of local memory for 

each processor (20], and the Cray-2 has 16K 64-bit words of local memory for each 

processor [66]. The Alliant has a shared cache, and the IBM 3090/VF provides a 

cache memory for each processor [67]. 

A distributed memory system, sometimes called a message passing system, does 

not have a global shared memory. Instead, each processor has its own local memory 

that is not accessible to any other processor. All processors are interconnected via a 

network through which processors can communicate. In this architecture, all shared 

data are distributed over memories each of which is exclusively accessed by its partner 
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processor. Running parallel processes, processors generate and send a message to the 

processor that has the required data, and wait for the response. The access time to 

a data in a remote processor depends on the network traffic and the length of the 

path between processors. On the average, the access time is less than O(log2 n) in a 

hypercube network, O(log2 n) in a multistage interconnection network, and O( n) for 

a ring network. The ring network is used by the CDC Cyberplus (22], mainly because 

of its simplicity. Since the access time largely depends on the network topology, 

however, a hypercube network is widely chosen for better performance, in spite of its 

hardware complexity. Notable examples of machines using this network are the Intel 

iPSC (31], Ametek S-14 [7], NCUBE/10 [58], and FPS-T [34]. 

A hybrid system has properties of both shared and distributed memory systems. 

Each processor retains its own local memory, while the set of all local memories forms 

a single shared memory. For example, the BBN Butterfly GPlOOO [11] consists of up 

to 256 processors, and each processor has 4M bytes memory module local to itself. 

Here all local memory modules serve as a shared memory that is interconnected via a 

switch network. (See Appendix A for details.) Another example is the IBM RP3 [59]. 

The RP3 has up to 512 processor/memory elements (PME) that are connected via 

an Omega-network as defined by Lawrie [50]. Each PME contains 2M or 4M bytes 

of memory. Part of the memory in each PME is allocated to global memory, the rest 

being used as local memory which is rapidly accessible by its partner processor. The 

boundary between global and local memory is configured at run time. Therefore, the 

RP3 can be treated as a shared memory system if the whole memory in each PME 

is allocated to global memory, as a distributed memory system if the whole memory 

in each PME is allocated to local memory, or as a mixture of both. In a hybrid 

architecture, programs can be coded as if the memory system were shared; however, 

the performance behavior is still similar to that of distributed memory system. 
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When a processor is running a certain set of parallel processes concurrently with 

other processors, it may require the data stored in local as well as non-local memory. 

Since a processor and local memory constitute a sequential processor, the data can 

be accessed very quickly if it is stored in local memory. However, if it happens ' 

to be in non-local (i.e., in external) memory, it obviously must traverse a longer 

path between external and local memory. F\J.rther, as discussed above, external data 

accesses can easily result in bus saturation or hot spot contention, further degrading 

system performance. Therefore, it is very important to utilize local memory. This 

thesis thus will only consider parallel computer systems where processors are equipped 

with local memories. 

1.2 P~rallel Programming 

There are three different approaches in parallel programming: 

1. An extended language approach 

2. A portable parallel programming environment approach 

3. A portable parallel programming language approach 

In an extended language approach, there are two types of extensions. One type is 

an extension incorporating various library procedures for generating and activating 

parallel processes, or for passing message between processors. Examples of this type 

include Concentrix C [4] for the Alliant FX, .Uniform System C [10] and Uniform Sys­

tem Fortran [9] for the Butterfly GPlOOO, Extended C for the Balance and iPSC [43], 

and Multitasking Fortran for the Cray (43]. The other type uses compiler directives. 

Examples are Alliant FX Fortran [5], Sequent Balance Fortran, and Cray Microtask­

ing Fortran [45]. Using compiler directives, a programmer can give the compiler an 

instruction indicating how to parallelize the constructs that immediately follow the 



Chapter 1. Introduction 6 

compiler directives. Extended languages are usually provided by the manufacturers 

of parallel machines. Because parallel programming tools provided by manufacturers 

are specific to a particular architecture, writing a parallel program with them is often 

machine dependent. Therefore, developing parallel code is comparable to program­

ming in a low level language for sequential computers (52]. As a result, programming 

styles vary a great deal even for the same class of parallel systems. 

Better alternatives are found in the second and third approaches to parallel pro­

gramming, both of which emphasize machine independent abstractions. A portable 

parallel programming environment approach provides an environment that does not 

particularly depend on machine characteristics, because machine dependences are 

hidden by means of abstractions. The Force (42], which was developed for shared 

memory systems, uses macro definitions to hide machine dependences. Macros are 

divided into several classes according to such features required for parallel execution 

as shared/private variable declarations, parallel executable loops, synchronizations, 

and so on. A Minimalist approach [54], which is efficiently implemented on the Denel­

cor HEP, a shared memory system, embodies Hoare's monitor concept [36]. Machine 

dependences are encapsulated in macros that are the lowest level in the abstraction. 

All features for parallel execution are implemented with monitors that are written in 

macros. The SCHEDULE [19] is a program package that provides a parallel program­

ming environment for shared memory machines. In this package, data dependences 

and parallel structures are specified in terms of subroutine calls to the SCHEDULE 

subroutines. In other words, machine dependences are buried inside a package of 

machine dependent subroutines. The SCHEDULE allows the same user code to run 

without modification on different machines with minor, but in some cases difficult 
' 

modifications of the package itself. In contrast to the above languages specifically 

designed for shared memory machines, Linda [28] can be executed on both shared 
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and distributed memory machines. Such a machine independent characteristic is re­

alized by implementing a novel communication mechanism, called the Tuple Space, 

that is accessible to all processes in the distributed program. Even though this ap­

proach may provide programmers with a portable parallel programming environment, 

implementing the environment on various machines is not easy. 

In the third approach, which is the most desirable of all, new parallel program­

ming languages are developed that have constructs to express parallelism. Many such 

languages have been proposed, and are based on a number of different mechanisms. 

The language Communicating Sequential Processes (CSP) [~7] has a simple parallel 

command to create a fixed number of parallel processes that have local variables. 

These processes can communicate with each other by means of a synchronous mes­

sage passing mechanism. The language Occam (55] is modeled on Hoare's CSP [37] 

and designed for the 'fransputer of Inmos, a micro processor which is often used in 

distributed machines. In Ada [26], parallelism is based on sequential processes, called 

tasks, that can run in parallel and communicate through the rendezvous mechanism. 

Concurrent C [27] is an extension of the C language [46] with additional features for 

distributed programming based on Ada's rendezvous model. Whereas CSP, Occam, 

Ada and Concurrent Care designed for distributed machines, Concurrent Pascal [33] 

is designed for shared memory machines, in that communications between its par­

allel processes are done through shared memory. Blaze [56] is a scientific parallel 

programming language that has a Pascal-like syntax, but its procedure invocation 

mechanism is similar to functional languages. Cedar Fortran [32] was developed for 

the Cedar machine [48] whose architecture provides two levels of loop parallelism: 

cluster loop and spread loop parallelism. However, none of these languages is popu­

larly used, probably because they all tend to incorporate various machine dependent 

mechanisms in one way or another. 
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Given a parallel machine, an efficient parallel language program can be written 

by a competent programmer. Achieving the same efficiency may not be possible, 

however, when the program is run on another machine, unless the program is modified 

significantly to utilize the different hardware characteristics of the new host machine 

[44]. This is illustrated in [45] by comparing 12 programs to compute 7r written in 12 

Fortran dialects for parallel machines. 

In an effort to make a language widely acceptable for parallel programming, like 

Fortran 77 for sequential programming, PCF Fortran [64] has been developed and is 

recommended by the Parallel Computing Forum of several manufacturers and user 

communities. Basically, the language is an extension of Fortran 77 with a set of 

primitives added in order to program shared memory machines. Since Fortran is 

often called for in scientific programming, its parallel equivalent, PCF Fortran, is also 

expected to be gradually put into use for scientific parallel programming. 

There are five levels of parallelism in parallel program execution [40]: 

• Level 1: Independent jobs and programs 

• Level 2: Job steps and related parts of programs 

• Level 3: Routines, subroutines and co-routines 

• Level 4: Loops and iterations 

• Level 5: Statements and instructions 

The higher the level, the finer the granularity (the unit of parallelism). Parallelism 

at level 1, commonly known as multiprogramming, is realized in traditional single 

processor systems. That of level 2 may be easily found, for example, in compilations 

of many procedures being carried out in parallel. Parallelism at level 3 is supported by 

extended languages with libraries for parallel programming. At level 5, parallelism 

is also being implemented in various machines, the CDC-6600 being a prominent 
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example, with look-ahead techniques using multiple functional units. Parallelisms at 

levels 1 and 2 are the main concerns of the operating system; that at level 5 is a task 

for hardware functional units; and expressing parallelism at level 3 largely relies on 

the skill of programmers and on general algorithm development. But there is still a 

great deal to be resolved at level 4, which therefore remains one of the major research 

areas in parallel programming. 

Most parallel programming languages have similar constructs to declare paral-

lelism at the level of loops, such as forall of Blaze, cdoall and sdoall of Cedar 

Fortran, parallel do and spread do of PCF Fortran, parallel loop of IBM For­

tran for the 3090 series, par for of Occam, scheduled do of the Force, compiler 

directives of Alliant Fortran and Cray microtasking, and so on. The syntax and se­

mantics of these constructs are very similar. Therefore, much research has focused 

on parallelism in loops, as described in detail in the next section. In this thesis, we 

also focus on parallelism at the level of loops, and use forall as a parallel construct 

to express the parallelism. 

1.3 Program Transformation 

For many traditional programmers, writing programs for parallel computers is more 

difficult than for sequential computers, not only because humans tend to think se­

quentially rather than concurrently, but also because there are many issues that make 

parallel programming inherently difficult: non-determinism, race conditions, synchro­

nization, and scheduling, just to name a few [52]. 

It is also true that ever since the inception of modern electronic computers, an 

enormous number of very valuable programs have been written for sequential comput­

ers. Out of necessity, therefore, many automatic parallelization techniques have been 
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proposed in an attempt to run sequential programs on parallel machines. Such tech­

niques are intended to detect parallelism in sequential programs and then generate 

corresponding parallel machine code [49] [3] [57]. Automatic parallelization compil­

ers, such as CFT for the Cray X-MP, KAP205 [39], and KAP /S-1 [16], have also been 

developed. Automatic parallelization proved particularly successful for vectorization 

as well as for SIMD parallelism. Many parallelization methods may also be applied 

to program restructuring for MIMD parallelism [61]. 

The analysis of data dependences in the program is a very important tool used 

for detecting parallelism and restructuring programs. There are three types of data 

dependences: flow-, output-, and anti-dependence [47]. It is said that there exists a 

flow-dependence from a statement S1 to S2 if S1 defines a variable and S2 then uses it 

without defining the variable again between Si and S2 in the execution sequence; an 

output-dependence if S2 defines the same variable again; and an anti-dependence if S1 

first uses the variable and S2 defines it afterward. If all the data dependences in a loop 

do not cross the loop iteration boundary, then the loop is said to be parallelizable. 

Further, in order to increase the possibility of detecting parallelism, data dependences 

annotated with direction or distance vectors, which are expressed in terms of the 

iteration space of the loops, have been proposed [73]. With the help of annotated data 

dependence analysis, even an unparallelizable program may become parallelizable by 

applying some transformations, such as scalar expansion, loop interchanging [69), and 

loop skewing [70], on the source. These transformations should not violate the data 

dependence rules [73] mandating that the data dependence should be forward directed 

in the execution sequence. 

Program restructuring techniques are used to enhance the performance of pro-

grams written in parallel programming languages, whereas parallelization techniques 

are used to detect parallelism in sequential programs. Different restructuring tech­

niques are applied to different architecture classes. For MIMD architecture machines 
' 
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it is important to make parallelism of as large granularity as possible, in order to 

reduce the system overhead in generating parallel processes. Loop fusion (53] is one 

technique used to create large granularity of parallel processes. For machines equipped 

with vector processors, such techniques as vectorization [2], strip mining [53], loop fis­

sion [57] and loop collapsing [62] may enhance the performance of vector processors. 

For machines equipped with cache memory, loop interchanging and loop tiling [71] 

[72] [68] can be applied to improve the data locality. Most of these transformations 

are based on dependence analysis [25]. 

Data locality refers to a program's tendency to refer to a subset of its address space, 

called a working set [18], during any time interval and to that subset's tendency to 

change its members slowly [15]. Even parallel computer systems have these properties, 

because each processor has its own execution stream. These properties are strong 

justification for building hierarchical memory systems. Specifically, virtual memory 

and cache memory are designed and implemented based on the properties of data 

locality. 

1.4 Data Localization 

Cache memory can be used efficiently through program transformations, as discussed 

in the previous section, because its effective utilization depends on the data locality of 

a program [63]. In fact, many parallel computers, and even sequential computers, are 

equipped with cache memory for improved system performance. However, there are 

other machines, like the Cray, ETA-10 and Butterfly GPlOOO, that do not have cache 

memory. Improving data locality alone will not significantly enhance the performance 

of these machines, even though there might be slight enhancement due to virtual 

memory effects. On these machines, local memory serves as an important memory 

component that affects the performance of parallel computers. 
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The old models of the Cray series do not have local memory, but the Cray-2 is 

manufactured with 16K 64-bit words of local memory per processor in place of cache 

memory (21]. The ETA-10 has 32M bytes of local memory per processor (40]. In 

machines with cache memory, the size of cache memory is usually small compared 

to local memory. For example, the RP3 has 32K bytes of cache memory and up to 

4M bytes of local memory per processor [13]. Hence, restructuring techniques for 

improving data locality have been developed to reduce the size of the working set. 

If the working set fits into cache memory, then utilization of local memory, which is 

ineffective, is not needed. Sometimes, however, working set size can not be reduced to 

fit into cache memory by restructuring alone. In that case, cache memory generates 

frequent cache miss interrupts that request data from memory at a higher level of 

hierarchy. We can utilize local memory to improve the performance by putting it 

between cache memory and shared or external memory. This will reduce the time to 

service cache miss interrupts. 

The programmer has explicit control over local memory through local variable 

declaration or dynamic allocation features that are provided by high level languages. 

It is the programmer's responsibility to use local memory efficiently. In complex 

problems, efficient algorithms aimed at utilizing local memory are often called for 

to get good performance [65]. Brewer et al. [14] developed a useful tool to help in 

programming parallel algorithms. It displays memory access patterns of one or two 

dimensional arrays that are being accessed in a program. With the information made 

available by using this tool, the programmer can decide which part of the data should 

be in local memory for better performance. 

Most scientific computations store data in array structures, and can be run in 

parallel. On parallel machines, the data are usually shared between processors and 

are thus stored in shared or distributed memory, i.e., external or remote memory. If 

there is no data access conflict between sets of data accessed by processors, it may 
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forall i = 1, n 
for j = 1, n 

c(i,j) = 0 
for k=l,n 

c(i,j) = c(i,j) + a(i, k) * b(k,j) 
endf or 

endf or 
endf orall 

(a) Input to Localization System 

forall i = 1, n 
Declare la(l: n, 1: n),lb(l: n, 1: n),lc(l: n, 1: n) 
Copy b(l : n, 1 : n) to lb(l : n, 1 : n) 

loop 
Copy a(i, 1: n) to la(i, 1 : n) 
for j = 1, n 

lc(i,j) = 0 
for k = 1, n 

lc(i,j) = lc(i,j) + la(i, k) * lb(k,j) 
endf or 

endf or 
Copy lc(i, 1 : n) to c(i, 1 : n) 

endf orall 
(b) Output from Localization System 

Figure 1: Example of Data Localization 

13 

be helpful to copy data required by a processor from external memory into its local 

memory and access it there, or vice versa. We call the process of defining a variable 

in local memory and inserting such copy operations data localization. For example, 

the input to, and the output from, the data localization system developed here are 

shown in Figure 1 for a matrix multiplication program. 

The complete data localization system discussed in this thesis is shown in Figure 

2. The system takes a parallel loop as input. It does not matter whether the parallel 

loop is directly coded by a programmer, is the result of a parallelizing system, or 

is itself restructured to improve data locality. As output, the system produces a 
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parallel loop with local copy operations, as shown in Figure 1. The parallel loops 

thus generated have the same loop structure as the input parallel loop, except that 

data localization statements are inserted in appropriate places. 

1.5 Thesis Overview 

This thesis discusses a data localization system that can improve the performance of 

parallel loops. An example is offered by the matrix multiplication program in Figure 

1 (a), whose detailed syntax and semantics will be explained in Chapter 2. When the 

parallel loop runs on a distributed memory system of P processors, a processor makes 

~ of array accesses to local memory and P'Pl to remote memory, if we assume that 

all arrays are evenly distributed over all memory modules. Since most data accesses 

are made remotely, the delay caused by remote data accesses is a significant part of 

the computation time. The above statement is also true of a shared memory system, 

if all arrays are stored in shared memory. 

A better version of a program is the one that utilizes local memory for fast data 

access. The object of this thesis is to generate a program with data localization as 

shown in Figure 1 (b). In (a), the array variables, a, b, and c, are mostly referenced 

by an assignment statement enclosed by the nested loop of depth three, and many 

elements of these arrays are stored in remote memory; thus the number of remote 

memory accesses is O(n3 ). However, in (b), arrays are copied just inside the forall 

loop by a row of n elements, and thus the number of remote accesses is O(n
2
). The 

primary effect of data localization is that the number of remote memory accesses are 

reduced from O(n3 ) for program (a) to O(n2
) for (b). Because a remote memory 

access takes a much longer time than a local memory access, reducing the number of 

remote memory accesses is crucial for improving performance. For example, remote 

access takes eleven times longer than local access on a Butterfly GPlOOO. 
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The problem to be studied here can be stated as follows: How can a compiler 

automatically generate data localization in such a way that the resulting code is 

nearly optimal? We shall consider three aspects of this problem: 

1. Where to put copy operations 

2. How much data to copy 

3. What method to use to make a local copy 

Before any further discussion, we need to define the reference mode of a variable 

in statements. In a statement, we say that the reference mode of a variable is in read 

mode if its value is used, in write mode if its value is modified, and in read/write mode 

if its value is used and modified. In the example code, arrays a and bare used in read 

mode, and c is used in write mode in one statement and in read/write mode in the 

other statement. 
With respect to the question of where to put the copy operations, the location 

depends on the reference mode and index function of the variable to be localized. 

The reference mode determines whether the copy goes before the variable reference 

or after (or both). The index function determines the loop level of localization. If 

the reference mode of a variable is in read mode, it should be localized before the 

computation; if in write mode, after computation; if in read/write mode, it must go 

both before and after the computation. Because a and bare both in read mode, they 

should be localized before the computation. The index function for referencing b, 

(k,j), is independent of forall loop variable i. The whole array b can be localized 

before starting parallel tasks. The index function for a, ( i, k ), does not have j, but has 

the term i; i.e., each parallel task accesses only one row of array a. Each parallel task 

needs to make a local copy of the row it may access. Therefore, a can be localized 

before the for loop j. Unlike a and b, c is used in read/write mode in the code. 

However, since the first usage of c is in write mode, the original values are not used. 
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Thus, the local array variable le is used for computation and later copied into c. Since 

the index function for c, (i,j), has forall loop variable j, it is localized just after 

for loop j. 

The program with localization shown in Figure 1 (b) has localization statements 

in the right places according to the algorithms developed in this thesis. One might 

ask why a is not localized along with ·b, even though a is used in read mode. Should 

we do so, we could still get correct results. However, we also have to take into 

account a performance problem that might result. Since the whole array a is not 

needed by each processor, copying unnecessary elements would waste local memory, 

and local memory may not be large enough to contain the whole array. If a is 

localized like b all processors may access the same data almost at the same time 
' ' 

possibly causing network congestion and memory hot spot problems. Therefore, it is 

necessary to scatter localization requests throughout the parallel execution to avoid 

those unwanted effects on performance. 

In the process of data localization, we need to copy data from external memory 

into local memory, or vice versa. If the data to be copied are contiguous, i.e., if the 

data are stored in consecutive areas in memory, then the data can be copied as a block, 

which may reduce the localization time. For example, the Butterfly GPlOOO provides 

such a method, called block transfer, which can move contiguous data by blocks of 

up to 64 4-byte words. It takes approximately 72 µsecond to move 64 4-byte words 

by block transfer, 7 µ second to read a 4-byte word from remote memory, and 0.38 

µ second to write a 4-byte word into local memory [8]. Therefore, in localizing 64 

4-byte words from remote to local memory, the block transfer is 6.56 times faster 

than word-by-word transfer. (See Appendix A for more details about the Butterfly 

GPlOOO.) Thus, determining whether the data are contiguous is very important if 

fast block transfer is to be used for better performance. Suppose that the statement 



Chapter 1. Introduction 18 

for the matrix computation of Figure 1 is replaced with 

c( i, 2j) = c( i, 2j) +a( i, 2k) * b(2k, 2j). 

Every other element on a row of arrays is referenced. Therefore, the data are not 

contiguous, and word-by-word localization will be used, provided that the time to 

localize and access data in local memory is less than the time to access data without 

localization. This case raises the question of why a whole row should not be copied 

using fast block transfer, if row major array allocation is assumed. For a and b, such 

a transfer does not cause any problem, but there may be a problem with c. If a row 

is copied back from a local array, le, to the original remote array, c, then half of the 

original values may contain garbage values. Also, in some cases, each parallel task 

may modify a different set of elements on a row. 

More problem definitions and assumptions for the issues of this thesis are described 

in Chapter 2. 

The compilation steps of a data localization system are shown in Figure 3. We 

propose new concepts, the tessellation process in Chapter 3 and q-contiguity in Chap­

ter 4, to solve the problems discussed above. The tessellation process takes a parallel 

loop as input and divides the set of d-dimensional array elements referenced in a 

nested loop of depth n into (~) subsets. By dividing the referenced elements into 

several small pieces, the tessellation process simplifies the other procedures discussed 

in this thesis. Further, each subset provides information about the locations of the 

array elements in the subset that will be used by other parts of the algorithms. (The 

usage of the term "tessellation" differs here from that of Hudak et al. in their paper 

[38], where tessellation divides the iteration space into P partitions for P processors, 

and each partition is allocated to a processor.) Currently, the tessellation process is 

restricted to 1- and 2-dimensional arrays. It has not yet been generalized to higher 
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dimensional arrays. 

