
DATA LOCALIZATION IN PARALLEL COMPUTER
SYSTEMS

by

Mann-Ho Lee

Submitted to the faculty of the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

February 1991

©Copyright 1991

Mann-Ho Lee

ALL RIGHTS RESERVED

lll

Acknowledgements

I am deeply grateful to Dr. Dennis Gannon for his help as my advisor. He introduced

me to and taught me about the area of Parallel Processing and I am still fascinated by

the subject. He helped me with new ideas and always gave me a patient hearing when

I had a problem or a new idea. I also wish to express my thanks to Professors Robert

Glassey, Christopher Haynes, Gregory Shannon, and Dirk Van Gucht for agreeing to

be on my committee. They helped me improve the quality of this thesis by making

invaluable comments.

I wish to express my special appreciation to the fellows in the Sigma Group: Daya

Atapattu, Jenq Kuen Lee, and Bruce Shei. They helped me with technical assistance,

were always ready to discuss anything, and gave encouragement and helpful sugges­

tions. My thanks also go to my friend Myunggoo Choi who helped with comments

on English writing.

Last but not least, I thank my family both here and in Korea. To my wife Dong­

Hee and son Yoon-Soo, I express my gratitude for their understanding, patience, and

sacrifices throughout this difficult period. I would like to express my appreciation to

my parents-in-law, Byung-Kwon Kim and Joeng-Sook Park, for their encouragement

and financial assistance. Without their support, I could neither last for such a long

time nor complete this dissertation. Finally, I owe a special debt of gratitude to my

mother Soon-Ja Pang for praying for me over the years.

lV

Abstract

In parallel computer systems, the efficient use of local memory by each processor

often affects overall program performance. This is especially true with most scientific

computations, where many nested loops process data that is usually stored in shared

or distributed memory. If references are repeatedly made to array elements placed

in external memory, the amount of time spent accessing the external data will be

greater than the time required to move the data into local memory and to access it

there. This is especially true if block transfer instructions are used to copy data from

external to local memory. This thesis develops algorithms to generate instructions

that make local copies of external data, and provides results of experiments on a

parallel machine.

These algorithms are based on the tessellation process which divides the set of

d-dimensional array elements referenced in a nested loop of depth n into (~) subsets.

Each subset provides information about the locations of the array elements in the

subset. The information from all subsets is used to determine whether all the ref-

erenced array elements form contiguous blocks, and to make local copies of external

data in the case of non-contiguous blocks. The tessellation process simplifies these

tasks by reducing the problem size. If the referenced array elements form contiguous

blocks, external data can be localized by means of fast block transfer. If not, external

data can be copied word-by-word into local memory with low overhead using the

information from the tessellation process. Experimental results are presented that

show the algorithms' effectiveness in localization of external data.

v

Contents

Acknowledgements

Abstract

1 Introduction

1.1 Parallel Architectures .

1.2 Parallel Programming

1.3 Program Transformation

1.4 Data Localization .

1.5 Thesis Overview .

2 Problem Definitions

2.1 Loop Constructs

2.2 Assumptions . . .

2.3 Nested Loops and Vector Spaces .·

2.4 Terminology

3 The Tessellation Process

3.1 Tessellation of a 1-dimensional Array

3.2 Tessellation of a 2-dimensional Array

4 Contiguity

4.1 q-contiguity

4.2 Contiguity When Nesting Depth is Equal to Array Dimension

Vl

iv

v

1

1

5

g

11

15

21

21

22

26

30

32

40

46

54

55

57

~ . . ·----· - ' . ' . . " .

4.3 Contiguity When Nesting Depth is Greater than Array Dimension . 63

4.4 Contiguity of 1-dimensional Array 66

4.4.1 Contiguity When Nesting Depth is 2 66

4.4.2 Contiguity When Nesting Depth is Greater Than 2

4.5 Contiguity of 2-dimensional Array

4.5.1 Contiguity When Nesting Depth is 3

4.5.2 Contiguity When Nesting Depth is Greater Than 3

5 Localization of Contiguously Accessed Data

5.1 Loop Transformations

5.1.1 Localization of a 1-dimensional Array .

5.1.2 Localization of a 2-dimensional Array .

5.2 Loop Interchange

6 Localization of Non-contiguously Accessed Data

6 .1 The Thickened Face

6.1.l Concept of Thickened Face .