As mentioned before, contiguity of referenced elements is very important for ef­

ficient localization. First, q-contiguity is introduced to determine whether all the 

referenced array elements form contiguous blocks, where q is a positive integer and 

less than or equal to the dimension of the array. The concept can be understood 

easily by using an example. Let X be a 2-dimensional array. If all referenced ele-

ments are X(l, 2), X(2, 2), ... , X(9, 2), then the array is called I-contiguous, and if 

they are X(2, 1), X(2, 2), ... , X(2, 9), then it is called 2-contiguous. The condition of 

I-contiguity is important for column major array allocation, and that of 2-contiguity 

is important for row major array allocation. We can determine whether all the ref­

erenced array elements satisfy the condition of q-contiguity by using the information 

from the tessellation process. 

The localization algorithms differ depending on whether or not all the referenced 

elements form contiguous blocks. Chapters 5 and 6 present algorithms that localize 

the contiguous and non-contiguous data, respectively. The algorithms developed for 

non-contiguous data are extensions of the research by Gallivan et al. [24]. That paper 

provides the concepts of data localization, and of a face in the iteration space. The 

data localization in that paper provides the concept of localizing the image of a face, 

but does not consider the precise algorithms needed to implement localization of all 

the referenced elements. In this thesis, we relate the face to the tessellation process, 

and develop concrete algorithms based on the improved theories. 

In Chapter 7, some test programs, run on the Butterfly GPlOOO machine, will 

show how the performance is improved by programs with data localization. Finally, 

Chapter 8 summarizes and further suggests what future research might be required 

to improve the algorithms developed in this thesis. 



Chapter 2 

Problem Definitions 

Most programming languages provide loop constructs which have similar syntax and 

semantics. Before we start developing algorithms, we need to define the syntax and 

semantics of a loop construct for a clear description of algorithms, and we need to 

explain the assumptions of this thesis. 

2.1 Loop Constructs 

Most widely used programming languages have constructs, called loops, to denote the 

repetitive execution of a group of instructions, such as do in Fortran, for in Pascal 

and C, and so forth. Each loop consists of a loop variable whose value is updated on 

every iteration, loop bounds that are the lower and upper bounds of the loop variable, 

a stride which is the value added to the current value of the loop variable for the next 

iteration, and a loop body which is a group of instructions that are executed repeatedly 

for different values of the loop variable on every iteration. It is also possible to enclose 

several loops within the body of another loop, called a nested loop. In this case, the 

nesting depth of a loop is defined as the number of enclosing loops. 

With the development of parallel computers, many programming languages such 

as Cedar Fortran [32] have been extended with constructs for parallel execution. 

Examples of those constructs used in parallel programming are doall and forall, 

designated using the suffix all with the names of loop constructs. In this thesis , 

for will be used for serial loops and forall will be used for parallel loops. The 

21 
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forall i = l, u 

initialization 
loop 

loop body 
endf orall 

Figure 4: Syntax of forall Construct 
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syntax of the forall construct used in this thesis looks like Figure 4. Initialization 

may consist of variable declaration statements and/ or executable statements, or it 

may be null. When there is no statement in initialization, the keyword loop may 

be omitted. The loop body contains a sequence of executable statements. When a 

forall construct is run on a parallel computer, each processor allocates variables 

declared in initialization to its local memory and executes the loop body accordingly. 

After initialization, ( u - l + 1) parallel tasks are generated which execute the loop 

body for i = l, .. . , u in parallel. 

2.2 Assumptions 

The first concern of this thesis is to develop data localization algorithms in a nested 

loop whose outermost loop is a parallelized forall loop which looks like Figure 5 

(a). If the keyword loop is omitted, we assume that there is no initialization. Our 

first assumption is that there is no synchronization problem with the array variable we 

want to localize. If a variable (a scalar or an array element) needs to be synchronized, 

it may be accessed in write mode by several processors, or given a value by one iterate 

that is needed by a later iterate, and thus it is not eligible for data localization. 

To simplify the initial process of algorithm development, we assume that all oc­

currences of references to an array have the same index function. (The resulting 

algorithms, we presume, will serve as a base for considering cases of different index 
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for all io = lo, uo 
for i1 = l1, u1 

endf or 
endf orall 

for in = ln, Un 
X( c10io + · · · + C1nin, .. ·, Cdoio + · · · + Cdnin) 

endf or 

(a) Parallelized nested loop 

for in = ln, Un 
X(c11i1 + · · · + C1nin, · · ·, Cd1ii + • · · + Cdnin) 

endf or 

endf or 
(b) Standard nested loop 

Figure 5: Nested Loops 
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functions in future research.) For example, if the following statements are coded 

inside the innermost loop, 

Y(ii, ii+ i2) = Z(ii, i2) + X(ii, i2 + 1) 
Z(ii, i2) = Z(ii, i2) + X(i1, i2 + 1) 

then the two references to X have the same index function (ii, i2+1), Y has (ii, ii +i2), 

and the three references to Z have (i1, i2)· We handle each array independently, as 

if there were only one reference to each array. Thus, only one array reference, which 

represents all occurrences of references to that array, will be coded in a nested loop 

like Figure 5 (a). 

In this example, Xis used in read mode, Yin write mode, and Zin read and write 

mode. When all occurrences of the references to Z are represented as one reference, 

the reference mode is regarded as read/write mode. However, we will not specify the 

array reference mode, whether that be read, write, or read/write mode, because each 
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data localization process is quite simple and straightforward. Clearly, if the reference 

mode is read mode, the remote data should be copied first into local memory before 

they can be used. If it is write mode, then the opposite is true, in that the data will be 

modified in local memory and then sent back to remote memory. If it is read/write 

mode, both of the above operations must be carried out. For simplicity, however, 

from now on we will assume that the reference mode is read mode, unless otherwise 

specified. 

The constant terms in index functions do not affect the algorithm development, 

because they imply the simple translation of referenced elements and we assume that 

all references to an array have the same index function. Thus they can be ignored in 

developing algorithms. Moreover, in the nested loop of Figure 5 (a), the loop variable 

io of the parallelized forall loop behaves like a constant inside that loop. When a 

processor fetches one parallel task and runs it, the value of io remains fixed until the 

process terminates. Therefore, we can also ignore the term io in index functions, and 

omit the outermost for all loop, as shown in Figure 5 (b ). Consequently, we assume 

that there is no constant term in the index function. 

Little difficulty is presented by the stride. Many loop statements have a stride of 

1, and even a loop with a stride of another value can be easily transformed to have a 

stride of 1 by the following normalization process: 

for i=l,u,s for i=O,lu;1J,l 
X(i) X(l + si) 

endfor endfor 

Therefore, we can assume that the loop stride is 1, and thus omit specifying the stride 

in the loop structures. 

We also assume that loop bounds are independent of other loop variables. To be 

sure, many problems in linear algebra are programmed using nested loops whose loop 

bounds depend on other loop variables. However, these cases, for which different 

kinds of tessellation process may be developed in the future, are not considered in 
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this thesis. 

The index functions of array references are assumed to be linear combinations of 

loop variables on integer domain and range. With the exception of sparse matrix 

representations, we seldom see index functions that are not linear combinations of 

loop variables. This assumption makes it possible to handle index functions in matrix 

form. 

Throughout this thesis, we assume that the depth of a nested loop is n, the 

loop variables are i 1, ... , in, inwards from the outermost loop, and the dimension 

of the array to be localized is d. Here, the algorithms are developed for the cases 

n 2: d. If n 2: d, the number of accesses to the array is not less than the number of 

referenced elements. As the difference between n and d becomes larger, the number 

of accesses is much greater than that of the referenced elements, and the benefit of 

data localization becomes greater. In fact, the case of n 2: dis common in parallel 

programming, and many significant applications are based on matrix multiplication 

types of array operations, as shown in Figure 1. The case of n < d is not supported 

by the tessellation process, unless at least d - n indices of the index function are 

constant. 

Finally, it is assumed that arrays are allocated in row major, but all algorithms 

can be applied to the column major allocation scheme with minor modifications. 

To summarize the assumptions made thus far: 

• There is no synchronization problem. 

• All occurrences of references to an array have the same index function. 

• There are no constant terms in index functions. 

• The loop stride is 1. 

• Loop bounds are independent of other loop variables. 
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for i1 = 0,3 
for i2 = 0,4 

for i3 = 0, 5 
X(i1 + i2, i2 + i3) 

endf or 
endf or 

endf or 

Mapping 

Figure 6: Nested Loop and Vector Space 

• Index functions are linear combinations of loop variables. 
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• The depth of a nested loop is greater than or equal to the dimension of the 

array to be localized; i.e., n ~ d. 

• Arrays are allocated in row major. 

In Figure 5, the parallelized loop of (a) satisfies all the assumptions, and the standard 

nested loop of (b) has the outermost forall loop omitted from the code of (a). 

Since all parallelized loops have a forall loop enclosing a nested loop, we will use 

the standard nested loop of (b) for algorithm development and omit the outermost 

forall loop. 

2.3 Nested Loops and Vector Spaces 

4 
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We start developing algorithms by matching a nested loop structure with a map­

ping from and to vector spaces. 

In a nested loop of depth n, an iteration space is defined on an n-dimensional 

space, where its axes are defined by th~ loop variables of the nested loop and its 

boundaries are defined by the loop bounds of the loop variables. A d-dimensional 

array can be considered as a hyper-cube in a d-dimensional space, where its axes are 

named x
1

, •.. , xd. We will follow the same naming convention throughout this thesis. 

For example, in Figure 6, the iteration space is defined on a 3-dimensional space with 

axes i
1

, i
2

, and i
3

, and the array X is defined on a 2-dimensional space with axes 

x
1 

and x
2

. In the figure, it is assumed that the array X is declared as X(0:8,0:10). 

Therefore, a nested loop can be regarded as a mapping from a domain in an n­

dimensional space to a range in ad-dimensional space. In particular, we regard the 

spaces as the modules zn and zd. The domain is the iteration space of the nested 

loop, and the bounds of loop variables specify the boundaries of the domain. The 

range is defined by the array elements referenced by the nested loop. The mapping 

function is characterized by the index function, that is, by the coefficients of the 

iteration variables in indices of the index function for the array reference. Then the . 

mapping function of the nested loop of Figure 5 (b), H, can be represented in the 

following matrix form. 

cu 

H= 

The matrix H of the nested loop in Figure 6 is represented as 

H=(l 1 O)· 
0 1 1 
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The domain of each iteration variable is denoted by 

The domain, i.e., the iteration space D, and the range R can be represented as 

D Di x · · · x Dn c zn, 

R H(D). 

For example, the domain of the nested loop in Figure 6 is 

D =Dix D2 x D3 = [0,3] x [0,4] x [0,5]. 

The domain resembles a hyper-cube in an n-dimensional space with axes named 

by the iteration variables. Likewise, the range is a set in a d-dimensional space with 

axes xi, ... , xd. Therefore we may think of a unit vector of the kth iteration variable, 

i.e., ek, as a unit vector of the ik axis, fork= 1, .. . , n, 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

To denote values of loop variables at an instant, n-tuple values for i 1 , ... , in are 

represented by a vector 

'{ = (ii,···, in) = ( i1 . . . Zn ) T, 
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and the corresponding n-tuple of lower and upper bounds by 

r - (Z1, ... 'Zn) = ( Z1 . . . Zn ) T' 

U - ( U1, ···,Un) = ( U1 • . . Un ) T 

For example, in Figure 6, 

f=(0,0,0)= ( o o of, it=(3,4,5)= ( 3 4 5 r 
The coefficient in the rth row and cth column of H represents the amount of the 

contribution of the iteration variable ic to the rth index of the array reference. The rth 

row is the sequence of coefficients of iteration variables in the rth index of the index 

function for the array reference, and the cth column is the sequence of coefficients of 

the iteration variable ic from the indices of the index function. Let us denote the kth 

row in the row vector form: 

9k = ( Ck! · • • Ckn ) , for k = 1, ... , d. 

Each index of the index function for the array reference is denoted by 

The column vectors of Hare the images of unit vectors under mapping H, and they 

are represented as 

, fork=l, ... ,n. 
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Thus, H may be represented in the following equivalent forms: 

~ ~1 

H = = ( h1 · · · hn ) = 

The row and column vectors of the nested loop in Figure 6 are 

91 = ( 1 1 0 ) ' 92 = ( 0 1 1 ) ' 

Since ek is a unit vector of iteration variable ik, under H, hk is the image of ek, 

and (Uk - lk)hk is the image of Dk· Let the image vector of Dk= (Uk - lk)hk, be vki 

that is, 

For example, in Figure 6, 

These image vectors, v1, v2 , and V3, are illustrated in Figure 6. 

2.4 Terminology 

In this section, we define some terminology that is used very often throughout this 

thesis. 
In a nested loop with loop variables ii, . . . , in, we define a nested loop induced by 
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{iii, ... , ij,} as the nested loop whose loop variables are ij1 , ••• , ii1 , and whose other 

loop variables are set to a value within the loop bounds. For example, the following 

code is a nested loop induced by { i 1, i3} at i2 = 0 from the nested loop of Figure 6. 

for i1 = 0,3 
i2 = 0 
for i3 = 0,5 

X(i1 + i2, i2 + i3) 
endf or 

endf or 

In a nested loop with an array reference, the collection of the array elements 

referenced by the nested loop is called the footprint of the nested loop, and a sub­

footprint is a subset of a footprint. The base-element is the array element referenced 

by the nested loop at i = ~ that is, H(l1, ... , ln) is the coordinate of the base­

element. The base-space for {iii = lii, ... , ii1 = lj1 }, which is also a subfootprint, 

is defined as the array elements referenced by the nested loop induced by a set of 

loop variables { ik
1

, ••• , ik.}, when loop variables iii, ... , ij, are set to lii, . .. , ti1 , re­

spectively, within the loop bounds of those loop variables, where t + s = n and 
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The Tessellation Process 

When a d-dimensional array variable is referenced in a nested loop of depth n as in 

Figure 5, the footprint of a nested loop can be divided into (~) subfootprints. Each 

subfootprint is the footprint of a nested loop induced by a set of d loop variables, 

and the other ( n - d) loop variables are set to either the lower or upper bound of 

the loop variables. The subfootprints are mutually disjoint except at the boundaries 

which are the intersections of the adjacent subfootprints. (We use the term boundary 

in two ways: here, it represents the intersection of the adjacent subfootprints, and 

later it will be used to represent the border of the iteration space.) 

For an example of a 1-dimensional array referenced in a nested loop, refer to 

Figure 7. Since its nesting depth is 3, there are G) = 3 disjoint subfootprints. There 

are two possible ways to divide the footprint of the nested loop, as shown in (a) and 

(b) of the diagram. In (a), the interval BC is the footprint of the nested loop: the 

subinterval OA is the subfootprint for ii =0 to 5, i2 = i3 = O; OB for i2=0 to 6, 

i
1 

= i
3 

= O; and AC for i3=0 to 7, ii=5, i2=0. In (b), the interval QR, which is the 

same as BC in (a), is the footprint of the nested loop: OP is the subfootprint for 

i
3
=0 to 7, ii = i2 = O; OQ for i2=0 to 6, ii = i3 = O; and PR for ii =0 to 5, i2=0, 

i
3
=7. In both (a) and (b), the points 0, A, and Pare the boundary points. 

For an example of a 2-dimensional array referenced in a nested loop, refer to 

Figure 8. Since its nesting depth is 3, there are G) =3 disjoint subfootprints that are 

parallelograms. Here, too, there are two possible ways to divide the footprint of the 
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for ii= 0, 5 
for iz = 0,6 

for i3 = 0, 7 
X(ii - iz + iJ) 

endf or 
endf or 

endf or 

B 0 A C --+ ............................................................................... .._... 
(a) 

Q 0 P R --+ ................................................... ~ ................... .._... 
(b) 

Figure 7: Tessellation of a 1-dimensional Array 
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nested loop, as shown in (a) and (b). In (a), the parallelogram A is the subfootprint 

for ii =0 to 5, i
2
=0 to 6, i3=0; the parallelogram B for iz=O to 6, i3=0 to 7, ii =0; 

and the parallelogram C for ii=O to 5, i3=0 to 7, iz=6. In (b), the parallelogram p 

is the subfootprint for ii =0 to 5, iJ=O to 7, i2=0; the parallelogram Q for i2=0 to 6 ' 

i
3
=0 to 7, ii=5; and the parallelogram R for ii=O to 5, i2=0 to 6, i3=7. In both (a) 

and (b ), there are three boundary lines between subfootprints. 

Furthermore, there are some other important aspects in the examples offered by 

Figure 7 and 8. Using the notation defined in Chapter 2, we know of Figure 7 that 

for a 1-dimensional array, 

H = ( hi h2 h3 ) = ( 1 -1 1 ) , 

v
1 
= (u

1 
- li)h

1 
= ( 5 ) , v, = (u2 -12)"2 = ( -6 ) , V3 = (u, - l,)h3 = ( 7 ) . 

Clearly, in both (a) and (b), there are three vectors that span the whole footprint: 

namely, vi, v
2

, and v
3

• In (a), vi is OA, v2 is OB, and V3 is AC. The base-points 

of the subfootprints are H(O, 0, 0) for OA and OB, and H(5, 0, 0) for AC. In other 

words, the subfootprints OA, OB, and AC are H(Di X 12 X l3), H(li x D2 x Z3), 

and H(ui x 1
2 

x D3), respectively. Similarly, in (b), the subfootprints OP, OQ, and 

PR are H(li x [
2 

x D3), H(li x D2 X l3), and H(Di x 12 x u3), respectively. Notice 

that Di x [
2 

x [3, li x D2 x [3, ui X l2 X D3, li X 12 X D3, and Di x l2 x u3 are 
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'• ' ...... ' 'I I ·-· ... _ ..... -..... -. 
1st index 

(a) 

2nd index 
•' ...... ' ' ...... ' . '"' 

•• .P ••• : •• ', ...... ' ... ' .. 
I ' , .... _ ..... _ ..... _ ..... . 
' .R. ' ' ...... '. . ' ' ...... '-... ... . ', ...... ', .. ' 

'• • A • • • '• • : 
' ' . . . . . . . . ' ' ,, ·-· ---· ---· .,._. 

1st index 
(b) 

Figure 8: Tessellation of a 2-dimensional Array 
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1-dimensional boundaries of the iteration space, and the rank of H is 1. (Here, the 

term boundary refers to the border line of the iteration space.) In the iteration space, 

there are (D2(J-l) = 12 1-dimensional boundaries, but by choosing the appropriate 

number of 1-dimensional boundaries - in this case, (i) = 3 - the whole footprint 

can be covered by the images of the chosen boundaries. 

Similarly, in Figure 8, we have, for a 2-dimensional array, 

v
1 

= (u
1 
-1

1
)h

1 
= ( ~ ) , "2 = (u2 - li)h2 = ( : ) , v, = (ua - la)h3 = ( ~) 

In both (a) and (b), there are three vectors that span the whole footprint: namely, 
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v
1 

, v
2

, and v
3

. In (a), the parallelogram A is spanned by V1 and v2 ; the parallelogram 

B by v
2 

and v3; and the parallelogram C by v1 and v3. The base-points of the 

subfootprints spanned by two vectors are H(O, 0, 0) for the parallelograms A and B, 

and H(O, 6, 0) for the parallelogram C. In other words, the parallelograms A, B, and 

Care H(D1xD
2

x13), H(li x D2 x D3), and H(D1 x u2 x D3), respectively. Similarly, 

in diagram (b), the parallelograms P, Q, and R are H ( D1 x 12 x D3), H ( u1 x D 2 x D3), 

and H(D
1 

x D2 x u3), respectively. Again notice that D1 x D2 x 13, l1 x D2 x D3, 

Di x u
2 

x D3, D1 x 12 x D3, u1 X D2 X D3, and D1 x D2 x U3 are 2-dimensional 

boundaries of iteration space, and the rank of H is 2. (Here, the term boundary 

refers to the border plane of the iteration space.) In the iteration space, there are 

G) 2<3- 2) = 6 2-dimensional boundaries, but by appropriately choosing G) = 3 2-

dimensional boundaries, the whole footprint can be covered by the images of the 

chosen boundaries. 
The boundaries in the above two examples are called faces of the domain (iteration 

space). In this chapter, a method, called the tessellation process, is developed by 

which we can divide the range (footprint) of the nested loop given in the form of 

Figure 5 (b) into disjoint areas (subfootprints). The tessellation process is equivalent 

to the method of choosing faces, the union of whose images covers the whole footprint. 

Definition 1 Given a nested loop in the form of Figure 5 (b), let the rank of H be r . 

An r-dimensional boundary of the iteration space is called a face, and denoted by F. 

An example of a face is D1 X · · · X Dr X 17r+l X · · · X 1Jn, where 1}j = lj or Uj for 

j = r + 1, ... , n. 
The iteration space of a nested loop is defined on an integer domain, and the 

index function maps the iteration space to an integer range, since the coefficients are 

integers. For the purposes of the tessellation process we consider in this chapter, they 

are assumed to be real numbers. In the following chapters, this process will be used 
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to divide the footprint of the nested loop, and then algorithms will be developed on 

an integer domain and range. 

Since H, the matrix form of the index function for an array reference in a nested 

loop, is linear, the range of H can be represented as 

R H(D) = ( h1 . . . hn ) (D1 x . . . x Dn) 
n 

""""D ·h · ~ J J 
j=l 

n 

{ """"a ·h · I l · < a · < u ·} ~JJ J-J-J 
j=l 

n 

{""'(a ·h · + l ·h ·) I 0 < a· < u · - l ·} ~ J J J J - J - J J 
j=l 

n 

{"""'(a ·v· +l ·h ·) I 0 <a·< 1} ~JJ JJ -J-
j=l 

n 

{Laivi +H(i} I 0 ~ ai ~ l}. 
j=l 

(by using vi = ( Uj - lj )hi) 

Note, in the last expression, that the range R may be represented by a set of linear 

combinations of v1 , . . . , Vn, with the coefficients between 0 and 1, and with a displace­

ment H(i} which is the coordinate of the base-element. This representation is the 

main one used in this chapter. The term H(i}, being a constant, will be omitted for 

simplicity in the following construction. 

Definition 2 Let d vectors v1 , ... , vd be in a d-dimensional space. A cone is defined 

by 
d 

cone(v1 , ... ,vd) = {Laivi I 0 ~ ai}· 
j=l 

In the definition of cone, only d vectors are given in a d-dimensional space; in other 

words, all vectors are given in ad-dimensional half space. Therefore, we can think of a 

cone as restricted to a half space. Although a cone can be defined on any dimensional 
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spaces, in the light of the complexity of the problem in higher dimensional spaces, as 

well as our belief that the 1- and 2-dimension cases cover most examples, our present 

algorithms will only cover the range of the index functions of 1- or 2-dimensional 

spaces. 
The tessellation process provides the information about the locations of the array 

elements referenced in a nested loop. The locations are represented in terms of the 

vectors, vk = (Uk - lk)hk for k = 1, ... , n , which are characterized by the column 

vectors of the mapping matrix and the loop bounds. The following definition defines 

an ordering of those vectors in the 1- or 2-dimensional space. The ordering is used to 

represent the locations of the subfootprints. 

Definition 3 Let n non-zero vectors V1, .. • , Vn be in a d-dimensional half space, 

where vi = ( Uj - lj )hi. First, reorder V1, •.. , Vn according to the following criteria: 

for any pair of i,j E {1, ... , n}, 

1. vi precedes vi if the angle between Vi and the X1 -axis is less than the angle 

between Vj and the x1 -axis. 

2. When the angles are equal, Vi precedes Vj if llhill < llhill, where II · II is the 

Euclidean norm. 

3. When the norms are equal, Vi precedes Vj if i < j. 

Let vk
1

, ••• , vkn be a new ordering. Then, Vinside is defined for d = 1 or 2 as follows: 

• When d = 1, for any integer t E { 1, . .. , n}, define v}!:~de by 

V(kc) - Vk + ... + Vk inside - I 1-1 • 

• When d = 2, for any two integers b, t E {1, ... , n }, b < t, define v}!~i~~ by 



Chapter 3. The Tessellation Process 38 

For example, when d = 1, let the index function be 

Since the norms of the column vectors are 

vector v
2 

can move to the first place, vectors v1 and V4 to the next two places, and v3 to 

the last place. Since the norms of V1 and V4 are equal, according to the subscripts, v1 is 

placed on the second place. Now all vectors are completely reordered as ( v2 , v1, v4 , v3). 

Then 
(2) - 0 

Vinside - ' 

The vector v~t) .d is the sum of the vectors that precede Vt in the reordering 
1ns1 e · 

For example, when d = 2, let the index function be 

Then the angles between the xi-axis of the range space and vi vectors are 

The norms of the column vectors h1 and h4 are 
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The ordering should be ( v2 , v4, v1 , V3). Then 

(2,4) - 0 
vinside - ' 

(4,1) - 0 
vinside - ' 

(1,3) -
Vinside - 0, 

(2,1) -
Vinside - V4' 

(4,3) -
Vinside - V1' 

(2,3) -
Vinside - V4 + V1 · 

The vector v~~~)de is the sum of the vectors that are inside cone( vb, Vt)· 
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As we can see in the above example, the notation is a bit too complex because 

of the two level subscript indices. In order to avoid using double subscripts, all 

vectors v
1

, ... , Vn are assumed to have already been properly ordered according to 

the reordering scheme of Definition 3. 

Definition 3 uses a half space, but we may extend it to the full space as well. When 

n vectors v
1

, •. . , Vn are given in the range of ad-dimensional space, and the vectors 

are properly ordered as described in Definition 3, Vinside for d = 1 or 2 is defined as 

follows: 

• When d = 1, for any integer t E { 1, ... , n}, collect vectors that have the same 

direction as vi, and let them be Vk1 , ••• , vk.. Then Vk1 , ••• , vk. are in the same 

half space. Therefore, Definition 3 can be applied to those vectors. 

• When d = 2, for any two integers b, t E {1, ... , n }, b < t, we can divide the 

space into the two half spaces so that the two vectors Vb and Vt are in the same 

half space, and then apply Definition 3 to the vectors in that half space. 

Definition 4 Let n non-zero vectors V1, . .. , Vn be in a d-dimensional half space, 

where vi = ( Uj - li )hi. Assume that they are properly ordered as described in Defini­

tion 3. Let a vector v be a linear combination of v1, ... , Vn with coefficients in [O, l]. 

Then, Vdif 
1 

is defined for d = 1 or 2 as follows: 

• When d = 1, for any integer t E { 1, ... , n}, define the difference vector between 
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d (t) b v an vinside y 
(t) (t) 

vdiff = v - vinside· 

• When d = 2, for any two integers b, t E {1, . .. , n }, b < t , define the difference 

d (b,t) b 
vector between v an vinside Y 

(b,t) (b,t) 
vdif f = v - vinside· 

Using the above definitions, we may start building the tessellation process at last. 

Because of the different notations for the 1- and 2-dimensional cases, however, the 

tessellation process for each case will be developed separately. 

3.1 Tessellation of a 1-dimensional Array 

In this section, the tessellation process is developed for a nested loop that has a 1-

dimensional array reference in the loop body of the innermost loop. If the rank of 

the index function is 0, the index function does not include any loop variable; i.e., 

the nested loop accesses only one element of the array. In this section, therefore, it is 

assumed that the rank of the index function is 1 (the same as d). 

When n non-zero vectors, v1, ... , Vn, are given in a I-dimensional half space, then 

the I-dimensional space is divided into two disjoint cones at the boundary point 

v};~ide· For any arbitrary vector v that is a linear combination of the n vectors with 

coefficients between 0 and 1, the head of a vector v is located inside one of those two 

cones. The following theorem formalizes this concept. 

Theorem 1 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a 

1-dimensional half space, where Vj = (uj - lj)hj. Then for any vector v E R, the 

vector v can be represented as one of the following two cases: 
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1 - (n) 
· V - anVn + Vinside1 

if v~7}1 E S1 ==cone( vn) 

2 
a a f (n) S ( (n) ) 

. v = p1V1 + ... + jJn-1Vn-l1 i vdiff E 2 =cone -vinside 

Proof Note that S
1 

and S2 have a point in common, when an= 0 and [31 = ... = 
f3n-l == 1. If the boundary point is excluded, S1 and S2 may be regarded as a partition 

of a I-dimensional space. The boundary point can be handled with any set in which 

it is included. 

Case 1: When v~7}1 E S1, 

(n) (n) - h 0 < Vdiff = V - Vinside - O'.nVn, W ere - O'.n , 

(n) 
V == O'.n Vn + Vinside • 

In this representation, an E [O, 1], since otherwise v is not a member of R. 

Case 2: When v~7}1 E S2, 

(n) (n) _ a( (n) ) 
vdiff == v - vinside - jJ -vinside ' 

where f3 E [O, 1), 

( 
(n) ) (n) _ (1 a) (n) 

V == /3 -Vinside + Vinside - - JJ Vinside · 

In this representation, (1 - /3) E [O, l]. Hence the vector v may be rewritten as 

v = /31V1 + · · · + f3n-1Vn-li where /3j E [O, 1]. 

D 

For an example of the above theorem, see Figure 9. When 

V1 == OA, V2 =AB, V3 ==BC, V4 =CD 
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0 A B V c D 

Figure 9: 1-dimensional Tessellations 

are given, the head of an arbitrary linear combination of those four vectors is to be 

between points 0 and D. Let v be St:ch a linear combination, 

Then 

cone(v4) =CD, 

The location of the head of v is determined by the direction of the vector 

(4) - (4) - ( ) - ... 
vdiff - v - v ins ide - v - V1 + V2 + V3 - CV. 

In the diagram, it is inside cone( -v~~~ide)· 

Applying Theorem 1 recursively for n non-zero vectors in a 1-dimensional half 

space, we can divide a 1-dimensionalspace into n disjoint areas except at the (n -1) 

boundaries v~~~ide,. . . ,v~~;ide · Therefore, the set of linear combinations of n vectors 

with coefficients between 0 and 1 can be divided into n disjoint subsets. 

Theorem 2 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a 

1-dimensional half space, where Vj = (uj-lj)hj. For anyt E {l , ... ,n}, let 
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be the area spanned by Vt with coefficients in [0,1} at the point vf!~ide· Then 

n 

R = LJ Rt. 
t=l 

Proof To prove Rs;;;- U~=l Rt, it must be shown that 

n 

\-I "'""' { } [ 1 h h - (t) vV=L...JajVjER, 3tE l, ... ,n ,atE 0,1 suet at v-atvt+vinside· 
j=l 

Initially v = 'L'J=1 ajVj. From Theorem 1, the vector v can be represented as one of 

the following two possible linear combinations: 

1 - (n) 
· V - an Vn + Vinside1 

2 /3 f3 "f (n) S - ( (n) ) · v= iv1+···+ n-1Vn-l1 l Vdif/E 2-cone-vinside 

where aj,/3j E fO, l]. 

If v is as in case 1, then v E Rn-

If v is as in case 2, the vector v is represented with ( n - 1) vectors. The number of 

vectors is decreased by one. We can repeat this process until for some value oft, the 

represented satisfies case l; i.e., 

- (t) v - atVt + vinside E Rt. 

Eventually, this process terminates with t = 1. Therefore, we can find t E {l, ... , n} 

such that v E Rt. 

To prove R 2 U~=l Rt, let 

t-l 

v =at Vt+ vf:/side = <ltVt + L Vj E Rt. 
j=l 
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c 0 A B 

v 

Figure 10: Dividing 1-dimensional Space into Half Spaces 

Setting 

ai = · · · = at-l = 1, at = ati at+l = · · · =an = 0, 

we can say that v E R. 

0 

So far, we have proved the case when all vectors are in one half space. The next 

theorem generalizes the above theorem to the full space. 

Theorem 3 Let n non-zero vectors vi, ... , vn, which are properly ordered, be in a 

1-dimensional space, where Vj = (uj - lj)hj. Then 

n 

R=LJRt. 
t=l 

Proof For an arbitrary vector v = Ej=1 aivi E R, there exists a half space such 

that all vectors in the half space are in the direction of the vector v and all vectors in 

the other half space are in the opposite direction to the vector v. Then the vector v 

can be represented with the vectors in the half space containing the vector v. Finally, 

by applying Theorem 2, the proof is complete. 

0 

For example, refer to Figure 10. The point 0 is the origin, v1 = OA, V2 = AB, 
V3 = OC, and v = OV. Then the vectors v1 and v2 are in the direction of the 

vector v, but the vector v3 is in the opposite direction. Therefore, the vector v can 

be represented with a linear combination of v1 and v2 , which are in the half space to 

the right of the point 0. 

From the process of the construction of the Ri, it is clearly seen that the Rt are 
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mutually disjoint except at the boundary points when the coefficient O'.t is 0 or 1. 

It may also be noted in the above theorem that any linear combination of vectors 

v1 , ... , Vn falls into one of Rt. This implies that the images of (~) faces cover the 

whole image of the domain under H, since Vk = ( uk - lk)hk is an image of (Uk - lk) ek 

under H. When all vectors v1, ... , Vn are properly ordered as described in Definition 

3, the faces are 

'T/1 X • • • X 'T/k-1 X Dk X T/k+l X • • · X 'Tin, for k = 1, ... , n 

{ 

U· 
where T/j = 

1 

l · J 

·f · t f (k) 1 Vj IS par 0 Vinside 

otherwise 

The images of the faces, H( ry1 x ... x 'T/k-l x Dk x T/k+l x ... x 'Tin) = Rk, fork = 1, ... , n, 

are mutually disjoint except at the boundaries. The images of the faces are called 

tessellations for the 1-dimensional space, and the process of constructing tessellations 

is the tessellation process. 

As a final example with the case of a 1-dimensional array, consider the nested loop 

of Figure 7. From the code, 

According to the reordering scheme described in Definition 3, the vectors should be 

reordered as 

Since vi and v3 have the same direction, v 1 and v3 are in the same half space, but v 2 
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is in the other half space. From the reordering, 

(1) - 0 (3) 
Vinside - ' Vinside = V1' 

(2) 
vinside = 0, 

and the faces for tessellations are 

So the figure of the tessellations is like Figure 7 (a). 

With the tessellation process, we can locate all the array elements referenced in a 

nested loop using the concept of vr~side . 

3. 2 Tessellation of a 2-dimensional Array 

In this section, the tessellation algorithm is developed for a nested loop that has a 

2-dimensional array reference in the loop body of the innermost loop. If the rank of 

the index function is 0, the index function does not include any loop variables; i.e., 

the nested loop accesses only one element of the array. If the rank is 1, the problem 

may be reduced to the I-dimensional case. In this section, therefore, it is assumed 

that the rank of the index function is same as d = 2. 

When n non-zero vectors, v1 , ... , vn, are given in a 2-dimensional half space, the 

2-dimensional space can be divided into three disjoint cones, except at the boundaries 

of v1, Vn, and -v}~~~~e, at the head of v}~~~~e. For any arbitrary vector v that is a linear 

combination of the n vectors with coefficients between 0 and 1, the head of a vector 

v is located inside one of those three cones. The following theorem formalizes this 

concept. 

Theorem 4 Let n non-zero vectors v1 , ... , vn, which are properly ordered, be in a 

2-dimensional half space, where vi = ( Uj - li )hi. Then for any vector v E R, the 
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vector v can be represented as one of the following three cases: 

J (1,n) S ( ) i vdiff E 1 =cone v1 , Vn 

J (1,n) S _ ( (l,n) ) 
i vdiff E 2 - cone V1, -vinside 

3 •J (1,n) S _ ( (1,n) ) . v = /2V2 + ... + /nVn, 0 vdiff E 3 - cone Vn, -vinside 

Proof Note that each pair of S1, S2 , and S3 has a vector in common. If the boundary 

vectors are excluded, S1 , S2 , and S3 may be regarded as a partition of a 2-dimensional 

space. The boundary vectors can be handled with any set in which they are included. 

C 1 Wh (1,n) S 
ase : en vdiff E 1, 

In this representation, a 1, an E [O, 1]; otherwise, v is not a member of R. 

C 2 Wh (1 ,n) S 
ase : en vdiff E 2, 

(1,n) _ (1,n) _ (J (J( (1,n) ) h 0 < (J (J 
Vdiff - V - Vinside - lVl + -Vinside ' W ere - 1, ' 

_ (J (J( (1,n) ) (l,n) _ (J (l (J) (1,n) 
V - 1 V1 + -Vinside + Vinside - 1 V1 + - Vinside· 

In this representation, {31 , (1 - (J) E [O, l] . Hence the vector v can be rewritten as 

v = f31v1 + · · · + f3n-1Vn-1, where (Jj E [O, 1], for j = 1, ... , n - 1. 

Case 3: When v~~if E S3, the vector v can be 

v = /2V2 + · · · + /nVn, where /j E [O, 1], for j = 2, ... , n. 



Chapter 3. The Tessellation Process 48 

cone ( V1, V4) 

Figure 11 : 2-dirnensional Tessellations 

0 

For an example of the above theorem, see Figure 11. When v1, v2 , v3 , and V4 are 

given as in the diagram, the head of an arbitrary linear combination of those four 

vectors is to be inside the convex area. Let v be such a linear combination, 

Then 

( 
( 1,1) ' 

cone V1' -vins ide ) 

cone(TA, TB), 

cone(TO, TB), 
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( 
(1,4) ) 

cone V4, -Vinside cone(TO, TA). 

The location of the head of v is determined by the direction of the vector 

(1,4) - (1,4) - ( ) Vdiff - V-Vinside - V- V2 +v3 · 

In the diagram, it is inside cone(v4, -(v2 + v3)), that is, cone(v4, -v~!~~~e)· 

Applying Theorem 4 recursively for n non-zero vectors in a 2-dimensional half 

space, we can divide a 2-dimensional space into (~) disjoint areas, except at the 

boundary vectors, at the points v~~~]de for 1 ~ b < t ~ n. Therefore, the set of linear 

combinations of n vectors with coefficients between 0 and 1 can be divided into (~) 

disjoint subsets. 

Theorem 5 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a 

2-dimensional half space, where vi = ( Uj - li )hi. For any b, t E {1, .. . , n} such that 

b < t, let 

be the area spanned by vb and Vt with coefficients in {0,1] at the point v~~~]de· Then 

n 

R = LJ Rb,t· 
b<t 

Proof To prove R ~ Ui:<t Rb,ti it must be shown that 

n 

\:fv = Laivi ER, 3b,t E {l, ... ,n},ab,at E [0,lj 
j=l 

Such that - + + (b,t) V - abVb atVt Vinside· 

Initially it is clear that v is inside cone( v1, Vn) because v is a linear combination of 

vi, ... , Vn and v2, ... , Vn-1 are inside cone(v1, vn)· From Theorem 4, the vector v can 
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be represented as one of the following three possible linear combinations: 

"f (1,n) S ( ) 1 vdiff E 1 =cone V1, Vn 

"f (1,n) S _ ( _ (1,n) ) 
1 vdiff E 2 - cone V1, vinside 

3 1
.f (1,n) S _ ( (1,n) ) 

. v = /2V2 + ... + /nVn, vdiff E 3 - cone Vn, -vinside 

where O'.k, /Jki /k E [O, 1]. 

If v is as in case 1, then v E R1,n· 

If v is as in case 2 or 3, the vector v is represented with ( n - 1) vectors. The number 

of vectors decreases by one. We can repeat this process until for some pair of (b, t), 

the representation falls into case 1; i.e., 

Eventually, this process terminates with t - b = 1. Therefore, we can find band t in 

{ 1, ... , n} such that v E Rb,t. 

To prove R ~ Ui:<t Rb,ti let 

Setting 

we can say that v E R. 

0 

u-1 

v = O'.bVb + O'.tVt + L Vj E Rb,t· 
j=l+l 

So far, we have proved the case when all vectors are in one half space. Just as 

Theorem 2 has been extended to Theorem 3 for a I-dimensional space, Theorem 5 
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Figure 12: Dividing 2-dimensional Space into Half Spaces 

for a 2-dimensional half space may be e:ctended to the full space. The process is so 

simple that it need not be repeated here, but an example will be given to show how 

the extended theorem might work for a 2-dimensional space. In Figure 12, any vector 

inside the cone( v1 , v2 ), e.g. Va, can be represented as a linear combination of v1 and 

V2 that are in a half space divided by line H1 . Similarly, vb inside the cone( v2, v3) (Ve 

inside cone( V3, v1)) can be represented as a linear combination of v 2 and v 3 ( V3 and 

v1) that are in a half space divided by li:ie H2 (H3.) 

From the process of the construction of Rb,t, it is clearly seen that Rb,t are mutually 

disjoint except at the boundary vectors when coefficient ab or at is 0 or 1. In addition, 

any linear combination of vectors v1, ... , Vn falls into one of Rb,t. This implies that 

the images of (;) faces cover the whole image of the domain under H, since vk = 
( uk - lk )hk is an image of ( uk - lk )ek under H. When all vectors v1, ..• , Vn are properly 

ordered as described in Definition 3, the faces are 

'T/1 X · · • X 'T/b-l X Db X T/b+l X · · · X 'T/t - 1 X D 1 X T/t+l X · · · X rJn, for 1 ~ b < t ~ n 
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{ 

U· 
where T}j = 1 

lj 

if Vj E cone( vb, Vt) 

otherwise 

52 

The images of faces, H( T}1 x · · · x T}b-1 x Db x TJb+l x · · · X TJt-1 X Dt X TJt+I X • • · X 1Jn) = Rb,t, 

for b < t are mutually disjoint except at the boundaries. The images of faces are called 

tessellations for a 2-dimensional space, and the process of constructing tessellations 

is the tessellation process. 

As a final example with the case of a 2-dimensional array, consider the nested loop 

of Figure 8. From the code, 

According to the reordering scheme described in Definition 3, the vectors should be 

reordered as 

In this example code, since all vectors are in the same half space, the theorems for 

half space can be applied. 

(1,2) - (2,3) (1,3) -
Vinside - 0, Vinside = 0, Vinside - V2, 

and the faces for tessellations are 

So the figure of the tessellations looks like Figure 8 (a). 



Chapter 3. The Tessellation Process 53 

With the tessellation process, we can locate all the array elements referenced in a 

nested loop using the concept of v~~·:ide· 
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Contiguity 

In parallel computer systems, processors that run parallel processes interact with each 

other through shared memory or by passing messages via the network that connects 

them. Since each processor has the ability to run a process while other processors are 

concurrently running other processes, tlte sharing of the data becomes inevitable. If 

the system provides shared memory, then the data to be shared are allocated there 

and then fetched from there by all processors. The data thus fetched move through 

the switching network or data bus. If bere is no shared memory, then the data are 

usually allocated on each processor's local memory. 

Since the capacities of the switching network and data bus bandwidth are lim­

ited, both of these system components may not function well when the data traffic 

approaches their capacity limits. Heavy traffic between shared memory and proces­

sors or between processors may cause the data transfer to be delayed. To reduce 

the resulting performance degradation, several remedies have been suggested. One of 

them is to allocate data to the local mer.10ries of those processors that are most likely 

to access the data. With this method , however, the task of data allocation places a 

heavy burden on the programmer, malling parallel programming difficult. Another 

method is to develop a compiler capable of transforming nested loops so as to reduce 

remote data accesses and increase local data accesses. This method alleviates the 

burden of data allocation, and developi r.g it is one of the main concerns of this thesis. 