6.1.2

6.1.3

Thickness of Face

Optimizing Thicknesses of Faces .

6.2 Loop Transformation ..

6.3 Optimizing Performance

7 Experiments

7.1 Contiguous Data Access

7.2 Non-Contiguous Data Access.

8 Conclusions

A Butterfly Architecture

vii

69

71

71

83

91

91

93

96

99

101

102

102

105

110

117

122

125

125

128

136

148

List of Tables

1

2

Computed Thicknesses of Faces

Upper Bound of~ for Performance Improvement

IX

119

124

List of Figures

1 Example of Data Localization 13

2 Loop Transformation Systems 14

3 Data Localization System . 19

4 Syntax of forall Construct 22

5 Nested Loops · · · 23

6 Nested Loop and Vector Space . 26

7 Tessellation of a !-dimensional Array 33

8 Tessellation of a 2-dimensional Array 34

9 !-dimensional Tessellations 42

10 Dividing !-dimensional Space into Half Spaces 44

11 2-dimensional Tessellations 48

12 Dividing 2-dimensional Space into Half Spaces 51

13 Parallelization 55

14 q-contiguous Footprints . 57

15 2-contiguity When Nesting Depth is Equal to Array Dimension. 62

16 2-contiguity When Nesting Depth is Greater than Array Dimension 65

17 !-contiguity in a !-dimensional Space 67

18 ! -contiguity of 1-dim Array When Nesting Depth is 2 68

19 2-contiguity in a 2-dimensional Space 73

20 2-contiguity of 2-dim Array When Nesting Depth is 3 81

21 2-contiguity of 2-dim Array in General Case 89

22 Parallelized Nested Loop Code . . 91

23 Data Localization by Block Copy 93

x

' " ' ""' . . " . . . "

24 Localization of a 1-dimensional Array .

25 Localization of a 2-dimensional Array .

26 Improved Localization . . .

27 Footprint and Tessellations .

28 Image of Thickened Face . .

29 Effect of Applying a Thickness to a Face

30 Algorithm to Compute Optimal Thicknesses

31 Nested Loop to be Localized . .

32 Unoptimized Data Localization

33 Optimized Data Localization . .

34 Matrix Multiplication (Contiguous) - CONTu

35 Data Localization of CONTu - CONTL

36 Matrix Multiplication (Non-Contiguous) - NCONTu

37 Data Localization of NCONTu - NCONTL

38 Contiguous Matrix Multiplication - 1

39 Contiguous Matrix Multiplication - 2

40 Non-contiguous Matrix Multiplication - 1

41 Non-contiguous Matrix Multiplication - 2

42 BBN Butterfly Architecture

43 Switch Card

44 Switch Network of System with 32 PNs .

45 Uniform System C Program

Xl

95

98

99

103

109

112

116

117

120

121

126

127

129

130

132

133

134

135

148

151

152

155

Chapter 1

Introduction

1.1 Parallel Architectures

Computer architectures, based on the multiplicity of instruction and data streams

[23], are classified in four classes:

• Single instruction stream single data stream (SISD)

• Single instruction stream multiple data stream (SIMD)

• Multiple instruction stream single data stream (MISD)

• Multiple instruction stream multiple data stream (MIMD)

The SISD is the architecture of traditional sequential computers. The MISD is so

abstract that no real machine has been developed [41]. Most parallel machines built

today fall into the other two categories: either the SIMD or MIMD class. The SIMD

machines, called array processors because most of them are used in processing arrays

of data, consist of an array of processors under the general supervision of a front-end

processor that is usually a sequential machine. The front-end processor executes scalar

operations, while the rest of the processors handle the vector operations. The front­

end processor issues commands that cause the array processors to operate on different

data simultaneously. Illiac IV [12], Goodyear MPP [29] and the Connection Machine