Most scientific programs handle arrays of large size in nested loops, which are 

54 



Chapter 4. Contiguity 

for io = 1, 10 
for i1 = 0, 6 

for i 2 = 0, 8 
A= X(io, i1, i2) 

endf or 
endf or 

endf orall 
(a) Given code 

forall io = 1, 10 
for i 1 = 0, 6 

for i 2 = 0,8 
A= X(io, i1, i2) 

endf or 
endf or 

endforall 
(b) Parallel code 

Figure 13: Parallelization 
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usually shared. Once dependence analysis determines that a nested loop is paral­

lelizable, then the nested loop will result in a parallelized form as in Figure 13 (a) 

and (b ). In the figure, there are ten parallel processes. Those parallel processes are 

assigned to processors and run concurrently. Because all processors frequently need 

to access the data in the shared array X, the required data must be transferred from 

either the shared or distributed memories through the network or the data bus. If a 

data element is referenced several times by one processor, it may be efficient to keep 

that element in local memory. Even if each data element is accessed only once, if a 

processor accesses all data in a block (contiguous area), we may be able to utilize a 

fast block copy to take them to local memory before they are used for actual compu­

tation. Block copy, a feature found in many parallel computer systems, is a method 

of transferring data from one contiguous block in memory to another at high speed. 

In this chapter, we develop an algorithm in order to decide whether the data 

accessed in a nested loop form contiguous blocks. Without loss of generality, it is 

assumed throughout this thesis that arrays are allocated in row major order. 

4.1 q-contiguity 

In this section, we introduce q-contiguity to help determine whether all the referenced 

array elements form contiguous blocks. In order for the concept to be applied to any 
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array allocation scheme, whether row major or column major, q is prefixed. For 

example, Figure I4 (a) is I-contiguous and 2-contiguous; (b) is 2-contiguous but 

not I-contiguous. In (b), the referenced elements on a row are contiguous in the 

memory with the row major allocation scheme, but not contiguous with the column 

major scheme. For a language whose array allocation scheme is row major, like C, 

if the referenced elements satisfy the condition for d-contiguity (recall that d is the 

dimension of the array referenced in a nested loop), then they form contiguous blocks 

in memory. Conversely, if the array allocation scheme is column major, like Fortran, 

then the condition for I-contiguity should be satisfied for contiguous blocks. 

Definition 5 In the nested loop of Figure 5, let I s; q s; d and 

is a d-tuple of integers with an undefined value at position q where 

n 

where 9k(0 = L Ckjij. 
j=l 

S ili = {!I 9k(0 = rk, fork= I, ... , d, k # q}, (I) 

(2) 

Then the footprint is said to be q-contiguous, if 
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for ii = 0, 6 
for i 2 = 0, 5 

X( i2, ii + i2) 
endf or 

endf or 

2nd index 

_ _. _ _._ _.__. _ _. _ _.__._ _~_ -~ .. -i-- ~- -­
__ t _~_l_l_l_+· -~-l .... L ... L .. J ...... 

, 1 r T "'T • T .. , 
I f I I I I I I I I I 

--~·-:·-t-·•-................. : ·-~---
--~- -i--i--+-•-+-... +-•-+-i---
--[--f ·-1-·+-f-t·t·t-f-t·t--

1st index 

(a) !-contiguous and 2-contiguous 

for ii = 0, 6 
for i 2 = 0, 5 

X(2i2, ii + i2) 
endf or 

endf or 

2nd index 
f I I I I I I I I I I 
I I I I I I I I I I I ••r .... ., .... ., .. ·-r••r• .. ., · .. ., .... ..,.. ··r-• ., .... ., .. •"' 

I : : : : : : : : : : 

. .; . ..,..'". ~ . ., . ..,. .t-·;·-~ --:·· ~- - · 
I I I I I I I I I f I 

...... - ........ ,,_ ........................ .1 ......... --" .......... .1 .. .. .. 
I I I I I I t I I I I 

--~·++·+·+++-+·+·! ·+--
• I I I I I I I I I I • • r••• .... ., .... -r --r .... ., .. • ., .... .,... .... r • .. ,. .... ., .... .. 

--~ --f--~ -+-~-+-~-+-~--f- -~- .. .. 
I I I I I I I I t I I 

--~--!- -~---:-- .. ~--:- -~··-:- --~- -:- -~---
--~--i--i--+-•-+-... +-•-+-i---

t I I I I I I I I I I 

.... ~ --~ ..... ~- .. -;.. --~- -:- -~--..:..- -~ .... ~--~- --
--~·-f · -~--+-~-+-~-·-~-+-~--

: : : : : : : : : ! : 

1st index 

(b) Not !-contiguous, but 2-contiguous 

Figure 14: q-contiguous Footprints 
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In this chapter, algorithms will be presented that determine if the footprint of an 

array by a nested loop given in the form of Figure 5 is q-contiguous. The results can 

be applied for any arbitrary value of q, 1 ~ q ~ d. Here, the algorithms are developed 

for q = d because the row major allocation scheme is assumed. Relevant algorithms 

for other values of q can be easily obtained, based on the algorithms of the case q = d. 

4.2 Contiguity When Nesting Depth is Equal to 

Array Dimension 

Let's consider the simplest case where the nesting depth and the dimension of the 

array variable are the same, i.e., n = d, and the mapping matrix, H, for the index 
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function is non-singular. If it is singular, either the case can be reduced to the 

lower dimensional case when some indices of the index function are constant, or 

the footprint is not contiguous because the simultaneous linear equation (3) does not 

have a solution. These possibilities will be discussed in detail for 1- and 2-dimensional 

arrays in the appropriate sections. 

In a nested loop of depth d with a d-dimensional array reference whose index 

function is 

we will develop the condition for the footprint to be d-contiguous. The mapping 

function , H , is 

H= 

The following theorem states the necessary and sufficient condition for the footprint 

to be d-contiguous. 

Theorem 6 In a nested loop of depth d with ad-dimensional array reference, let the 

mapping function, H , be non-singular. Then the footprint is d-contiguous if and only 

if 

where 

Mdk 
:::; Uk - lk are integers, fork = 1, ... , d, 

M 

M = det(H), !V1dk = det(Hdk), 

Cu C1,k-l C1,k+i C1d 

.Hdk = 

Cd-1,1 cd-l,k- 1 Cd-l,k+l Cd-l,d 

(3) 

Proof Suppose that the footprint is d-coritiguous. Then there exist two different 
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vectors of loop variables, i-=/= P, so that the two coordinates 

d d d d 

c~= C1jij, .. . 'L Cdjij) and (L c1/j, ... 'L Cdjij) 
j=l j=l j=l j=l 

are adjacent along the direction of the xd-axis in the range; that is, 

d d d d 

(L c 1iij, ... , L cdiii) - (L c1ij, ... , L Cdjij) = (0, ... , 0, ±1), 
j=l j=l j=l j==l 

d d I 

(L c 1j(ii - ij), .. . , L cc1;;(ij - ij)) = (0, ... , 0, ±1) 
j=l j=l 

has a solution. For simplicity, put f = i - P. Then the problem becomes equivalent 

to the following simultaneous systems of llnear equations: 

L-1=l cd-1j lj 0 

'£1=1 Cdj f j ±1 

Since H is assumed non-singular, according to Cramer's rule, 

I 
. ., ±(-l)d-kMdk 

k = zk - zk = Jvl fork= 1, ... , d. 

Since ik and i~ are between lk and uk, and integers, 

I

Mdkl M :S Uk - lk are integers, fork= 1, . .. , d. 

Conversely, suppose condition (3) is true. For any Rd= (r1, ... ,rd-i,*), we can 

compute md and Md from Equation (2). Let md::; rd::; Md. If an element with the 
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coordinate (r1, ... , rd-I, rd) is in the footprint, the coordinate of the base-element, 

H(i), can be obtained by subtracting some displacement 

d d 

(L C1jtj, ... 'I: CdjtJ, where 0 ~ f ~ u - r 
j=l j=l 

from the coordinate 

Note that the above subtraction tends to move the coordinate (r1, ... , rd-1, rd) toward 

the coordinate of the base-element, because 0 ~ i'. Therefore, 

d d d d 
(r1, ... , rd-1, rd) - (L C1jtj, ... , L cditJ = (L C1jlj, ... , L cdili) 

j=l j=l j=l j=l 

d d 

(r1, ... , rd-1, rd)= (L C1j(ti + lj), ... , L Cdj(ti + lj)) 
j=l j=l 

should have a solution such that 0 ~ f ~ u - [ We get the following systems of 

equations: 

Solving the equations yields: 

1 

M 

Since rk = r:,j=1 Ckjij, for k = 1, ... , d - 1, if i E S Rd' the above equation can be 
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expanded as follows: 

From the assumption, I ~k I are integers, fork= 1, ... , d. So tk + lk are integers. As 

the difference between rd and gd(D increases by 1, the value of tk + lk changes by the 

amount of I ~k I· Let us assume that 

7 
_ ( "m ·m) 

Zm - il ' ... 'id ' 

or 

(_j 
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for ii = 0, 8 
for i2 = 0, 7 

X(i2,ii +i2) 
endf or 

endf or 

2nd index 

-~-~-~-~-~-~-~-~-~-~-~-+-~-~-~--
-+-~-~-~-~-~-~-~-+-+-+-+-+-+-+--
-+-+-~-~-·-·-~-~-~-~-~-+-+-+-+--
-+-+-+-~-~-~-~-~-~-~-~-~-+-+-+-
-+-+-+-+-~-~-+-+-+-+-+-+-+-+-+-
-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-+-+-+-+-t-t-+-+-+-+-+-t-+-+-+--

1st index 

(a) 

for i 1 = 0,4 
for i 2 = 0, 7 

X(i2,2ii +i2) 
endf or 

endf or 

2nd index 

-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--
-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-~-~-~-~-~-~-~-~-~-~-~-~ -~-~-~--
-~-~-~-~-~-~-~ -~-~-~-~-~-~-~-~--
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--
·t·t·t·t·t·t·t·t·t·t·t·t·t·t·t·· 

I I I I I I I I I I I I I I I 

1st index 

(b) 

Figure 15: 2-contiguity When Nesting Depth is Equal to Array Dimension 
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from ik to i t1 by the step ( -1 )k+d ~k. Therefore, the value of tk + lk is bounded by 

·m d ·M · ik an ik ; i.e., 

Since lk :S ik, it1 :S uki tk is positive and less than Uk - lk. So the footprint is d­

contiguous. 

D 

For example, when d = 1, the index function is (cuii). The condition that the 

footprint is 1-contiguous is 

Mu I = 12-1 :Sui - li is an integer. 
M cu 

So if icu I = 1 and 1 :S ui - li, the footprint is 1-contiguous. 

When d = 2, the index function is ( c11 ii + c12i2, c2i ii + c22i2). The condition that 
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the footprint is 2-contiguous is 

and 

For example, refer to the two nested loops in Figure 15. In (a), the array index 

function is ( i 2 , i1 + i 2). From the coefficients of the loop variables, 

The above two values are integers, so the footprint is 2-contiguous, as we can see in 

the illustration. 

In (b ), the array index function is ( i2 , 2i1 + i 2). From the coefficients of the loop 

variables, 

I 
C12 I 1 

Cu C22 - C12C21 = 2' 
Since one of the above values is not integer, the footprint is not 2-contiguous, as 

illustrated in the figure. 

Whereas most theorems in this thesis are restricted to the 1- and 2-dimensional 

arrays, Theorem 6 is applied to an array of any dimension. 

4.3 Contiguity When Nesting Depth is Greater 

than Array Dimension 

We need to generalize Theorem 6 for the d-contiguity of the footprint when the nesting 

depth is greater than the array dimension. When n > d, the footprint of a nested 
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loop is the area swept by the footprint of the nested loop induced by a set of ( n - 1) 

loop variables, as the other loop variable changes the value from its lower bound to 

the upper bound. The following theorem formalizes this property. 

Theorem 7 In a nested loop of depth n with ad-dimensional array reference, where 

n > d, if the footprint of a nested loop is d-contiguous, then there exists a nested loop, 

induced by a set of ( n - 1) loop variables, whose footprint is d-contiguous. 

Proof There are (n~i) choices to select (n - 1) loop variables from n loop vari­

ables. Suppose that the footprint of the nested loop is d-contiguous and none of the 

footprints of the nested loops induced by any set of ( n - 1) loop variables is not 

d-contiguous. For a nested loop induced by {ii, ... , in-i}, let the submatrix of H be 

C = ( hi · · · hn-1 ) · 

For any Rn (r1, ... ,rn-i,*), we can compute mn and Mn from Equation (2). 

Let mn ~ rn ~ Mn. Because the footprint of the nested loop is d-contiguous, 

X(ri, ... , rn_1 , rn) is one element of the footprint. For some tn E [Zn, un], the co­

ordinate 

is in the base-space for {in = ln}. (Note that the base-space for {in = ln} is the 

footprint of the nested loop induced by {ii, ... , in-i}.) But since the base-space is 

assumed not to bed-contiguous, the point X(r) can not be a referenced point, which 

is a contradiction. Therefore, at least one set of ( n - 1) loop variables should induce 

a nested loop whose footprint is d-contiguous. 

0 
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for i 1 =0,5 
for i2 = 0, 6 

for i3 = 0, 7 
X(i1 + i3, i2 + 2i3) 

endf or 
endfor 

endf or 

2nd index 

• • • • • • • • • •tr • • ! • • • • 
• • • •ao ! • • • • • • 
• • • • • !qo • • • • • • • 

-·-·-·-·-·-· . ·~ ..... 
• • • • • • • • •xo • • • 

1st index 

• • • • • • • • • • • 
• • • • • • • • • 

• • • • • • • 

Figure 16: 2-contiguity When Nesting Depth is Greater than Array Dimension 
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For example, in Figure 16, the index function in matrix form of the nested loop is 

As we can see in the illustration, the footprint of the nested loop is 2-contiguous. 

There are three nested loops induced by {i1,i2}, {i2,i3}, and {i3,ii}. The footprint 

of the nested loop induced by { i1, i2} or { i2, i3} is 2-contiguous, but the footprint of 

the nested loop induced by { i3, i1} is not. In the illustration, the element x is not in 

the base-space for { i3 = 0}. By subtracting t 3 ( 1, 2) from the coordinate of x, we can 

get the element p when t3 = 1, q when t3 = 2, a when t3 = 3, and b when t3 = 4. 

The points p and q are not in the base-space for { i3 = 0}, but a and b are in that 

base-space. 

Theorem 7 can be applied recursively by reducing the value of the nesting depth 

by 1 until it reaches d. When the nesting depth is reduced to d, then we can apply 

Theorem 6 to determine the d-contiguity of the footprint. 

In the following sections, we will develop concrete conditions for the footprint to 

be d-contiguous when d = 1 and 2. 
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4.4 Contiguity of I-dimensional Array 

4.4.1 Contiguity When Nesting Depth is 2 

To develop the condition for 1-contiguity when the array dimension is 1 and the nest­

ing depth is 2 in this chapter, it is necessary to define the term extended tessellation 

for a 1-dimensional space. For each tessellation, an extended tessellation can be de­

fined as follows. The extended tessellation of the tessellation OA in Figure 17 (a) is 

the segment PQ, where P is the next point on the left of 0, and Q is the next point 

on the right of A. 

When d = 1 and n = 2, the index function of the nested loop, in matrix form, is 

H = ( 9i ) = ( hi h2 ) = ( Cn Ci2 ) · 

If rank(H) = 0, all coefficients are zero; i.e., there is only one array element 

referenced by the nested loop. We assume rank(H) = 1 if d = 1. 

From Theorem 7, there should exist at least one loop induced by one loop variable 

whose footprint is 1-contiguous. In this section, we will deduce the condition for the 

footprint of a nested loop to be 1-contiguous, provided that the footprint of a nested 

loop induced by a loop variables ii is I-contiguous. 

Figure 17 (a) shows the footprint of the loop induced by {ii} at i2 = l2, i.e., the 

base-space for { i 2 = l2}. First, let us assume c11 = 1. Then, the thick solid line 

segment 0 A is the base-space for { i 2 = l2 }, and is assumed to be 1-contiguous. Let 

us also assume that the point 0 is the base-element and its coordinate is H(l1, Z2), 

which is the minimum index value, and the coordinate of A is H( ui, l2), which is 

the maximum index value. The points P and Q are H(li, l2) - 1 and H( ui, l2) + 1, 

respectively. The footprint of the loop induced by {ii} at some value i 2 E [l2, u2] is 

the footprint to which the base-space, segment 0 A, is moved by the displacement 
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0 A 

p Q 
(a) Ba8e-Space 

0 A B -o----·-------
p Q 

(b) A Tessellation 

p 0 Q 

p n-1 On-2 On-1 

( c) Overlap of Extended Tessellations 

Figure I 7: I-contiguity in a I-dimensional Space 

c12i2 and it is I-contiguous. As the value i2 grows, the footprint is thus moved farther 

from the base-space for { i2 = l2}. In order for the footprint of the given nested loop 

to be I-contiguous, either the coordinate H(l1,l2 +I) or H(u1,l2 +I) must be in 

the extended tessellation, i.e., between P and Q inclusively. So the condition for the 

footprint to be I-contiguous is · 

{ 
H(l1, l2) - I ~ H(l1, l2 +I)~ H(u1, l2) +I, or 

H(l1,l2)- I~ H(u1,l2 +I)~ H(u1,l2) + 1. 

Using the coefficients, we get the following condition: 

{ 

cul1 + C12l2 - I ~ C11l1 + C12(l2 +I)~ C11U1 + C12l2 +I, 

c11l1 + C12l2 - I ~ Cu U1 + C12(l2 +I) ~ Cu U1 + C12l2 + 1. 

{ 

-I~ c12 ~I+ cu(u1 - l1), 

-I-c11(u1 -l1) ~ c12 ~ 1. 

or 

(4) 

or 
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for ii= 0,3 
for i2=0,2 

X(ii + 4i2) 
endf or 

endf or 

0 D D 0 8 I I I I I I I .. 

(a) 

for ii= 0,3 
for i 2 =0,2 

X(i1 + 5i2) 
endf or 

endf or 

0 D Cl 0 a I I I I I I a ... 

(b) 

Figure 18: 1-contiguity of 1-dim Array When Nesting Depth is 2 

Finally, we get the condition for the footprint to be 1-cori.tiguous 

Similarly, if c11 = -1, the condition for the footprint to be 1-contiguous is 

{ 
H(u1,l2) -1~H(l1,l2+1) ~ H(l1,l2) + 1, or 

H(u1,l2) -1~H(ui,l2+1) ~ H(l1,l2) + 1. 

Here, the corresponding condition to (5) is 
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(5) 

(6) 

(7) 

Consequently, from the two conditions (5) and (7), when d = 1, n = d + 1, and 

I c11 I = 1, the con di ti on for the footprint to be 1-contiguous is 

(8) 

For example, in Figure 18, the set of points marked with o is the base-space for 

{ i 2 = O} and is 1-contiguous. The nested loop in (a) satisfies condition (8); 
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So the footprint is !-contiguous. But the nested loop in (b) does not satisfy the 

condition; 

So the footprint is not 1-contiguous. 

4.4.2 Contiguity When Nesting Depth is Greater Than 2 

When d = 1 and n > 2, the index function of the nested loop, in matrix form, is 

From Theorem 7, if the footprint is !-contiguous, there should exist a nested 

loop induced by a set of ( n - 1) loop variables whose footprint is 1-contiguous. In 

this section, the condition for the footprint of a nested loop to be 1-contiguous is 

deduced, provided that the footprint of a nested loop induced by a set of loop variables 

{i1, ... , in-dis 1-contiguous. 

In the 1-contiguous footprint of a nested loop induced by a set of loop variables 

{ii, ... , in-1}, there exist ( n - 1) tessellations, R1, ... , Rn-I that are disjoint line 

segments except at the boundary points. In the footprint of the base-space for {in = 

ln}, the minimum and maximum values in the index occur, respectively, at 

if elk 2: 0 

if elk < 0 

When in = Zn+ 1, the coordinates H(lmo) and H(iMo) in the base-space are moved 
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to the coordinates H(im1) and H(iM1), where 

iml = Z'mo + (0, ... , 0, 1 ), iMl = iMo + (0, ... , 0, 1). 

In order that the footprint is 1-contiguous, either the coordinate H(im1) or H(iM1) 

should be inside one of the extended tessellations in the base-space. 

As for a tessellation Rki let us assume c1k > 0. Figure 17 (b) shows a tessellation 

Rk when elk > 0. The point 0 is the base-element and its coordinate is H(f). The 

coordinates of the points A and B are H(f) + v;!~ide and H(f) + v;!~ide + (Uk - lk)hk, 

respectively. Since the index function is linear, 

( 
i"\ (k) 

H l J + vinside = 

n 

v· J 

(u · - l ·)h · J J J 

L8ihi = H(b) 
j=l 

bi= J 
{ 

l · 

U· J 

·f · t t f (k) I Vj IS no erm o vinside 

"f . t f (k) 
I Vj IS erm 0 Vinside 

The condition for either the coordinate H(im1) or H(iMI) to be inside the extended 

tessellation Rk, i.e., between P and Q, is 

{ 
H(b) - 1 ~ H(imi) ~ H(b) + (uk - lk)hk + 1, 

H(b) - 1 ~ H(iM1) ~ H(b) + (uk - lk)hk + 1. 

or 
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Similarly, when c1k < 0, the condition is 

{ 
H(b) + (uk - lk)hk - I~ H(im1) ~ H(b) +I, or 

H(b) + (uk - lk)hk - I~ H(iM1) ~ H(b) + 1. 
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In summary, ifthere exists any tessellation such that either the coordinate H("!mi) 

or H(iM1) is inside the extended tessellation, the footprint is I-contiguous. As in 

Figure I 7 ( c ), either the coordinate H(im1) or H(iMi) is in any interval [Pki Qk] for 

k = I, ... , n - I. In that figure, it will be noticed that, as is characteristic of a 

I-dimensional space, the union of all extended tessellations makes one big interval 

PQ. Therefore, we can get the following simple unified condition for I-contiguous 

footprint: 

{ 
H(~mo) - I ::; H(~m1) ::; H(~Mo) + I, or 

H(imo) - I ~ H(iM1) ~ H(iMo) +I 

{ 

-I ::; H(im1) - H(imo)::; I+ (H(iMo) - H(imo)), or 

-I - (H(iMo) - H(imo)) ::; H(iM1) - H(iMo) ::; 1 

{ -I~ H(O, ... ,O,I)::; l+Ej;fjc1jj(uj-lj), or 

-I - Ej;f lciil(ui - li) ~ H(O, ... , 0, I)~ 1 

n-1 
lc1nl::; I+ L lc1jl(uj - lj)· 

j=l 

4.5 Contiguity of 2-dimensional Array 

4.5.1 Contiguity When Nesting Depth is 3 

(9) 

The extended tessellation of a 2-dimensional space can also be defined in the above 

manner. The extended tessellation of the tessellation ABCD in Figure I9 (a) is the 

parallelogram enclosed by the points P1, P2 , P3 , Q1, Q2 , and Q3 , where P1, P2 , and 
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P3 are the next points on the left of A, B and C, respectively, and Q1, Q2 , and Q3 

are the next points on the right of A, D, and C, respectively. 

When d = 2 and n = 3, the index function of the nested loop, in matrix form, is 

If rank(H) = 1, one row of the matrix H is a multiple of the other; that is, 

C1j = ka c2j or c2j = kbclj for j E { 1, 2, 3}. If ka = 0 (the first row is zero), this case is 

reduced to the case where d = 1, because only the elements on one row of the array 

are referenced. If kb= 0 (the second row is zero), only the elements on one column 

of the array are referenced. Since the row major allocation is assumed, the footprint 

can never be 2-contiguous when kb = 0. When c2i / c1i = ka or 1 /kb, then ka and kb 

are not zero, and all vectors v1, v2, and v3 are on the same straight line with the slope 

ka or 1 /kb. The footprint of this case can never be 2-contiguous, because the line is 

slanted, not horizontal. Therefore, it is assumed that rank(H) = 2 if d = 2. 

From Theorem 7, there should exist at least one nested loop induced by a set of 

two loop variables whose footprint is 2-contiguous, in order for the footprint of an 

array by nested loop of depth 3 to be 2-contiguous. In this section, such a condition 

will be deduced, provided that the footprint of a nested loop induced by { i1, i2} is 

2-contiguous. 

There is only one tessellation in the footprint of a nested loop induced by a set 

of two loop variables. In Figure 19 (a), the shaded parallelogram Tis the base-space 

for { i3 = l3} and is assumed to be 2-contiguous. In order for the footprint of the 

nested loop to be 2-contiguous, the extended parallelogram and the base-space for 

{ i3 = l3 + 1} must overlap. They may overlap in four possible ways, represented in 

the figure by T1, T2, T3, and T4 , depending on the coefficients of the loop variables 

in the index function. Combined with the 2-contiguous parallelogram, T, T1 and 
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2nd index ( x2 ) 

1st index (x1 ) 

(a) Footprint of Base-Space 

0 

• 
• 

• 

' 

' B ,-

-

(b) A Tessellation 

Figure 19: 2-contiguity in a 2-dimensional Space 
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T3 keep the property of 2-contiguity, but T2 and T4 do not. From this fact, we 

notice that if the point A or C of the base-space in the figure is moved inside of the 

extended parallelogram of T, i.e., the parallelogram P1P2P3Q3Q2Qi, the footprint is 

2-contiguous, where P1, P2, P3 , Q1, Q2 , and Q3 are one position left or right from A, 

B, C, and D accordingly. In general, the point with the minimum or maximum value 

in the first index should be moved into the inside of the extended tessellation. 

In the 2-contiguous base-space for { i3 = Z3}, the minimum and maximum values 

in the first index occur, respectively, at 

lk if C1k > 0 

imo = (v1, V2, l3), where llk = Uk if C1k < 0 

lk or Uk if C1k = 0 

Uk if C1k > 0 

iMo = (µ1, µ2, l3), where µk = lk if elk< 0 

uk or lk if elk= 0 

When i3 = l3 + 1, the coordinates H(imo) and H(iMo) on the base-space are moved 

to the coordinates H(im1) and H(iM1) respectively, where 

~l = imo + (0, ... , 0, 1 ), ~ ~ ) i Ml = i MO + ( 0, ... , 0, 1 · 

In order for the footprint to be 2-contiguous, the coordinates H(im1) or H(iM1) should 

be inside the extended tessellation of the base-space for { i3 = [3}. 

According to the directions of vectors h1 and h2 , i.e., the sign of the coefficients 

cu and C12, the base-element of the base-space can be A, B, C, or D, and we must 

consider each case. In all cases, it is assumed that the vectors Vk = (Uk - lk)hk, 

for k=l or 2, are ordered by the angles between the x1-axis and vk. This is to be 
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consistent with the assumptions of the tessellation process. 

Case 1: When c11 > 0 and c12 > 0. 

In this case, the base-element is A and v1 = AB, v2 = AD. The points A and C have 

the minimum and maximum values in the first index, respectively, at 

Here, li and bu are equivalent to imo and iMo· However, it should be noted well in 

advance that li and bu will be different from imo and iMo in the next subsection. 

From the figure, we have four equations of lines, P1P2, P2P3 , Qi Q2, and Q2Q3 as 

in the following: 

c11[x2 - (g2(8i) - 1)] = c2i[x1 - gi(li)J for line P1P2 

C12[x2 - (g2( bu) - 1 )] = C22(x1 - gi( bu)] for line P2Pa 

c11[x2 - (g2(bu) + 1)] = c2i[x1 - gi(bu)] for line Q2Q3 
(10) 

C12[x2 - (g2(8i) + 1)] = c22[x1 - gi(li)J for line QiQ2 

In order for the footprint to be 2-contiguous, H(im1) or H(iM1), which constitutes 

the minimum or maximum value in the first index in the base-space for { ia = l3 + 1}, 

should be inside the extended tessellation, where 

iml = imo + (0, 0, 1), 

From equations (10), the condition for the footprint to be 2-contiguous is 

c11[x2 - (g2(8i) - 1)] > c2i[x1 - gi(li)J, and 

C12[x2 - (g2(bu) - 1)] > C22[X1 - gi(bu)J, and 

c11[x2 - (g2(bu) + 1)] < c2i[x1 - gi(bu)], and 

(11) 

(12) 

(13) 
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where 

Solving inequality {11) for x = ( :: ) = H(imi) or H(i,,i), 

X1 - (g1(8i)) 
~o 

C21 X2 - (g2(li) - 1) 

I h1 H(z - bi) I+ cu ~ 0, where z = im1 or ;Ml· 
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(14) 

In a similar way, from inequalities (12), (13), and (14), we may derive the following 

conditions, where z = im1 or iM1, 

I hi H(z - bu) I - cu ~ o, 
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In summary, the condition for the footprint to be 2-contiguous is 

I h1 H(z - li) I+ cu ~ o, and 

I h2 H(z - bu) I+ ci2 ~ 0, and 
(15) 

I hi H(z - bu) 1- cu ~ 0, and 

I h2 H(z - li) I - ci2 ~ o 

where z = imi or iMI· 

Case 2: When c11 > 0 and c12 < 0. 

In this case, the base-element is B and vi = BC, v2 = BA. The points A and C 

have the minimum and maximum values in the first index, respectively. Therefore, 

the minimum and maximum values in the first index occur, respectively, at 

In a manner similar to case 1, we obtain a condition similar to condition (15) 

I h2 H(z - li) I+ c12 ~ o, and 

hi H(z - bu) I+ cu ~ 0, and 
(16) 

h2 H(z - bu) I - ci2 ~ 0, and 

hi H ( z - li) I - C11 ~ 0 

where z=imi or iMi· 

Case 3: When c11 < 0 and ci2 < 0. 

In this case, the base-element is C and vi = CD, v2 = CB. The points A and C 

have the minimum and maxi.mum values in the first index, respectively. Therefore, 
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the minimum and maximum values in the first index occur, respectively, at 

In a manner similar to case 1, we obtain a condition similar to condition (15) 

I hi H(z-tr) l +cu~O, and 

I h2 H(z - bu) I + c12 ~ o, and 
(17) 

I hi H(z - bu) I - cu ;::: o, and 

I h2 H(z - tr) I - c12 ;::: o 

-+ 7 -! 
where z == im1 or i Ml. 

Case 4: When cu < 0 and c12 > O. · 
In this case, the base-element is D and V1 == DA, V2 == DC. The points A and C 

have the minimum and maximum values in the first index, respectively. Therefore ' 

the minimum and maximum values in the first index occur, respectively, at 

In a manner similar to case 1, we obtain a condition similar to condition (15) 

I h2 H(z - tr) I + c12 ;::: o, and 

I hi 
H (z - bu) ·I + cu ~ o, and 

I h2 
H(z - bu) I - c12;::: o, and 

(18) 

I hi H ( z - tr) I - cu ~ o 

... ... 
where z == im1 or iM1 · 
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Case 5: When c11 = 0 and C12 > 0. 

In this case, the base-element is A and v1 = AB, v2 = AD, but AB is parallel to the 

axis x2. If A, C, B, or D is moved inside of the extended parallelogram of T, then 

the footprint is 2-contiguous. Therefore the minimum and maximum values in the 

first index are regarded as the points A and C, respectively, at 

or as the points B and D, respectively, at 

Hence, the condition of Case 1 or that of Case 4 above can be applied to this case. 

Case 6: When c11 = 0 and c12 < 0. 

In this case, the base-element is C and v1 =CD, v2 =CB, but CD is parallel to the 

axis x2. If A, C, B, or D is moved inside of the extended parallelogram of T, then 

the footprint is 2-contiguous. Therefore the minimum and maximum values in the 

first index are regarded as the points A and C, respectively, at 

or as the points B and D, respectively, at 

Hence, the condition of Case 3 or that of Case 2 above can be applied to this case. 

Case 7: When c 11 > 0 and c12 = 0. 

In this case, the base-element is A and v1 =AB, v2 =AD, but AD is parallel to the 
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axis X2. If A, C, B, or D is moved inside of the extended parallelogram of T, then 

the footprint is 2-contiguous. Therefore the minimum and maximum values in the 

first index are regarded as the points A and C, respectively, at 

or as the points B and D, respectively, at 

Hence, the condition of Case 1 or that of Case 2 above can be applied to this case. 

Case 8: When c 11 < 0 and c12 == 0. 
In this case, the base-element is C and vi ==CD, V2 ==CB, but CB is parallel to the 

axis x
2

. If A, C, B, or D is moved inside of the extended parallelogram of T, then 

the footprint is 2-contiguous. Therefore the minimum and maximum values in the 

first index are regarded as the points A and C, respectively, at 

or as the points B and D, respectively, at 

Hence, the condition of Case 3 or that of Case 4 above can be applied to . this case. 

For an example of Case J, see Figure 20. There are two nested loops, of which 

(a) is 2-contiguous, but (b) is not. Both have a nested loop induced by ( i 
1

, ;
2

} whose 

footprint is 
2
-contiguous. The base-space for { i3 ~ 0}, the set of points marked with 

0 

in the picture, has the minimum and maximum values in the first index, respectively, 
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for ii= 0,4 
for i 2 = 0,3 

for i3 =O,1 
X(ii + i2 + 3i3, i2 + 4i3) 

endf or 
endf or 

endf or 

2nd index 

0 

0 0 

0 0 0 • 

0 0 0 • • 

0 0 0 • • • 

0 0 • • • • 

0 • • • • 

• • • 
• • 

• 

1st index 

for ii == 0, 4 
for i2 == 0, 3 

for i 3 == 0, 1 
X( ii + i2 + 3i3, i2 + 5i3) 

endf or 
endfor 

endf or 

2nd index 

0 

0 0 

0 0 0 • 

0 0 0 • • 

o a o • • • 
0 0 • • • • 

0 • • • • 

• • • 
• • 

• 

1st index 

(b) 
(a) 

Figure 20: 2-contiguity of 2-dim Array When Nesting Depth is 3 

imo == ~ == (0, 0, 0) and iMo ==bu == ( 4, 3, 0). 
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The base-space for { ia = 1} has the minimum and maximum values in the first index, 

respectively, at 

im
1 

= l;,.
0 
+ (0, 0, 1) = (0, 0, 1) and iM1 = iMo + (0, 0, 1) = (4, 3, 1). 

First, we will show that the footprint of the nested loop in (a) is 2-contiguous. If we 
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apply z = imi = (0, 0, 1) to condition (15), we get the following result: 

I hi H(z - bi) I+ cu = 
1 3 

+1=5~0 
0 4 

1 h2 H(z - bu) I + ci2 == 
1 -4 

+1=6~0 
1 1 

1 hi H(z - lu) I - cu= 
1 -4 

-1=0~0 
0 1 

I h2 H ( z - ti) I - ci2 = 
1 3 

-1=0~0 
1 4 

The result satisfies condition (15) for 2-contiguity. Alternatively, we will show that 

the footprint of the nested loop in (b) is not 2-contiguous. The base-space for { ;
3 

= 1} 

has the minimum and maximum values in the first index, respectively, at 

!;,.
1 

= ?mo+ (0, 0, 1) = (0, 0, 1) and TM! = iMo + (0, 0, 1) = ( 4, 3, 1 ). 

Applying z = imi = (0, 0, 1) to condition (15), we have, 

1 hi 
H(i - bt) I +cu == 

1 3 
+1=6~0 

0 5 

1 h2 
H(z - bu) I + c12 = 

1 -4 
+ 1 =7~0 

1 2 

I hi 
H(z - bu) I - cu = 

1 -4 
-l=liO 

0 2 

1 h2 
H(z - bt) I- c12 = 

1 3 
- l=liO 

1 5 

The result does not satisfy condition (15) for 2-contiguity. If we use z = ?Mi 
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( 4, 3, 1), we have the following: 

I hi H ( i - bi) I + cu = 
1 10 

+1=9?0 
0 8 

1 hz H(z - bu) I+ Ci2 = 
1 3 

+1=3?0 
1 5 

1 hi 
H(i - bu) I - cu = 

1 3 
-1=4i0 

0 5 

I hz H(i-bi) I- ci2 = 
1 10 

-1 = -3 ~ 0 
1 8 

This result also does not satisfy condition (15) for 2-contiguity. 

4.5.2 Contiguity When Nesting Depth is Greater Than 3 

When d = 2 and n > 3, the index function of the nested loop, in matrix form, is 

From Theorem 7, if the footprint is 2-contiguous, there should exist a nested 

loop induced by a set of (n - 1) loop variables whose footprint is 2-contiguous. In 

this section, the condition for the footprint of a nested loop to be 2-contiguous is 

deduced, provided that the footprint ofa nested loop induced by a set ofloop vaxiables 

{ i1' · .. , in-d is 2-contiguous. 
In the 2-contiguous footprint of the nested loop induced by a set of loop variables 

{ i 1, ... , i. _ t), there exist ( •; 1) tessellations, Rb,t for 1 S b < t S n - 1, that are 

disjoint parallelograms except at the boundaries. In the footprint of the base-space 

for (i. = z.), the minimum and maximum values in the first index occur, respectively, 
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at 

zk if elk> 0 

Zmo =(vi,· . ·, Vn-1, Zn), where vk = Uk if elk< 0 

Zk or Uk if elk= 0 

Uk if elk> 0 

ZMo = (µ1, · · ·, µn-1, Zn), where µk = zk if elk< 0 

uk or Zk if elk= 0 

When in = Zn+ 1, the coordinates H(zmo) and H(zMo) on the base-space are moved 

to the coordinates H(zm1) and H(zM1) respectively, where 

~l = Zmo + (0, ... , 0, 1 ), 

In order for the footprint to be 2-contiguous, the coordinates H(~1) or H(zM1) should 

be inside one of the extended tessellations on the base-space. 

Let us think about a tessellation Rb,t· In a similar way to the case when d = 2 

and n = 3, we must consider this kind of tessellation according to the shape of the 

tessellation which is characterized by the sign of coefficients c1b and Cit· However, 

because the base-element is not part of a tessellation, we must handle it a little 

differently from our approach when d = 2 and n = 3. 

Case 1: When c1b > 0 and e1t > 0. 

For example, see Figure 19 (b ), which shows a tessellation Rb,t of this case. The point 

0 is the base-element and its coordinate is H(I'), where f = (l1 , ... , Zn)· The coordinate 

of the point A, which has the minimum value in the first index, is H(f) + v~!~lde' and 

the coordinate of the point C, which has the maximum value in the first index, is 
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( 
1\ (b ,t) 

H lj + vinside +Vb+ Vt . 

(
7\ (b ,t) 

H l J + vinside 

where go 

H(r (b,t) 
~) + Vinside + Vb + Vt 

n 

(b,l) 
v; : term of vin•ide 

L bjhj = H(la) 
j=l 

(81, ... , 8n) 1 

v · J 

( U · - l ·)h · J J J 

{ 

l ·r · t r (b,t) j I Vj IS no term o vinside 

·r . f (b ,t) 
Uj I Vj IS term o vinside 
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H(lu) 

where "lu go+ (0, ... , 0, ( Ub - h), 0, . . . , 0, ( Ut - Zt), 0, · · · , O) .· 

So the minimum and maximum values in the first index occur, respectively, at 

8i go and 

lu la+ (0, ... , 0, ( Ub - h), 0, ... , 0, ( Ut - lt), 0, . .. , 0) . 

The condition for either the coordinate H(zmi) or H(zM1) to be inside the extended 

tessellation of Rb,t is , from condition (15), 

I hb H(z-li) I +c1b ~ o 
I ht H(z - °lu) I+ c it ~ o 
I hb H(z - bu) I - c1b :S 0 

(19) 

I ht H ( z - 8i) I - Cit :::; 0 
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Case 2: When c1b > 0 and Cit < 0. 

In this case, the tessellation has the minimum and maximum values in the first index, 

respectively, 

( i\ (b,t) (7\ (b,t) 
H l) + vinside + Vt and H l) + vinside + Vb. 

Therefore, the minimum and maximum values in the first index occur, respectively, 

at 

bi J: + (0, ... , 0, ( Ut - lt), 0, ... , 0) and 

bu la+(0, ... ,0,(ub-h),0, ... ,0). 

The condition for either the coordinate H(im1) or H(iMi) to be inside the extended 

tessellation of Rb,t is, from condition (16), 

I ht H(z - bi) I+ cit :::; o 

I hb H ( z - bu) I + C1b ;:::: 0 

I ht H(z - bu) I - cit S 0 

I hb H(z - bi) I - c1b ;:::: o 

where z= {ml Or iMI· 

Case 3: When c1b < 0 and clt < 0. 

(20) 

In this case, the tessellation has the minimum and maximum values in the first index, 

respectively, 

H(li\ (b,t) ( 1\ (b,t) 
~) + vinside +Vb+ Vt and H l) + vinside· 

Therefore, the minimum and maximum values in the first index occur, respectively, 
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at 

bi la+ (0, ... , 0, ( Ub - h), 0, ... , 0, ( Ut - lt), 0, . . . , 0) and 

bu la. 

The condition for either the coordinate H(im1 ) or H(iM1 ) to be inside the extended 

tessellation of Rb,t is, from condition ( 17), 

I hb H(z-li) l+c1bSO 

I ht H(z-bu) l+citSO 

I hb H(z - bu) I - c1b 2: 0 

I ht H ( z - li) I - Cit 2: 0 

where z = iml or ZMl· 

Case 4: When c1b < 0 and Cit > 0. 

(21) 

In this case, the tessellation has the minimum and maximum values in the first index, 

respectively, 

(
i\ (b,t) (i\ (b,t) 

H l) + vinside +Vb and H l) + vinside +Vt· 

Therefore, the minimum and maximum values in the first index occur, respectively, 

at 

li la+(O, ... ,O,(ub-h),O, ... ,O) and 

bu la+(O, ... ,O,(ut-lt),0, ... ,0). 

The condition for either the coordinate H(im 1) or H(iMi) to be inside the extended 
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tessellation of Rb,t is, from condition (18), 

ht H ( z - ~) I + Cit ~ 0 

hb H(z - bu) I+ c1b :So 

ht H ( z - bu) I - Cit ~ 0 

I hb H ( z - ~) I - C1b :S 0 

where z = lm1 or ;Ml· 

Case 5: When cu = 0 and c12 > 0. 
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(22) 

As we saw previously when d = 2 and n = 3, the condition for Case 1 or Case 4 

above can be applied to this case. 

Case 6: When cu = 0 and c12 < 0. 

The condition for Case 3 or Case 2 above can be applied to this case. 

Case 7: When cu > 0 and c12 = 0. 

The condition for Case 1 or Case 2 above can be applied to this case. 

Case 8: When c11 < 0 and c12 = 0. 

The condition for Case 3 or Case 4 above can be applied to this case. 

In summary, if there exists any tessellation such that either the coordinate H(im1) 

or H(iM1) is inside one of the extended tessellations on the base-space for (in =Zn), 

then the footprint is 2-contiguous. 

For example, see Figure 21. The nesting depth of the nested loop is four. As 

shown in the diagram, the base-space for {i4 = O}, marked with o in the illustration, 

is 2-contiguous, and divided into three tessellations. With the terminology defined in 

Chapter 3, 
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for ii = 0, 3 <>-0--0--0-0-9 
,d"o o o o ,d',9 

for i2=0,5 ,1l 0 0 0 o_,a' 0 ? 2nd index 
for i 3 =0,4 

for i 4 =0,1 
X(i1 - i3 + i4, i2 + i3 + 8i4) 

endf or 
endf or 

,.a o o o o ,.a o o /' 

o o o o 0 o cl'• • • • • • 
o o o o 6 cs''• • • • • • • 

-0--0--0-0--c)'' • ••••••• 

• • • • • • • • • 
• • • • • • • • • 
• • • • • • • • 
• • • • • • • 

endfor • • • • • • 
endf or 1st index 

Figure 21: 2-contiguity of 2-dim Array in General Case 

R1,2 {a1v1 + a2v2 I a1,a2 E [O, l]} 

R2,3 { a2v2 + a3v3 I a2, a3 E [O, 1]} 

R1,3 { a1 V1 + a3v3 + v~!~~~e I a1, a3 E [O, 1]} 

{a1v1 + a3v3 + v2 I a1,a3 E [O, l]} 
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The base-space has the minimum and maximum values in the first index, respectively, 

at 

If the footprint of the nested loop is 2-contiguous, the point H(zm1) or H(zM1) is 

inside one of the extended tesselleations, where 

Zm1 = Zmo + (0, 0, 0, 1) = (0, 0, 4, 1), ZM1 = ZMo + (0,0,0, 1) = (3,5,0, 1). 