[35] are all in the SIMD class. However, many contemporary parallel computers

1

Chapter 1. Introduction 2

can be found in the MIMD class which consists of several SISD class machines that

may be coupled, either tightly or loosely. Processors in an MIMD machine execute

different computations at the same time, communicating with each other through

shared memory or by some other communication protocols. In this thesis, the MIMD

machine is the target machine and thus the terms "parallel computer" and "MIMD

machine" are used interchangeably.

A memory hierarchy is built into many parallel computer systems. The hierar-

chy exists because it is often necessary to coordinate the different processing speeds

between processors and memory modules, especially in high speed supercomputers.

Major memory components in the hierarchy are the (scalar) registers, vector registers,

cache memory, local memory and shared memory; some of them are hierarchically

organized according to their processing speed, i.e., from fast and low level memory to

slow and high level memory. These memory components are managed by hardware

or software. Cache memory is generally managed by hardware, whereas the other

components are manipulated by software. In fact, registers are generally handled by

the compiler at the machine instruction level, and local and shared memories are con­

trolled by the programmer through variable declaration or dynamic allocation features

that are provided by high level programming languages. Therefore programming in

a high level language is mainly concerned with shared and local memory allocation,

but not with the register allocation problem, which is the job of compilers [1].

Parallel computer systems are characterized by the structure of the memory hier­

archy, which produces the following classification [44]:

• Shared memory system

• Distributed memory system

• Hybrid system

Chapter 1. Introduction 3

A shared memory system has a global memory at the highest level in the hierarchy.

Shared memory is accessible to all processors; therefore, processors can communicate

with each other by using a location in the shared memory. It usually consists of

different parts called banks. For example, there are 128 banks in Cray-2 [17]. This

bank architecture allows different processors to access the shared memory at the

same time, which makes data interleaving (see [41] for example) possible for better

performance, provided that the processors do not try to access the same memory

bank simultaneously. Shared memory and processors are connected via a bus or

switch network. For example, the Alliant FX/8 has a bus connected shared memory

[6]; the NYU Ultracomputer uses a type of multistage interconnection network, called

an Omega network, to connect between shared memory modules and processors [30].

Both systems provide a logically complete connection between memory banks and

processors. In such an organization, all shared data can be stored in shared memory

from which parallel processes fetch the data required for computation. However, this

. type of organization has its own drawbacks, particularly when all processors issue

requests for data in shared memory at nearly the same time. Then, the connections

will most likely suffer either from bus saturation or from hot spot contention [60] [51].

To overcome these potential problems, the memory system is organized with either

cache or local memory. For example, the ETA-10 has 32M bytes of local memory for

each processor (20], and the Cray-2 has 16K 64-bit words of local memory for each

processor [66]. The Alliant has a shared cache, and the IBM 3090/VF provides a

cache memory for each processor [67].

A distributed memory system, sometimes called a message passing system, does

not have a global shared memory. Instead, each processor has its own local memory

that is not accessible to any other processor. All processors are interconnected via a

network through which processors can communicate. In this architecture, all shared

data are distributed over memories each of which is exclusively accessed by its partner

Chapter 1. Introduction 4

processor. Running parallel processes, processors generate and send a message to the

processor that has the required data, and wait for the response. The access time to

a data in a remote processor depends on the network traffic and the length of the

path between processors. On the average, the access time is less than O(log2 n) in a

hypercube network, O(log2 n) in a multistage interconnection network, and O(n) for

a ring network. The ring network is used by the CDC Cyberplus (22], mainly because

of its simplicity. Since the access time largely depends on the network topology,

however, a hypercube network is widely chosen for better performance, in spite of its

hardware complexity. Notable examples of machines using this network are the Intel

iPSC (31], Ametek S-14 [7], NCUBE/10 [58], and FPS-T [34].

A hybrid system has properties of both shared and distributed memory systems.

Each processor retains its own local memory, while the set of all local memories forms

a single shared memory. For example, the BBN Butterfly GPlOOO [11] consists of up

to 256 processors, and each processor has 4M bytes memory module local to itself.

Here all local memory modules serve as a shared memory that is interconnected via a

switch network. (See Appendix A for details.) Another example is the IBM RP3 [59].

The RP3 has up to 512 processor/memory elements (PME) that are connected via

an Omega-network as defined by Lawrie [50]. Each PME contains 2M or 4M bytes

of memory. Part of the memory in each PME is allocated to global memory, the rest

being used as local memory which is rapidly accessible by its partner processor. The

boundary between global and local memory is configured at run time. Therefore, the

RP3 can be treated as a shared memory system if the whole memory in each PME

is allocated to global memory, as a distributed memory system if the whole memory

in each PME is allocated to local memory, or as a mixture of both. In a hybrid

architecture, programs can be coded as if the memory system were shared; however,

the performance behavior is still similar to that of distributed memory system.

Chapter 1. Introduction 5

When a processor is running a certain set of parallel processes concurrently with

other processors, it may require the data stored in local as well as non-local memory.

Since a processor and local memory constitute a sequential processor, the data can

be accessed very quickly if it is stored in local memory. However, if it happens '

to be in non-local (i.e., in external) memory, it obviously must traverse a longer

path between external and local memory. F\J.rther, as discussed above, external data

accesses can easily result in bus saturation or hot spot contention, further degrading

system performance. Therefore, it is very important to utilize local memory. This

thesis thus will only consider parallel computer systems where processors are equipped

with local memories.

1.2 P~rallel Programming

There are three different approaches in parallel programming:

1. An extended language approach

2. A portable parallel programming environment approach

3. A portable parallel programming language approach

In an extended language approach, there are two types of extensions. One type is

an extension incorporating various library procedures for generating and activating

parallel processes, or for passing message between processors. Examples of this type

include Concentrix C [4] for the Alliant FX, .Uniform System C [10] and Uniform Sys­

tem Fortran [9] for the Butterfly GPlOOO, Extended C for the Balance and iPSC [43],

and Multitasking Fortran for the Cray (43]. The other type uses compiler directives.

Examples are Alliant FX Fortran [5], Sequent Balance Fortran, and Cray Microtask­

ing Fortran [45]. Using compiler directives, a programmer can give the compiler an

instruction indicating how to parallelize the constructs that immediately follow the

Chapter 1. Introduction 6

compiler directives. Extended languages are usually provided by the manufacturers

of parallel machines. Because parallel programming tools provided by manufacturers

are specific to a particular architecture, writing a parallel program with them is often

machine dependent. Therefore, developing parallel code is comparable to program­

ming in a low level language for sequential computers (52]. As a result, programming

styles vary a great deal even for the same class of parallel systems.

Better alternatives are found in the second and third approaches to parallel pro­

gramming, both of which emphasize machine independent abstractions. A portable

parallel programming environment approach provides an environment that does not

particularly depend on machine characteristics, because machine dependences are

hidden by means of abstractions. The Force (42], which was developed for shared

memory systems, uses macro definitions to hide machine dependences. Macros are

divided into several classes according to such features required for parallel execution

as shared/private variable declarations, parallel executable loops, synchronizations,

and so on. A Minimalist approach [54], which is efficiently implemented on the Denel­

cor HEP, a shared memory system, embodies Hoare's monitor concept [36]. Machine

dependences are encapsulated in macros that are the lowest level in the abstraction.