In the diagram, the point H(zmi) is clearly inside the extended tessellation of Ri,3· 

The tessellation is spanned by v1 and v3. Because c11 > 0 and c13 < 0, the tessellation 

falls into Case 2, and the corresponding value of ba is 
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The minimum and maximum values in the first index occur, respectively, at 

bi la+ (0, . . . , 0, ( Ut - lt), 0, . . . , 0) = (0, 5, 0, 0) + (0, 0, 4, 0) = (0, 5, 4, 0) and 

bu la+ (0, ... , 0, ( Ub - h), 0, ... , 0) = (0, 5, 0, 0) + (3, 0, 0, 0) = (3, 5, 0, 0). 

Applying z = ~1 = (0, 0, 4, 1) to condition (20), we have, 

H ( z - bi) I + Cit = 
-1 1 

I ht = -5 ~ 0 
1 3 

H(z - bu) I+ c1b = 
1 - 6 

I hb =8~0 
0 7 

H(z - bu) I - cit~ 
-1 -6 

I ht =0~0 
1 7 

H(z - bi) I - c1b = 
1 1 

I hb =2~0 
0 3 

This result satisfies condition (20) for the point H(Zmi) to be inside the extended 

tessellation R 1,3 , thus determining that the footprint is 2-contiguous. 



Chapter 5 

Localization of Contiguously Accessed 

Data 

5.1 Loop Transformations 

In the previous chapter, conditions for the footprint of a nested loop to bed-contiguous 

when d = 1 or 2 were developed. Based on those conditions, in this chapter algorithms 

are developed to decide the proper location for a block copy statement to be inserted. 

The template of a parallelized nested loop used for this section is given in Figure 22. 

The first step to check if the footprint is d-contiguous is to look into the index 

function, and search for a set of loop variables { ik
1

, ••• , ikd} with the coefficients 

satisfying the conditions described in Theorem 6. If any such set exists, we set aside 

the loop variables. (If not, the footprint is not 2-contiguous.) Next, we are to look 

for all io = lo, uo 
Ii: for i1 = l1,u1 

for in = ln, Un 

X(c11i1 + · · · + C1nin, ... , Cd1i1 + · · · + Cdnin) 

endfor 

endf or 
endf orall 

Figure 22: Parallelized Nested Loop Code 
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into the index function for a loop variable ikd+i with coefficients satisfying condition 

(9) if d = 1, or one of conditions (15), (16), (17), and (18) if d = 2. We repeat this 

process until the searching process fails or all eligible loop variables are selected. When 

the process stops, if there is no remaining loop variables unselected, the footprint is 

considered d-contiguous. If so, a block copy statement can be inserted before the loop 

statement Ii. 

Even if the footprint is not d-contiguous, we may still use block copy to localize 

data for a set of some loops, that is, when the footprint of the nested loop induced by 

a set of loop variables is d-contiguous and their loops are inside the other loops. To 

select the loop variables of the most innermost loops we can reach, we therefore need 

to select the innermost loop variable whenever possible. When the process terminates, 

we then divide the selected loop variables into two sets, 

so that G1 and G2 satisfy the following criteria: 

• ki > k1, for j E {1, ... ,s},l E {s+ 1, ... ,t}. 

• Subscripts of elements in G1 are consecutive integers, i.e. { ik1 , ••• , ik,} 

• The number of elements in G1 is maximized. 

The above criteria are required to make sure that the loop variables in G1 are from 

the innermost loops. If they are not from the innermost loops, the data cannot be 

localized by using a block copy. But, if there does exist such a set of loop variables 

to satisfy the above criteria, let G1 = { ij, ... , in}· During the execution of the nested 
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f orall io = lo, uo 
dimension Xtmp(· · ·) 

loop 
for i1 = Z1, u1 

for ij-1 = lj-1, Uj-1 

endf or 
endf orall 

block copy from X to Xtmp 
for ii = lj, Uj 

for in = Zn, Un 
Xtmp(c11i1 + · · · + C1nin, ... ,cd1i1 + · · · + Cdnin) 

endf or 

endfor 
endf or 

Figure 23: Data Localization by Block Copy 
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loop for loop variables in the set G1, the values of the loop variables i1, ... , ij-1 are 

fixed, and the referenced data are d-contiguous. Therefore, a block copy statement 

can be inserted before the loop statement Ii, as shown in Figure 23. 

5.1.1 Localization of a 1-dimensional Array 

When a 1-dimensional array is referenced in a nested loop, and G1 = {ij, ... , in}, the 

footprint of the nested loop induced by those loop variables is 1-contiguous. Since 

the array is 1-dimensional, the 1-contiguous data form a single block. To localize 

the data by block copy, the lower and upper bou~ds of the block, l and u, can be 

computed as follows: 
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where 
... 

(ii, ... , ij-i, Vj , .. . , Vn), { 1, if elk 2: O 
Zm Vk = 

Uk if elk< O 

-:' 
(ii, ... , ij-i,µj , · · ·, µn), { u, if elk 2: O 

ZM µk = 
lk if elk< O 

For example, consider Figure 24. In the first step of the process to select a loop 

variable with the coefficient of absolute value I, select i4 rather than ii because the 

loop for i4 is inside the loop for ii. In the second step, there are three possible choices 
' 

ii, i3, and is. To satisfy condition (9), choose is, i3, and ii, in that order. In the next 

step, since there are no more loop variables satisfying condition (9), stop the process. 

Because the loop variable i2 is not selected, the footprint is not I-contiguous. So far, 

the loop variables are selected in the order i4, is, i3 , and ii. According to the above 

criteria, we then divide the selected loop variables into two sets, 

The lower and upper bound of the I-contiguous block are 

[ 9i (ii, iz, U3, [4,ls) 

ii + I4i2 + (-2)2 + (I)O + (2)0 

U gl (ii, i2, [3 , U4, U5) 

i1 + I4i2 + (-2)0 + (I)2 + (2)2 

With this result , the array can be localized by inserting a block copy statement just 

after the loop statement for i2 , as shown in Figure 24 (b ). 
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forall io = 0, 9 
for i1 =0,2 

for i2=0,2 
for i 3 = 0, 2 

for i 4 = 0, 2 
for i 5 = 0, 2 

X(i1+14i2 - 2ia + i4 + 2i5) 
endf or 

endfor 
endfor 

endfor 
endfor 

endforall 
(a) Given parallelized nested loop 

forall io = 0, 9 
dimension Xtmp(· · ·) 

loop 
for i1 =0,2 

for i 2 = 0,2 
l = i1 + 14i2 - 4 
u = i1 + 14i2 + 6 
bcopy(&X(l), &Xtmp(l), ( u - l + 1)) 
for ia = 0, 2 

for i 4 = 0,2 
for i 5 = 0,2 

Xtmp(i1+14i2 - 2ia + i4 + 2i5) 
endfor 

endf or 
endfor 

endfor 
endfor 

endforall 
(b) Localization by block copy 

Figure 24: Localization of a !-dimensional Array 
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5.1.2 Localization of a 2-dimensional Array 

When a 2-dimensional array is referenced in a nested loop, and G1 = {iii ... , in}, the 

footprint of the nested loop induced by the set G1 is 2-contiguous. Since the array 

is 2-dimensional, there are several rows in the footprint, each of which has a single 

2-contiguous block. To localize the data by a block copy, we first have to know the 

minimum and maximum index values of each row of the footprint. Similarly to the 

case of the 1-dimensional array, they can be computed as follows: 

lk if elk> 0 
... 

where Zm (i1, ... 'ij-11 Vj, ... 'Vn), Vk = Uk if elk< 0 

lk or uk if elk= 0 

Uk if elk> 0 
... 

(i1, · · ·, ij-1 1 µj, · · · 1 µn), ZM µk = lk if elk< Q 

uk or lk if elk= 0 

For each row of the index T between row1 and row11 , the lower and upper bounds 

of the 2-contiguous data block should be pre-determined if we want to effect the block 

copy. To find the lower and upper bounds, land u, of the 2-contiguous data block on 

the row r, we derive the following integer linear programming problem: 

Solve : 

subject to : 

{ 
l = min( e21 i1 + · · · + e2jij + · · · + e2nin) 

u = max(e21i1 + · · · + e2jij + · · · + e2nin) 

{ 
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Because the value of the loop variables ii, ... , ij-i are fixed inside the loop statement 

Ij-i, the expressions of those terms are equivalent to the constant terms, where 

Then, the above integer linear programming problem can be rewritten into: 

Solve: 

subject to : 

{ 

l = C2 +min( C2jij + ... + C2nin) 

U = C2 +max( C2jij + · · · + C2nin) 

{ 
For example, see Figure 25. In the first step of the process to select a set of two 

loop variables with the coefficients to satisfying the condition described in Theorem 

6, i4 and i2 are selected. In the second step, i3, whose coefficient satisfies condition 

(15), is selected. In the next step, since there are no more loop variables that satisfy 

any of conditions (15), (16), (17), and (18), the process terminates. Because there is 

a loop variable ii which is not selected, the footprint is not 2-contiguous. So far, the 

loop variables i4, i2, and i3 are selected in that order. According to the criteria, we 

divide the selected loop variables into two sets, 

The minimum and maximum index values of rows that have a 2-contiguous data block 

are 

row1 gi(ii,l2,l3,l4) = ii+(l)O+(l)O+(l)O =ii and 

rowu 9i(ii,u2,u3,u4) = ii+(1)2+(1)2+(1)2 = ii+6. 
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for all i0 = 0, 9 
for i1 =0,2 

for i2 = 0,2 
for i 3 = 0, 2 

for i 4 = 0,2 
X(i1 + i2 + i3 + i4, 5i1 + i2) 

endfor 
endf or 

endf or 
endf or 

endforall 
(a) Given parallelized nested loop 

forall i 0 = 0, 9 
dimension Xtmp(· · ·) 

loop 
for i1=0,2 

row1 = z1 

rowu = i1 + 6 
for r = row1, rowu 

get_block_bound(r, &l, &u) 
if (l ~ u) bcopy(&X(r, l) , &Xtmp(r, l), ( u - l + 1)) 

endf or 
for i2=0,2 

for i 3 = 0, 2 
for i 4 = 0,2 

Xtmp(i 1 + i2 + i3 + i4, 5i1 + i2) 
endfor 

endf or 
endfor 

endfor 
endf orall 

(b) Localization by block copy 

Figure 25: Localization of a 2-dimensional Array 
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forall i 0 = 0, 9 
dimension Xtmp(· · ·) 

loop 
for i 2 = 0, 2 

l = 14i2 - 2 
u = 14i2 + 8 
bcopy(&X(l), &Xtmp(l), (u - l + 1)) 
for i 1 =0,2 

for i3 = 0, 2 
for i4 = 0, 2 

for i 5 = 0, 2 
Xtmp(i1 +14i2 - 2i3 + i4 + 2is) 

endfor 
endf or 

endf or 
endf or 

endfor 
endf orall 

Figure 26: Improved Localization 
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With this result, the array can be localized by inserting a block copy statement just 

after the loop statement for i 1, as shown in Figure 25 (b). 

5.2 Loop Interchange 

So far, a block copy statement is inserted before a loop statement only when the 

footprint of a nested loop induced by loops enclosed by that loop is d-contiguous. 

However, there may be some other loop variables whose footprint is d-contiguous but 

whose loop statements do not occur in the innermost loops. In such cases, the block 

copy method cannot be used to localize array data. Still, the same method can be 

used, provided only that interchanging loops to move the loops whose footprints are 

d-contiguous to the innermost loops does not violate the data dependence rule for 
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parallel execution [68], which requires that the data dependence should be forward 

directed in the execution sequence. 

For example, reconsider Figure 24. In the process of selecting loop variables to 

satisfy the I-contiguous condition, i4, is, i3, and i1 are selected. By contrast, the 

loop of i1 is not selected and not inside the loop of i2. Even though the loop of i1 

can contribute to form a larger I-contiguous block, it is excluded from the set G1. 

Nevertheless, if it can be shown that there is no dependence conflict resulting from 

interchanging the loops of i 1 and i 2 , localization can be done more effectively by doing 

so, as shown in Figure 26. 



Chapter 6 

Localization of Non-contiguously 

Accessed Data 

In this chapter, we describe how to localize data that are not contiguously accessed 

in a nested loop as in Figure 5. When the data referenced in a nested loop is not 

contiguous, we can not utilize a fast block copy. Instead, we have to copy elements 

word-by-word if we do intend to localize them. 

In a nested loop with an array reference , let r be the rank of the mapping function; 

i.e. , rank(H) = r . When the nesting depth of a nested loop is equal to the rank of 

the index function for the array reference, i.e., n = r , the number of accesses to the 

array is equal to that of the referenced elements; thus, we cannot expect performance 

improvement by data localization, because the localization time for copying word­

by-word is same as the time for accessing to the array during computation. If the 

nesting depth is greater than the rank of the index function , i.e., n > r, the total 

number of accesses to the array is much greater than the number of the referenced 

array elements . In such a case, therefore, if we can accurately take into account the 

overall system overhead, which depends on the relative access time to remote and 

local memory, then copying elements word-by-word from remote to local memory 

and computing with local data may result in better system performance. Therefore, 

throughout this chapter, we assume that n > r. 
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6.1 The Thickened Face 

6.1.1 Concept of Thickened Face 

This subsection is mostly based on the work of Gallivan, Jalby, and Gannon [24]. The 

main concept of thickened face found in this paper will be summarized here to give a 

theoretical basis to our extension. 

In order to localize all the elements of an array, say X, we first declare a temporary 

array X tmp in local memory. The simplest implementation would be to declare X tmp 

as having the same shape as that of the original array X so that we may use the same 

index functions. 

The problem is to copy the exact set of elements referenced in the nested loop into 

the temporary array as efficiently as possible. One way to do this is to get faces in the 

domain, i.e., iteration space, and to copy the images of the faces, i.e., tessellations, 

to the corresponding area of the temporary local array Xtmp. 

The main problem is to characterize the geometrical structure of the referenced 

array elements, H(D), by considering the mapping of faces, F, of the domain, D, 

in zn. Let the set of r-dimensional faces generated by r iteration variables on the 

iteration space be defined by 

r 

F ={FI F =IT Dki' where ki E {l, ... ,n}}. 
j=l 

Then, 

H(D) = LJ H(F). 
FEF 

In the domain D, there are many faces, but as we saw in Chapter 3, we can select 

(~) faces so that the whole range can be covered with the images of tho,se selected 

faces, the tessellations, that are mutually disjoint except at the boundaries. 



Chapter 6. Localization of Non-contiguously Accessed Data 

for i1=0,5 
for i2 = 0,4 

for i3 = 0,6 
X(i1 + 2i2 + i3, i2 + 2i3) 

endf or 
endf or 

endfor 
(a) Nested Loop 
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If the domain is real, the image of · a selected face will cover the corresponding 

tessellation completely. But since the domain of the nested loop, i.e., the iteration 

space, is integer, the image of a selected face may not refer to all the elements in 

the corresponding tessellation. For example, consider Figure 27. The nested loop is 

shown in (a), and the footprint is illustrated in (b). In the iteration space, there are 

n) = 3 faces: 

• Fi : '[O, 5J x [O, 4] including (0, 0, O)' 

• F2 : '[O, 4] x [O, 6J including (0, 0, O)' 

• F3 : '[O, 5] x [O, 6] including (0, 4, O)' 

The faces Fi, F2 , and F3 are the iteration spaces for ii and i2 at (0, 0, 0), for i2 

and i3 at (0, 0, 0), and for ii and i3 at (0, 4, 0), respectively. The images of the three 

faces are illustrated in ( c ). From (b) and ( c ), we know that the images of the three 

faces do not refer to all the elements of the footprint. While the image of the face Fi 

is the same as the elements in the tessellation for the face, the images of F2 and F3 

do not refer to all the elements in the corresponding tessellations of the footprint. 

The points, which are in the footprint but not included in the image of the face, 

may be determined with the effect of other iteration variables that are not used to 

form the face. For example, reconsider Figure 27. In the tessellation for the face F2, 

to cover all the elements in that tessellation of the footprint with the image of the face 

F2, all the images of the face F2 at (0, 0, 0), at (1, 0, 0), and at (2, 0, 0) are required. 

In this case, we need images of three clone faces of F2 along the ii-axis. Thus the 

effect of ii to the face F2 is 3 so that the image of F2 can cover all the referenced 

elements in the tessellation. Similarly, in the tessellation for the face F3 , the images 

of the face F3 at (0, 4, 0) and at (0, 3, 0) are required to cover all the elements in the 

tessellation for F3 of the footprint. Thus the effect of i2 to F3 is 2. 
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The effect of each iteration variable to a face F is called the thickness of a face F 

along the axis of the iteration variable; F is extended along each axis by the amount 

of its effect and forms a new face, called the thickened face and denoted by thk(F), 

that is a higher dimensional space than r = rank(H). 

The thickness and thickened face are constructed as follows. Let ei, ... , er be the 

basis to form a face F. Since rank( H) = r, and the vector space we are working with 

is on the integer domain, for every t > r, we have, for some positive integer at, 

(23) 

The thickness of F along et is the smallest positive integer at satisfying Equation (23). 

The thickened face of F depends upon the vertex that F includes. Let us assume 

that F includes the vertex (0, ... , 0, 1Jr+I, ... , 'Tin), where 'T/j = lj or Uj, for j = r+ 1, n. 

Define Tt by 

{ 

[it, min(lt +at - 1, Ut)] 
Tt= 

[max(lt, Ut - at+ 1), ut] 

Then the thickened face of F is 

n 

if 'T/t = lt 
if 'T/t = Ut 

thk(F) = F x IT Tj. 
j=r+l 

With this construction, we can get the following formula: 

H(D) = LJ H(thk(F)). 
FE:F 

6.1.2 Thickness of Face 

In this section, we explain how to compute the thickness of a face, which is an iteration 

space for ik1 , ••• , ikr, along the direction of a vector et, where t rf. { k1, ... , kr} ~ 
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{1, ... , n}. 

Lemma 1 Let ao, ... , ar be integers. Then the smallest positive integer a satisfying 

is 

a · 
...l.... ·a are integers, for j = 1, · · ·, r 
ao 

ao 
a=--~~~~~ 

gcd(ao,ai, ... ,ar). 

Proof Let {pi, ... ,pn} be a set of prime numbers which are factors of ao, ... , ar. 

Then the prime factorization of ai can be denoted by 

aj = p~;i ... p~in, where Aji, ... , Ajn are non-negative integers. 

For any value of j, 
>-;1 >-;n 

aj Pi · · · Pn 
-a = >-01 >-o • 

0 Pi · · · Pn n 

In order to get integer value for ~ · a, 

ao 
a = min{>.;1 ,.>.oi} min{>.;n,>-on}. 

Pi · · · Pn 

The above should be true for all j = 1, ... , r. Thus, 

D 
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Let { ei, ... , er} be a set of basis vectors to form a face F. Then Vp = { h1, ... , hr} 

is a set of the basis vectors to produce the image of a face Fin an r-dimensional space. 

The image of a face generated by the iteration of loop variables i1, •.. , ir, i.e., the 

footprint of the nested loop induced by those loop variables, is the linear combination 

of h 1 , .. . , hr with the integer coefficients in the range of [11 , u1], ... , [Zri ur] respectively. 

The following theorem provides an efficient method to compute the thickness of a face 

F along the direction of et, where t > r. 

Theorem 8 Let rank( H) = r, E F = { e1, ... , er} be a set of basis vectors to form a 

face F, Vp = {h1, ... , hr}, C = (h1, ... , hr), and et'/. Ep. Then the thickness, O'.t, of 

the face F along the direction of et is 

<it = { ~OO(N.,::i,., ... ,N,,) 

where 

if Not# 0 

otherwise 

Proof The thickness of a face F along the direction of e1 is the smallest positive 

integer a.1 such that 

O'.tht E span(h1, ... , hr)= f 1h1 + · · · + fi·hri where fl, ... ,fr are integers, 

that is, in matrix form, 

fl fl 

(i.e., C (24) 

fr fr 
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Recall that d is the dimension of the array variable that we are interested in. The 

matrix C is a ( d x d) square matrix if r = d, but a ( d x r) rectangular matrix if r < d. 

If r = d, the answer is a straightforward one. In the case r < d, however, we have to 

think differently. If the r columns selected are linearly independent, we can select r 

linearly independent rows, and the remaining ( d - r) rows are generated by a linear 

combination of the selected r rows, so the square matrix of selected r rows is regarded 

as C. But if the r columns are not linearly independent, selecting any combination 

of r rows gives a singular matrix, so C is a singular matrix. From now on, let C be 

a ( r x r) square matrix in any case. 

If the matrix C is not singular (i.e., Not -/; 0), then we get the following equation, 

using Cramer 's rule, 
Nkt 

/k = 11.r ·at, fork= 1, ... , r. 
lYQt 

Since /k are integers, from Lemma 1, 

If the matrix C is singular, then Equation (24) can be reduced to 

So a 1 should be 0. 

D 

(25) 

For example, consider the nested loop of Figure 27 (a). If a face F generated by 

the iteration i 2 and i 3 is being considered, then 
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for ii =0,2 or for ii =3,5 
for i2 = 0,4 

for i 3 = 0,6 
Xtmp(ii + 2i2 + i3, i2 + 2i3) = X(ii + 2i2 + i3, i2 + 2i3) 

endf or 
endf or 

endfor 
(a) Code to Copy Image of Thickened Face 
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(b) Image of Thickened Face 

Figure 28: Image of Thickened Face 
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No1 = 3, 

The thickened face is 

{ 

[0,2] x [0,4] x [0,6] 
thk(F) = 

[3, 5] x [O, 4] x [O, 6] 

Na1=1, 

if F include (0, 0, 0) 

if F include (5, 0, 0) 

So the image of thk(F), H(thk(F)), can be obtained from the code of Figure 28 (a), 

and diagram (b) shows the image of the thickened face, where the black circles, white 

circles, and white circles with cross represent the elements of the image of the face F 

when i 1 = 0, i 1 = 1, and i 1 = 2, respectively. Unlike Figure 27 (b), the image of the 

thickened face covers all the elements in the tessellation. 

As we can see in Theorem 8, when the vectors forming a face are not linearly 

independent, the thicknesses of the face along any vectors are zero. In that case, we 

do not have to generate codes to localize the elements. 

Corollary 1 If Not= 0, then Ut = 0, fort= r + 1, ... , n. 

Corollary 2 If Not# 0, then at# 0, fort= r + 1, ... , n. 

Corollary 3 If Not= 1, then at= 1, fort= r + 1, ... , n. 

The proofs of these Corollaries are clear from Equation (25), because the denom­

inator is the greatest common divisor of some numbers, of which one is Noi, and the 

numerator is Not· 

6.1.3 Optimizing Thicknesses of Faces 

A thickness of a face along vector et for a loop variable it corresponds to the number 

of iterations of the loop variable it. So a smaller thickness is definitely preferable. 
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An optimization process may well be required to reduce the values of the thicknesses. 

Here, we will consider such optimization methods. 

The thickened face of the construction described so far does not take into con-

sideration the thicknesses of a face along those vectors that have been considered 

previously. Once we get a thickness along a vector, however, we can consider the ef­

fect of the thickness of that vector on the thickness along another vector. By selecting 

vectors in the proper order in the process of applying thicknesses of a face, we can 

reduce the thicknesses of a face along the vectors to be applied later. 

If the tessellation for a face is a smaller dimensional space than that of the face, 

i.e., the images of the basis vectors that form the face are not linearly independent, 

then the thickness of any direction is zero; thus, we do not have to compute any 

thickness for these cases. Otherwise, the thicknesses of the face are not zero, which 

follows from Corollary 2. From among these non-zero thicknesses, therefore, we need 

to select the smallest thickness, and use that thickness along the vector to optimize 

thicknesses along other directions. 

When there happen to be more than one vector with the same thickness, which 

is the smallest, we need another criterion to choose one of them. Since the purpose 

of thickness is to fill the inside of the tessellation for a face, with the actual elements 

referenced in a nested loop, when the thickness is applied, the vector that produces 

a denser image is better. The criterion to decide whether it produces a denser image 

is the value of the Euclidean norm of the coefficient vector ht for the corresponding 

loop variable it. Because the norm is the distance between points, the smaller the 

norm, the denser the image. For example, in Figure 29 a sample nested loop is given 

in (a). The mapping matrix His 

( 

3 1 -2 

H = 0 1 2 
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for i 1 =0,3 
for i2 = 0, 9 

for i3 = 0, 9 
for i 4 = 0, 9 

X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 
endf or 

endfor 
endfor 

endf or 

(a) Nested Loop 
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(b) Image of Thickened Face along e3 ( c) Image of Thickened Face along e4 

Figure 29: Effect of Applying a Thickness to a Face 
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When a face F formed by the basis vectors { e1, e2}, the thicknesses of the face along 

e3 and e4 are all 3; i.e., a3 = a 4 = 3. Here the new criterion can be applied. From 

the definition of the Euclidean norm, 

Therefore, the thickness along e4 is first selected. The effect of applying the thickness 

of a face is shown in Figure 29 (b) and (c). In the diagram, the parallelogram with 

dashed lines is the tessellation of a face, the set of black circles is the image of the 

face, and the set of white circles is the im<;tge of the face thickened along a direction, 

which is e3 in figure (b) and e4 in (c). It is clear that by applying the thickness 

along e4 the inside of the tessellation is covered completely, and it is not necessary to 

apply the thickness along e3; but if the thickness along e3 is applied first, then there 

are many uncovered elements in the tessellation and it is still necessary to apply the 

thickness along e4 . 

So far, we have made two levels of criteria by which to choose a thickness along a 

vector among many thicknesses for a face: 

1. Choose vectors with smallest thickness. 

2. Choose a vector et when llhtll is minimum. 

With the selected thickness along a vector, we can optimize the other thicknesses. 

For instance, let { e1 , . . . , eri es, ei, ew} be a set of unit vectors for loop variables 

ii, ... , ir, is, it and iw, and Ep = { e1 , ... , er} be a set of basis vectors of a face F. 

We need to compute thicknesses as, ai, and aw along vectors es, et, ew ¢ Ep. First, 

compute as, ai, and aw and select one of them with the criteria stated above. Let as 

be the first one selected as the smallest. After a thickened face of the face F is formed 

along es direction, we can interpret that thickened face in the following ( r + 1) ways: 
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• Thickened face of the face formed by the basis vectors {es, e2, ... , er} along e1 

direction . 

. . . . 
• Thickened face of the face formed by the basis vectors { e1, ... , er_1, es} along 

er direction. 

From the first interpretation, we can compute the thickness of the face formed by 

{es, e2, ... , er} along et . From all interpretations, we can get r at values, but all 

zero values should be discarded, because the thicknesses of the face are not zero. 

From among those non-zero at values computed at this step and the original at value 

computed at the first step, select the one with the smallest value as the new thickness 

of the face F along et. Similarly, we can computer additional aw values and select 

one of them as aw value at this step. In this way, we can get better thickness of a 

face along all vectors not in the set E F. 

In the next optimization step, select one value of at and aw according to the 

selection criteria. Let at be the second one selected as the smallest. Then the face 

F is thickened along es and et. The thickened face of F along es and et can be 

interpreted as one of the following (;) thickened faces: 

• - Thickened face of the face formed by the basis vectors {es, ei, e3, ... , er} 

. . . . 

along e1 and e2 directions. 

- Thickened face of the face formed by the basis vectors {es, e2, ... , er-1, et} 

along e1 and er directions . 

• - Thickened face of the face formed by the basis vectors { ei, ... , er-2, es, et} 

along er-1 and er directions. 
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From the above interpretations, we can get additional (;) thicknesses aw values. 

From among those non-zero aw values computed at this step and the current aw 

value, select the one with the smallest value as the new thickness of the face F along 

the ew. In this second optimization step, we can improve thickness vall_\es for the face 

along all vectors not in the set EF. This optimization is carried out further. 

Figure 30 shows the algorithm to compute optimal thicknesses. The inputs to the 

algorithm are H, the index function in matrix form, and :F, the set of r-dimensional 

faces that are properly selected according to the tessellation process. :F is modified to 

keep the faces whose thicknesses are to be computed. The outputs are the thicknesses 

of faces returned through a 2-dimensional array a whose first subscript refers to a 

face and whose second subscript refers to the direction of the thickness. The variable 

U is the set of all unit vectors for iteration variables in the nested loop. EF is the set 

of unit vectors forming the face F. SF is the set of vectors along whose directions the 

thicknesses of the face F is to be computed. Tp is the set of vectors along which the 

thicknesses are fixed and thus are not to be improved further. The value of np is the 

number of vectors in the set TF but does not exceed r = rank(H), and np vectors 

from the set Ep replace np vectors from the set TF. 

In the first large scoped for loop, thicknesses are computed for every face along 

every vector not in the set E p; all the faces are removed from the set :F either if the 

vectors in EF are not linearly independent, i.e., N = 0, or if all the thickp.esses are 

one, i.e., N = 1. From Corollary 1, if N = 0, all the thicknesses are 0, and from 

Corollary 3, if N = 1, all the thicknesses are 1, which cannot be reduced further. 

Once we get all thicknesses, select the one vector with the smallest thickness (in the 

case that there happen to be more than one vector with the same smallest thickness, 

then select the one with the smallest norm of corresponding column vector of H) and 

remove the vector from Sp and add it to Tp so that the thickness of the face along 

the vector is fixed. 
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Procedure OptimaLThickness(H, :F, a); 
/* Input : H: (d x n) mapping function array */ 

/* Input : :F: set of (;) faces */ 

/*Output: a:((;) xn) array*/ 

/* where r = rank(H) */ 
U = {e1, . .. ,en}; /* set of unit vectors of iteration space*/ 
for (every face F E :F) { 

Ep = set of basis vectors forming face F; 
Sp=U - Ep; 
if (N == 0) { /* N is defined in Theorem 8 */ 

for (every et E Sp) a(F, t) = 0; 
F = F- {F}; 

} else { 
if (N == 1) { 

for (every et E Sp) a(F, t) = 1; 
F=F-{F}; 

} else { 
for (every et E Sp) Compute a(F, t); 
Select one index s such that 

llhsll =min{ llhs1 ll I a(F,s') = min{a(F,t)let E Sp}}; 
Sp = Sp - {es}; Tp = {es}; np = 1; 

} } } 
while (Sp ::j:. ¢, for any FE F) { 

for (every face FE :F) { 

} } 

for (every e1 E Sp) { 

} 

np = min(np, r); j3 = oo; 
for (every Pp, where Pp: set of np elements in Ep) 

for (every Qp, where Qp: set of np elements in T'p) { 

E~, = (Ep - Pp) U Q p; /* basis for face F' */ 
if (a(F' ,t) > 0) j3 = min(j3,a(F',t)); 

} 
a(F,t) = min(a(F,t),/3); 

Select one index s such that 
llhsll =min{ llhs1 ll I a(F,s') = min{a(F,t)let E Sp}}; 

Sp= Sp - {es}; Tp = TpLJ{es}; np = np + 1; 

Figure 30: Algorithm to Compute Optimal Thicknesses 
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forall i0 = 1, np 

for i 1 = 0, 9 
for i2 = 0, 9 

for i 3 = 0,9 
for i4 = 0, 9 

X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 
endf or 

endfor 
endf or 

endf or 
endf orall 

Figure 31: Nested Loop to be Localized 

The while loop runs while there are any faces with a non-empty SF set, because 

if SF is not empty, then there are still some vectors whose thicknesses are not yet 

optimized. On every iteration, one vector for a face is selected as an optimal thickness, 

removed from SF, and added to TF. Thus SF finally becomes empty. In the for 

(every et E SF) loop, an improved thickness at of the face F along the et direction 

is set to the smallest among the thicknesses of the faces, which are formed by the unit 

vectors in EF by replacing nF vectors with nF vectors in TF, along the direction of 

et. The optimal thickness of a face along a direction of a vector, whose thickness is 

not yet optimized, is chosen in the for (every face F E F) loop by applying the 

two levels of criteria: choose vectors with the smallest thickness, and choose a vector 

with the minimum norm of column vector. 

6.2 Loop Transformation 

Using the theories developed so far, we can localize non-contiguously accessed data 

efficiently. In this section, we explain how to transform the given nested loop into one 

with data localization and how the transformed code affects program performance. 

For example, consider the nested loop shown in Figure 31. 
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The array variable X cannot be localized by a fast block copy as described in 

Chapter 5 because the footprint is not 2-contiguous. Each processor executes the 

nested for loop in parallel with other processors. For each processor, the total number 

of elements referenced is 1324, but the number of accesses to t.he array X is 10000. 

Since the number of accesses to the array is 7.6 times greater than the number of 

elements accessed, if we make a copy of an element into local memory, then further 

access to the element can be carried out very rapidly within local memory. 

Let us apply the procedure developed so far. The index function in matrix form, 

H, is 

H = ( 3 1 -2 -1 ) . 
0 1 2 0 

The column vectors are properly ordered as described in the tessellation process, 

and rank( H) = 2. Therefore, The faces stated in the tessellation process are 2-

dimensional. There are 6 faces by selecting 2 vectors out of 4: 

• F1 : formed by basis {e1,e2}, [0,9] x [0,9] including (0,0,0,0) 

• F2 : formed by basis { e2 , e3}, [O, 9] x [O, 9] including (0, 0, 0, 0) 

• F3: formed by basis {e3,e4}, [0,9] x [0,9] including (0,0,0,0) 

• F4: formed by basis {e1,e3}, [0,9] x [0,9] including (0,9,0,0) 

• Fs : formed by basis { e2 , e4}, [O, 9] x [O , 9] including (0, 0, 9, 0) 

• F6 : formed by basis { e1 , e4 }, [O, 9] x [O, 9] including (0, 9, 9, 0) 

The unoptimized and optimized thicknesses corresponding to the faces are computed 

as in Table 1. From the table, we can construct the thickened faces. When thicknesses 

are unoptimized, the corresponding thickened faces are 

• thk(F1) = [O, 9] x [O, 9] x [O, 2] x [O, 2] 
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thickness 
face unit vectors unoptimized optimized 

ai a2 a3 a4 ai a2 a3 a4 
Fi ei,e2 3 3 1 3 
F2 e2,e3 4 4 1 4 
F3 e3, e4 1 2 1 2 
F4 e1,e3 6 3 2 3 
Fs e2,e4 1 1 1 1 
F6 e1,e4 0 0 0 0 

Table 1: Computed Thicknesses of Faces 

• thk(F2) = (0 , 3J x [O, 9J x [O, 9J x [O, 3J 

• thk(F3) = [O, OJ x [O, lJ x [O, 9] x [O, 9] 

• thk(F4) = [O, 9] x [4, 9] x [O, 9] x [O, 2] 

• thk(Fs) = [O , OJ x [O, 9] x (9 , 9] x [O, 9] 

• thk(F6) = [O, 9J x ¢ x ¢ x [O, 9J 

When thicknesses are optimized, the corresponding thickened faces are 

• thk(F1 ) = [O, 9] x [O, 9J x [O , OJ x [O, 2] 

• thk(F2) = [O, OJ x [O , 9J x [O , 9] x [O, 3] 

• thk(F3) = [O, OJ x [O, 1] x [O, 9J x [O , 9] 

• thk(F4) = [O , 9] x [8, 9] x [O, 9J x [O, 2] 

• thk(Fs) = [O, OJ x [O, 9] x [9, 9] x [O, 9] 

• thk(F6) = [O, 9J x ¢ x ¢ x [O, 9] 
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for i1 = 0, 9 
for i2 = 0, 9 

for i 3 = 0, 2 
for i 4 = 0, 2 

Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 
endf or endf or endfor endf or 
for i 1 = 0, 3 

for i2 = 0,9 
for i3 = 0, 9 

for i 4 = 0,3 
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endf or endf or endfor endf or 
ii= 0 

for i2 = 0, 1 
for i 3 =0,9 

for i 4 =0,9 
Xtmp(3i1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endfor endfor endfor 
for i1 = 0, 9 

for i 2 = 4, 9 
for i3 = 0,9 

for i 4 =0,2 
Xtmp(3i1 + i2...,. 2i3 - i4, i2 + 2i3) = X(3i 1 + i2 - 2i3 - i4, i2 + 2i3) 

endf or endf or endf or endf or 
ii = 0 

for i 2 = 0,9 
i3 = 9 

for i 4 =0,9 
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endfor endf or 

Figure 32: Unoptimized Data Localization 
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for ii = 0, 9 
for i2 = 0,9 

i3 = 0 
for i4=0,2 

Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3ii + i2 - 2i3 - i4, i2 + 2i3) 
endf or endfor endfor 
ii= 0 

for i2 = 0, 9 
for i 3 = 0,9 

for i 4 =0,3 
Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3ii + i2 - 2i3 - i4, i2 + 2i3) 

endf or endf or endf or 
ii= 0 

for i 2 = 0, 1 
for i3 = 0,9 

for i 4 = 0,9 
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endf or endfor endfor 
for ii = 0, 9 

for i 2 = 8, 9 
for i3 = 0,9 

for i 4 = 0,2 
• Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endf or endf or endf or endf or 
ii = 0 

for i2 = 0, 9 
i3 = 9 

for i 4 = 0,9 
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3) 

endf or endfor 

Figure 33: Optimized Data Localization 
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The loop transformations for data localization are based on the thickened faces. 

The nested loop given in Figure 31 is transformed with the data localization as shown 

in Figure 32 and Figure 33. The code in Figure 32 is based on the unoptimized 

thickness and the one in Figure 33 on the optimized thickness. The number of copy 

operations of the unoptimized code is 4600 with 24 73 overhead, but that of the 

optimized code is 1600 with 21 % overhead. This overhead comes from around the 

boundaries of tessellations when thicknesses are applied along several directions. 

6.3 Optimizing Performance 

For a given nested loop with an array reference, we can calculate the total number of 

accesses to the array. If we apply the tessellation process to make a local copy, we can 

calculate the number of copy operations thus required. Because remote access time 

is usually much greater than local access time (for example, it is about eleven times 

greater for Butterfly) if the number of accesses is much greater than the number of 

local copy operations, then we can get big performance improvement by making a 

local copy; but if there is not a big difference between the number of accesses and 

local copy operations, making a local copy might degrade the performance because 

of the overhead. The following analysis does not take into consideration any adverse 

effects caused by network traffic saturation, memory hot spot contention, and so on. 

Let the access time be l machine cycles for local data, and r machine cycles for 

remote data. Assume that there are P processors executing in parallel, the number of 

data access for each processor is N, and data are distributed evenly over all memory 

modules. Then the probabilities to access local and remote data are ~ · 1; = ~ and 

N*(P-l) 1 P-1 · 1 P · N = -p respective y. 
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When the data are not localized, the time for each processor to access all data is 

1 P-1 
(l · p + r · ----p-) · N. (26) 

When all data are localized by using the tessellation process, if the calculated number 

of copy operations to localize all required data is C, the time for each processor to 

copy all required data is 
1 P-1 

(l · p + r · ----p-) · C. 

Once all the data needed for execution are copied into local memory, all the data 

accesses during computation occurs locally. So the total time to reference data is 

l · N. The sum of the time to make a local copy and to access it locally is 

1 P-1 
(l · p + r · ----p-) · C + l · N. (27) 

From the two equations (26) and (27), the localization effort is worthwhile only 

when the following inequality holds: 

1 P-1 1 P-1 
(l · - + r · --) · N > (l · - + r · --) · C + l · N. p p p p 

Expressing the above equation in terms of the ratio of the remote access time to the 

local access time and the ratio of the number of copy operations to the total number 

of references, we get 
c 1 
N<l-r 1 1· 

-(1- -) + -l p p 

(28) 

The right hand side is the upper bound of ~ where the localization may improve 

the performance. When the number of processors, P, is fixed, the value f affects the 

condition of the equation. As the ratio f approaches to 1, i.e., the remote access time 

approaches to the local access time, the right hand side of Equation (28) approaches 
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No. of r /l 
Pro cs 2 4 8 11 16 32 

2 0.33 0.60 0.78 0.83 0.88 0.94 
4 0.43 0.69 0.84 0.88 0.92 0.96 
8 0.47 0.72 0.86 0.90 0.93 0.96 
16 0.48 0.74 0.87 0.90 0.93 0.97 
32 0.49 0.74 0.87 0.91 0.94 0.97 

Table 2: Upper Bound of ~ for Performance Improvement 

to 0, and as the ratio f increases, the right hand side of Equation (28) approaches to 

1. Therefore, if the remote access time is much larger than the local access time, then 

data localization is efficient in most cases. However, if there is not a big difference 

between the remote and the local access time, data localization is efficient only for 

the small value of the ratio ~-

In Table 2, the upper bound of ~ for the better performance are computed for 

various combinations of the number of processors and the ratio of the remote to local 

access time. As expected, the upper bound gets larger as the ratio f increases. In the 

case of the Butterfly GPlOOO parallel machine, the remote read and write accesses 

take 7 µ second and 4 µ second, and the local read and write accesses take 0.53 µ 

second and 0.38 µ second [8]. Therefore, the approximate ratio f is 11. From the 

table, we can see that using data localization may be more efficient than the original 

program, when the ratio ~ is less than 0.83. 



Chapter 7 

Experiments 

In the previous chapters, we have considered data localization techniques to improve 

the execution performance of nested loops. In this chapter, we present the experi­

mental results of the localization algorithms run on a parallel machine, a Butterfly 

GPIOOO. (See the Appendix A for its detailed description.) Since the GPIOOO is a 

hybrid class machine, it has properties both of the shared memory and distributed 

memory systems. 

The GPIOOO machine can be equipped with up to 256 processors. The machine 

used for this test has 28 processors, 3 for the public cluster, 1 for I/0 process, and 24 

for users. At any given time, a user can secure as many processors as he wants, up to 

24. The set of processors allocated to a user is called a cluster. Each processor has 

a local memory of 4M bytes, and the combined local memory modules of processors 

form the shared memory of the system. The shared data array is uniformly distributed 

to the local memory of each processor in the user cluster to avoid memory hot spots. 

To verify the effect of the program transformation, we have run two programs, 

the original and the transformed one, on 1 through 24 processors. For convenience, 

we will name the original program CONTu and the transformed program CONTL. 

7.1 Contiguous Data Access 

A simple matrix multiplication program CONTu, with a contiguous data access pat­

tern in a nested loop as shown in Figure 34, is chosen for this demonstration. When 
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for all i = 0, n - 1 
for j = O,n -1 

c(i,j) = 0 
for k = O,n -1 

c(i,j) = c(i,j) + a(i, k) * b(k,j) 
endf or 

endf or 
endforall 

Figure 34: Matrix Multiplication (Contiguous) - CONTu 
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the program runs on P processors, n parallel processes, each of which is to execute 

the forall loop body for a value of i between 0 and n - 1, are generated, and P 

processors fetch, and activate, the parallel processes until there is no process waiting 

to be run. 

Let us apply the techniques developed in Chapter 5 to the program CONTu. 

In the k-loop, the array a is 2-contiguous, b is I-contiguous, and only one element 

of c is referenced. Thus, the row elements of the array a are the only ones to be 

localized outside the k-loop. In the j-loop, array a is still 2-contiguous, b is 1- and 

2-contiguous, and c is 2-contiguous. The row elements of a and c, as well as all the 

data elements of b, may be localized outside the j-loop. Array a can be localized 

outside both the k-loop and j-loop. For better results, it is important to have as 

much of the outer loop as possible localized in order to avoid duplicated local copies. 