All features for parallel execution are implemented with monitors that are written in

macros. The SCHEDULE [19] is a program package that provides a parallel program­

ming environment for shared memory machines. In this package, data dependences

and parallel structures are specified in terms of subroutine calls to the SCHEDULE

subroutines. In other words, machine dependences are buried inside a package of

machine dependent subroutines. The SCHEDULE allows the same user code to run

without modification on different machines with minor, but in some cases difficult
'

modifications of the package itself. In contrast to the above languages specifically

designed for shared memory machines, Linda [28] can be executed on both shared

Chapter 1. Introduction 7

and distributed memory machines. Such a machine independent characteristic is re­

alized by implementing a novel communication mechanism, called the Tuple Space,

that is accessible to all processes in the distributed program. Even though this ap­

proach may provide programmers with a portable parallel programming environment,

implementing the environment on various machines is not easy.

In the third approach, which is the most desirable of all, new parallel program­

ming languages are developed that have constructs to express parallelism. Many such

languages have been proposed, and are based on a number of different mechanisms.

The language Communicating Sequential Processes (CSP) [~7] has a simple parallel

command to create a fixed number of parallel processes that have local variables.

These processes can communicate with each other by means of a synchronous mes­

sage passing mechanism. The language Occam (55] is modeled on Hoare's CSP [37]

and designed for the 'fransputer of Inmos, a micro processor which is often used in

distributed machines. In Ada [26], parallelism is based on sequential processes, called

tasks, that can run in parallel and communicate through the rendezvous mechanism.

Concurrent C [27] is an extension of the C language [46] with additional features for

distributed programming based on Ada's rendezvous model. Whereas CSP, Occam,

Ada and Concurrent Care designed for distributed machines, Concurrent Pascal [33]

is designed for shared memory machines, in that communications between its par­

allel processes are done through shared memory. Blaze [56] is a scientific parallel

programming language that has a Pascal-like syntax, but its procedure invocation

mechanism is similar to functional languages. Cedar Fortran [32] was developed for

the Cedar machine [48] whose architecture provides two levels of loop parallelism:

cluster loop and spread loop parallelism. However, none of these languages is popu­

larly used, probably because they all tend to incorporate various machine dependent

mechanisms in one way or another.

Chapter 1. Introduction 8

Given a parallel machine, an efficient parallel language program can be written

by a competent programmer. Achieving the same efficiency may not be possible,

however, when the program is run on another machine, unless the program is modified

significantly to utilize the different hardware characteristics of the new host machine

[44]. This is illustrated in [45] by comparing 12 programs to compute 7r written in 12

Fortran dialects for parallel machines.

In an effort to make a language widely acceptable for parallel programming, like

Fortran 77 for sequential programming, PCF Fortran [64] has been developed and is

recommended by the Parallel Computing Forum of several manufacturers and user

communities. Basically, the language is an extension of Fortran 77 with a set of

primitives added in order to program shared memory machines. Since Fortran is

often called for in scientific programming, its parallel equivalent, PCF Fortran, is also

expected to be gradually put into use for scientific parallel programming.

There are five levels of parallelism in parallel program execution [40]:

• Level 1: Independent jobs and programs

• Level 2: Job steps and related parts of programs

• Level 3: Routines, subroutines and co-routines

• Level 4: Loops and iterations

• Level 5: Statements and instructions

The higher the level, the finer the granularity (the unit of parallelism). Parallelism

at level 1, commonly known as multiprogramming, is realized in traditional single

processor systems. That of level 2 may be easily found, for example, in compilations

of many procedures being carried out in parallel. Parallelism at level 3 is supported by

extended languages with libraries for parallel programming. At level 5, parallelism

is also being implemented in various machines, the CDC-6600 being a prominent

Chapter 1. Introduction 9

example, with look-ahead techniques using multiple functional units. Parallelisms at

levels 1 and 2 are the main concerns of the operating system; that at level 5 is a task

for hardware functional units; and expressing parallelism at level 3 largely relies on

the skill of programmers and on general algorithm development. But there is still a

great deal to be resolved at level 4, which therefore remains one of the major research

areas in parallel programming.