Array b can be localized outside the j-loop. However, it can also be localized outside 

the i-loop, since b is in the special situation that the index function does not depend 

on the for all loop variable i. In other words, array b may be copied into all local 

memories of processors in the user cluster. Also, the reference modes are such that 

a and b are referenced in read mode and c in read/write mode. Obviously, a and b 

should be copied before they are referenced. For c, the process is a little tricky. Based 

on the dependence analysis, c is initialized, modified, and keep the final results of the 

loop: namely, c is independent of the original values. Unlike the others, therefore, 
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for all i = 0, n - 1 
dimension la(O:n-1,0:n-1),lb(O:n-1,0:n-1),lc(O:n-1,0:n-1) 
for k = 0, n ~ 1 

bcopy(&b(k, 0), &lb(k, 0), n) 
endfor 

loop 
bcopy(&a(i, 0), &la(i, 0), n) 
for j = 0, n -1 

lc(i,j) = 0 
for k = 0, n -1 

lc(i,j) = lc(i,j) + la(i, k) * lb(k,j) 
endfor 

endfor 
bcopy(&lc(i, 0), &c(i, 0), n) 

endf orall 

Figure 35: Data Localization of CONTu - CONTL 

it does not have to be copied into the local memory first. The computation can be 

carried out using data in the local memory and the results should be copied from the 

local array to the original array. The transformed program with data localization, 

CONTL, is shown in Figure 35. 

In CONTL, all of the arrays are localized by means of the fast block copy, and 

all computations are carried out with those local variables. The number of remote 

memory accesses is O(n3) in CONTu, and O(n2) in CONT£. Moreover, the remote 

memory accesses in CONTL are done by a block copy. The remote data access time, 

which adversely affects the program performance, is significantly reduced in CO NTL 

by reducing the number of remote memory accesses and using a fast block copy. 

Both programs CONTu and CONTL were run for n=32, 64, 128, and 256. In 

Figure 38 and 39, graphs (a), ( c), ( e), and ( f) represent the execution time in the real 

time clock ticks of Butterfly machine, and graphs (b), (d), (f), and (h) represent the 

speed-ups on varying number of processors. The speed-up S( n, P) on P processors 
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for matrix size n is defined by 

S(n,P) = \ 

Eu(n,l) 
Eu(n,P) 

Eu(n,l) 
EL(n,P) 

for CONTu 

for CO NTL 
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where Eu(n, P) is the execution time of CONTu, and EL(n, P) is that of CO NTL, 

on p processors for a matrix of size n. In these graphs, solid lines with squares 

represent the behavior of CONTu and dotted lines with circles that of CONT£. For 

all matrices of any size, the speed-ups of CONTu on any number of processors are 

below 2, but those of CONTL increase almost linearly. Thus, the bigger the size of 

the matrix, the greater the increasing rate. When the matrix size is 256, the speed-up 

of about 22 on 24 processors is almost perfect. Such improved performance may be 

explained by the fact that the computation complexity is O(n3 ) while the number 

of remote data accesses is O(n2
). The computation time dominates the remote data 

access time as the matrix size gets bigger. 

7 .2 Non-Contiguous Data Access 

As a program to test the algorithm for non-contiguously accessed data, the modified 

matrix multiplication program, named NCONTu, is chosen here as shown in Figure 

36. 

Let us apply the techniques of Chapter 6 first to the nested loop of loop variables 

j and kin NCONTu, for they are all inside the forall loop of the loop variable i. 

The index functions of the array references to a, b and c in matrix representation are, 

respectively, 
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for all i = 0, n - 1 
for j = 0, ~ - 1 

c(i,j) = 0 
for k = 0 !!. -1 

'2 

--------

c(i,2j) = c(i,2j) + a(i,2k) * b(2k,2j) 
endf or 

endf or 
endf orall 

Figure 36: Matrix Multiplication (Non-Contiguous) - NCONTu 
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The first column of each matrix denotes the loop variable j, and the second column 

k. The first row of each matrix is for the first index of each array variable, and the 

second row the second index. As for the matrix Ha for the array variable a, its rank 

is 1. Therefore, we can choose 1 column that is not zero. There is only one column 

that is not zero, which is the second column for loop k. The thickness of the face { ek} 

along the vector ej is 1, and that of the face { ej} is 0. Thus, the resulting localization 

code for a is 

for k = 0 !!. - 1 
'2 

la(i, 2k) = a(i, 2k) 
endfor 

Because the array a is used in read mode, it should be localized before the computa­

tion. The array c can be localized in the similar way to the array a. However, c is 

used in write mode. Thus, the resulting localization code for c is 

for J. = 0 !!. - 1 
' 2 

c( i, 2j) = le( i, 2j) 
endf or 

Finally, the rank of Hb is 2. Because the rank and the size of the array are the same, 

it is not necessary to compute the thickness pertaining to b. Thus, the resulting 

localization code for b is 



Chapter 7. Experiments 

forall i = 0, n - 1 
dimension la ( 0 : n-1 , 0 : n-1) , lb ( 0 : n-1 , 0 : n-1) , le ( 0 : n-1 , 0 : n-1) 

for k = 0, ~ - 1 
for j = 0, ~ - 1 

lb(2k, 2j) = b(2k, 2j) 
endfor 

endf or 
loop 

for k = 0, ~ -1 
la(i, 2k) = a(i, 2k) 

endfor 
for j = 0, ~ - 1 

le(i, 2j) = 0 
for k = 0, ~ - 1 

le( i, 2j) = le( i, 2j) +la( i, 2k) * lb(2k, 2j) 
endfor 

endfor 
for j = 0, ~ - 1 

e( i, 2j) = le( i, 2j) 
endfor 

endforall 

Figure 37: Data Localization of NCONTu - NCONTi 

for k = 0, ~ - 1 
for j = 0, ~ -1 

lb(2k, 2j) = b(2k, 2j) 
endfor 

endfor 
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In fact, all the localization codes are to be inside the forall loop, but the localization 

code for b can be moved outside the forall loop, since the index of the array reference 

to b is independent of the forall loop variable i. The transformed program with data 

localization, NCONTi, is shown in Figure 37. 

In NCONTi, all of the arrays are localized through copying referenced elements 

word-by-word, and all computations are carried out using those local variables. 

Unlike the localization process of CONTi, the fast block copy cannot be used. 
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However, the number of remote memory accesses is still O(n3 ) in NCONTu, and 

O(n2
) in NCONTi, but the localization cannot be done as efficiently as CONTi 

which utilizes the fast block copy. 

Both programs NCONTu and NCONTi were also run for n=32, 64, 128 and 

256. In Figure 40 and 41, graphs (a), (c), (e), and (f) represent the execution time in 

the real time clock ticks of the Butterfly machine, and graphs (b), (d), (f), and (h) 

represent the speed-ups on a different number of processors. The speed-up S(n, P) 

on P processors for a matrix of size n is defined, as in the case of the contiguous data 

access case, to be 

{ 

Eu(n,l) 

S( n, P) = Eu(n,P) 
Eu(n,I) 
EL(n,P) 

for NCONTu 

for NCONTi 

where Eu(n, P) is the execution time of NCONTu and Ei(n, P) is that of NCONTi, 

on P processors for a matrix of size n. In the graphs, solid lines with squares represent 

the behavior of NCONTu and dotted lines with circles that of NCONTi . For all 

matrices of any size, the maximum speed-ups of NCONTu are about 2 which is a 

little higher than those of the CONTu. This improved performance results from 

having fewer remote data accesses than CONTu. (The number of remote accesses 

of NCONTu is one quarter of that of CONTu.) The reduction in remote accesses 

can reduce the delay caused by network traffic. The speed-ups of NCONTi increase 

almost linearly, and the linear property becomes more apparent as the matrix size 

gets bigger, because the computation complexity O(n3 ) dominates the remote access 

complexity O(n2). However, the speed-ups are less evident than those of the CONTi, 

because a fast block copy cannot be used for data localization. 
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Chapter 8 

Conclusions 

In this thesis we have introduced code transformations that influence the manage­

ment of local memory in MIMD parallel computers. These transformations localize, 

preferably without redundancy, the array elements referenced by inner loops whose 

outermost loop is executed in parallel. The set of these elements may be identified by 

a combination of the coefficients and the lower and upper bounds of the loop variables 

in the index functions. If it is determined that they happen to form contiguous blocks 

in the memory, they may be efficiently localized by means of the fast block transfer. 

If not, they may nevertheless be localized word-by-word, provided that such a tedious 

process still promises to be more efficient. 

A method, called the tessellation process, was introduced for 1- and 2-dimensional 

arrays in Chapter 3; by this method, we were able to analyze the pattern of the array 

elements referenced in a nested loop. Once a d-dimensional array variable is referred 

to inside a nested loop of depth n, the process helps divide the referenced elements 

into (~) subsets which are called their tessellations. A tessellation is an image of 

the face of a d-dimensional subspace of the iteration space under the index function. 

Each tessellation corresponds to a set of d loop variables and is characterized as the 

area spanned by the loop variables with the coefficients between the lower and upper 

bounds of the corresponding loop variables. 

In Chapter 4, the tessellation process was applied to decide whether the array 

elements thus referred to actually form contiguous blocks in the memory, relying on 
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a specific array allocation scheme. If the array reference pattern is determined to be 

contiguous, the localization of the remote data may then be carried out rapidly. For 

a 2-dimensional array, a linear integer programming problem was derived from the 

index function and loop bounds, so as to find the starting and ending locations of the 

contiguous blocks. The localization of the contiguous data was discussed in Chapter 

5. 

In Chapter 6, simple algorithms to compute the thicknesses of the faces of the it­

eration space were considered. Further, the thicknesses were optimized to reduce the 

percentage of redundancy in copy operations between the remote and local memory 

from several hundred to a few tens of percent. Then, the nested loops were trans­

formed to localize the non-contiguously accessed array, using the information from 

the tessellation process and the calculated thicknesses of faces. 

Finally, in Chapter 7, a matrix multiplication program, which satisfies certain 

assumptions, was chosen to demonstrate how much the algorithms improve program 

performance on a parallel machine. The experimental results show that the data 

localization algorithms greatly improve program performance on a parallel machine 

equipped with local memory. 

These achievements aside, this thesis suggests quite a few shortcomings that need 

to be dealt with in the future, in order for the algorithms to be generalized. For one, 

we made the initial assumption that the loop bounds are independent of the other 

loop variables. In addition, we assumed that all the references to an array have the 

same index functions, and further simplified the index functions to the exclusion of 

any constant terms. Of course, even with these assumptions and simplifications, we 

may handle a limited number of cases effectively and often get very good results, as 

we have shown in Chapter 7. However, the range of cases might be much broader 

if we try to apply these algorithms to a number of practical application programs. 

In fact, there are many examples in linear algebra where many loop structures easily 
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outgrow the simplifying assumptions prescribed in this thesis. 

Therefore, we have to address the issue of constants in those cases where the 

variables are referenced with different index functions. Suppose that a I-dimensional 

array is referenced twice in a loop with the index functions, (2i) and (2i +I), where i 

is the loop variable. Then, while the footprint is in fact contiguous, it will instead be 

determined by the algorithms described in this thesis to be non-contiguous, because 

the constant terms have not been sufficiently considered. 

When we try to program those triangular matrices found in many problems in 

linear algebra, our own experience tells us that the matrices are to be handled by 

the nested loops, where the loop bounds of one variable often depend on other loop 

variables. Therefore, further research needs to be done for such cases. 

For these reasons, it is important that the tessellation process be generalized to 

high-dimensional cases. So far , we have been able to achieve some tangible results, 

using only the I-dimensional and 2-dimensional models. If we succeed in generalizing 

the tessellation process, however, we can offer a consistent explanation for all kinds 

of high-dimensional cases. Given that this may not be feasible to do so in the near 

future, if we could extend the process at least to 3-dimensional cases, we would still 

be able to cover a great number of practical problems. 
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Appendix A 

Butterfly Architecture 

The GP1000, a BBN Butterfly parallel machine, is of the MIMD type. It composed 

of up to 256 Processor Nodes {PN), which are tightly-coupled by an interconnection 

network, the Butterfly Switch. Figure 42 illustrates the ha.sic architecture of the GP1000. 

Switch Network 

u u PN 

• 
• u • 

u PN 

• 
• u • 

u PN 

• 
• 
• 

Figure 42: BBN Butterfly Architecture 

All PNs are identical in that they are connected with a switch network in the 

same manner and that any set of PNs can run an application program with the same 

result. Each PN has a processor and 4M bytes of memory. All memory modules of 
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the PNs form a shared memory of the machine. For a processor on a PN, its own 

memory module is considered as local to itself, while all others are external. Any 

processor can access data in local memory as well as external memory via the switch 

network. The access time to local data is much faster than that to external data. 

A.1 Processor Node (PN) 

Each PN consists of an MC68020 microprocessor, an MC68881 floating-point co­

processor, 4M bytes of memory, an MC68851 memory management unit and an 

AM2901 bitslice processor, which is a very important co-processor called the Processor 

Node Controller (PNC). 

The Butterfly machine adopts the paged virtual memory system whose page size 

is 8K bytes. The virtual addresses are transparent to all application programs. The 

MC68020 and MC68881, which handle instructions, use virtual addresses, and all 

other components that handle data use physical addresses. The MC68881 receives 

32-bit virtual addresses that are provided by the MC68020/MC68881 and translates 

them into physical addresses, using a page table stored in its address translation 

cache. A physical address consists of an 8-bit PN number and a 24-bit local address 

of 4M bytes memory module of that PN. The PNC receives physical addresses from 

the MC68851, compares the 8-bit PN number and its own PN number. If the two 

numbers are identical, the physical address is viewed as a local address; otherwise, it 

is viewed as an external address. In the former case, the PNC performs read or write 

operation on its local memory. In the latter, it creates and sends a packet requesting 

other PNs to perform read or write operation. If the requested operation is read, 

the PNC waits for the reply. After the PNC gets the reply, it then passes the data 

to the MC68020/MC68881. The access time to a byte, word, or long-word in local 

memory is 0.53 µ sec for a read operation and 0.38 µsec for a write operation. The 



Appendix A. Butterfly Architecture 150 

access time for a byte, word, or long-word in remote memory is 7 µ sec for a read 

operation and 4 µ sec for a write operation. The memory bandwidth capacity is 

102M Bytes/sec. 

The PNC controls all resources in each PN, and performs operations to provide the 

parallel processing capability that the MC68020 does not have. Those functions are to 

control all memory references, which enables it to perform atomic arithmetic/logical 

operations, to regulate all communication transactions, to maintain a 32-bit realtime 

clock with 62.5 µ sec resolution, and so on. 

The PNC is in charge of communication with other PNs. It has a switch output 

port and input port, both of which are connected to the switch network. To prevent 

deadlock, each port has two buffers: a request buffer and an acknowledgement buffer. 

The request buffer of the input port accepts messages that require a PN to send 

out a reply in any form, such as the incoming requests from other PNs to read the 

data in the PN. Its acknowledgement buffer accepts reply messages from other PNs or 

simple control messages, such as incoming requests from other PNs to write the data 

into the memory of the PN. Similarly, the request buffer and the acknowledgement 

buffer of the output port store outgoing messages that require a reply and do not 

require a reply, respectively. These two ports perform their functions independently. 

Even though one port may be full of messages that have not yet been processed, the 

other port can still function. When a message comes in to a PNC and the input 

port buffer that it is supposed to enter is full, then that message is rejected. The 

bandwidth capacity of the PNC switch port is 32M bits/sec. 

The size of a message may be fixed (as in byte, word, or long-word) or of variable 

length in the case of a block transfer. The PNC creates a packet for every message 

that is to be sent to other PNs. Every packet has an 80-bit message head describing 

source and destination nodes, message type and message length, and so on. 
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Figure 43: Switch Card 

A.2 Switch Network 

The basic element of a switch network is a 4-input and 4-output crossbar style switch­

ing node. A switch card is a circuit board with 8 switching nodes in two columns, and 

it functions as a 16-input and 16-output switch network. The connection between the 

two columns is of a shuffle-exchange network type, and since it is fixed on the circuit 

board, it cannot be customized. Thus, one switch card is the basic installation unit 

of a switch network. As shown in Figure 43, there is one and only one path from 

any input line to any output line. The system with 1 through 16 PNs uses only one 

switch card. 

For the system with 17 to 64 PNs, even though 3( =log4 64)-stage network is 

theoretically sufficient , a 4-stage network is required, because the basic installation 

unit is a 16-input and 16-output switch card. As an example of a 4-stage network, 

Figure 44 shows the switch network configuration of the Butterfly presently installed 

at Indiana University; this is the minimum configuration of a 4-stage network. As we 

can see in the diagram, there are four paths for each pair of source and destination 

PNs. These four paths are used as alternate paths when one path is not available 
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Figure 44: Switch Network of System with 32 PNs 
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because it is occupied by a message. The number of available alternate paths can be 

set at system boot time. 

A larger system with more than 32 PNs extends the switch network by installing 

two additional switch cards vertically for every additional 16 PNs: one for the left 

two columns and the other for the right two columns. The second and the third stage 

of the network are connected via shuffle-exchange. The number of alternate paths is 

reduced as the number of PNs increases because the number of stages of the network 

is fixed at four , while the number of PNs that use the paths increases. There are four 

paths for 17 to 64 PNs, two paths for 65 to 128 PNs and one path for 129 to 256 PNs. 

The bandwidth capacity of each path is 32M bits/sec, the bandwidth of the PNC 

port. Every path can function at the same time. Thus, the system with 32 PNs has 

a maximum switch bandwidth of 1024M bits/sec. 

A message from one PN to another goes through the path set by the PNC of the 

sender PN. As a message is t ransmitted, if it encounters a conflict at any switching 

node on the path , it retreats to the PNC that sent the message; then the PNC sends it 

again using an alternate path, thus improving the performance of the switch network. 

Message conflict occurs when two messages arrive at the same switching node and 

try to exit through the same output port. 

A.3 Memory System 

The memory system of the GPlOOO is a two level hierarchy with virtual memory and 

real memory of 4M bytes per PN. An address space of virtual memory is 4G bytes with 

the page size of 8K bytes. A real memory address consists of an 8-bit PN number and 

a 24-bit local address of the 4M bytes memory module of that PN. Memory space is 

initially allocated on the virtual memory and when a location is referenced, the page 

containing the location is loaded into real memory, and the correspondences between 
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Virtual add resses and real addresses are kept in the page table cache of the MC68851 

memory 
management unit. 

The d h a dress space is divided into two parts, the process private area and the 

s ared are E b a. ach P N has its own process private area. The process private area can 

e accessed l . . . on Y by the PN that owns it. It is further d1v1ded mto a text area, heap 

area, and stack area. A program code is loaded into the text area of all PNs. When 

Parallel . the execut10n is initiated, each PN participating in the parallel execution runs 

Program . segment stored in its own memory. The heap area is used for the C 

global va . 'I' nables and for the space allocated dynamically by malloc () or calloc (). 

he stack . ~ area is used for the C local variables of procedures. The shared area is used 

or the s P pace allocated by UsAllocO family procedures, and can be shared between 

Ns by . 
using Share () procedure. 

The Procedure Share () takes the location of the variable declared as the C global 

variable a . ' nd makes a copy of the value of the locat10n onto the locations with the 

same variabl N th t' f tl · · · · e name as the argument of each P at e ime o ie m1t1at10n of the 

Parallel ex . . . . ecut1on . If the value of the location used m the procedure Share() is not 

an address th 
' en the value is copied. 

b . Dsing Figure 45 , which refers to Uniform System (US) library procedures, we will 

nefiy ex 1 . P am the memory management scheme. 

of nThe variables a, b, and n are allocated to the heap area of all PNs. The contents 

l ' a, and b are 10, a pointer to a location in the shared area, and a pointer to a 

ocation i . n the private area respectively. GenTaskforEachProc () is a procedure that 

creates o ' ne process for each PN and the created processes execute the procedure 

Wo:rker () · ' . in parallel. Before all PNs start the parallel execut10n, contents of all 

Of the d eclared variables that are shared by Share() procedure are copied into the 
corr esponct· k () · Ing locations of all PNs. The procedure Wor er is executed by all PNs 

at the same t . . h une. No conceivable problem arises in accessmg t e variables n and a, 
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#include <us.h> 
int *a, *b, n; 

Worker( dum) 
int dum; 
{ 

} 

a(l] = n; 
b(2] = n; 

main() 

{ 

} 

I nitializeU s(); 
n = 10; Share(&n); 
a= (int*)UsAlloc(n * sizeof(int));Share(&a); 
b = ( inh )malloc( n * sizeof (int)); Share( &b); 
GenTaskForEachProc(Worker, 0); 

Figure 45: Uniform System C Program 
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because n of each PN has the value 10, and a points to a location in the shared area. 

However, accessing b[2] by all PNs, except the one PN that has the memory to which 

the array b is allocated, will cause an address error, because the array b is allocated 

on the heap area, the private area that cannot be shared between PNs. 

A.4 Block Transfer 

The Butterfly machine supports a very efficient operation for transferring blocks of 

data from one PN to another. The block transfer operation is implemented by the 

PNC microcode. Once the path has been set up for block transfer, the path is held 

for the block transfer until it finishes, and it is performed at the full 32M bits/sec 

bandwidth of a path through the switch network. Because of the initial set-up time, 

a long message is preferred to a short one. 
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While the PN is engaged in the block transfer operation as a source or destination, 

75 % of total memory bandwidth is used for the block transfer, and 25 % is used for 

local processes. Thus the performance of source and destination PNs is significantly 

reduced. 

The maximum data size for block transfer is 64K bytes. If the message is more 

than 256 bytes, then it is split into blocks of 256 bytes and sent one by one. 

The block transfer time is 72 µ sec for a 256-byte block, and 8 µ sec + ~ µ 

sec /byte for a block of less than 256 bytes. 

-
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