Most parallel programming languages have similar constructs to declare paral-

lelism at the level of loops, such as forall of Blaze, cdoall and sdoall of Cedar

Fortran, parallel do and spread do of PCF Fortran, parallel loop of IBM For­

tran for the 3090 series, par for of Occam, scheduled do of the Force, compiler

directives of Alliant Fortran and Cray microtasking, and so on. The syntax and se­

mantics of these constructs are very similar. Therefore, much research has focused

on parallelism in loops, as described in detail in the next section. In this thesis, we

also focus on parallelism at the level of loops, and use forall as a parallel construct

to express the parallelism.

1.3 Program Transformation

For many traditional programmers, writing programs for parallel computers is more

difficult than for sequential computers, not only because humans tend to think se­

quentially rather than concurrently, but also because there are many issues that make

parallel programming inherently difficult: non-determinism, race conditions, synchro­

nization, and scheduling, just to name a few [52].

It is also true that ever since the inception of modern electronic computers, an

enormous number of very valuable programs have been written for sequential comput­

ers. Out of necessity, therefore, many automatic parallelization techniques have been

Chapter 1. Introduction 10

proposed in an attempt to run sequential programs on parallel machines. Such tech­

niques are intended to detect parallelism in sequential programs and then generate

corresponding parallel machine code [49] [3] [57]. Automatic parallelization compil­

ers, such as CFT for the Cray X-MP, KAP205 [39], and KAP /S-1 [16], have also been

developed. Automatic parallelization proved particularly successful for vectorization

as well as for SIMD parallelism. Many parallelization methods may also be applied

to program restructuring for MIMD parallelism [61].

The analysis of data dependences in the program is a very important tool used

for detecting parallelism and restructuring programs. There are three types of data

dependences: flow-, output-, and anti-dependence [47]. It is said that there exists a

flow-dependence from a statement S1 to S2 if S1 defines a variable and S2 then uses it

without defining the variable again between Si and S2 in the execution sequence; an

output-dependence if S2 defines the same variable again; and an anti-dependence if S1

first uses the variable and S2 defines it afterward. If all the data dependences in a loop

do not cross the loop iteration boundary, then the loop is said to be parallelizable.

Further, in order to increase the possibility of detecting parallelism, data dependences

annotated with direction or distance vectors, which are expressed in terms of the

iteration space of the loops, have been proposed [73]. With the help of annotated data

dependence analysis, even an unparallelizable program may become parallelizable by

applying some transformations, such as scalar expansion, loop interchanging [69), and

loop skewing [70], on the source. These transformations should not violate the data

dependence rules [73] mandating that the data dependence should be forward directed

in the execution sequence.

Program restructuring techniques are used to enhance the performance of pro-

grams written in parallel programming languages, whereas parallelization techniques

are used to detect parallelism in sequential programs. Different restructuring tech­

niques are applied to different architecture classes. For MIMD architecture machines
'

Chapter 1. Introduction 11

it is important to make parallelism of as large granularity as possible, in order to

reduce the system overhead in generating parallel processes. Loop fusion (53] is one

technique used to create large granularity of parallel processes. For machines equipped

with vector processors, such techniques as vectorization [2], strip mining [53], loop fis­

sion [57] and loop collapsing [62] may enhance the performance of vector processors.

For machines equipped with cache memory, loop interchanging and loop tiling [71]

[72] [68] can be applied to improve the data locality. Most of these transformations

are based on dependence analysis [25].

Data locality refers to a program's tendency to refer to a subset of its address space,

called a working set [18], during any time interval and to that subset's tendency to

change its members slowly [15]. Even parallel computer systems have these properties,

because each processor has its own execution stream. These properties are strong

justification for building hierarchical memory systems. Specifically, virtual memory

and cache memory are designed and implemented based on the properties of data

locality.

1.4 Data Localization

Cache memory can be used efficiently through program transformations, as discussed

in the previous section, because its effective utilization depends on the data locality of

a program [63]. In fact, many parallel computers, and even sequential computers, are

equipped with cache memory for improved system performance. However, there are

other machines, like the Cray, ETA-10 and Butterfly GPlOOO, that do not have cache

memory. Improving data locality alone will not significantly enhance the performance

of these machines, even though there might be slight enhancement due to virtual

memory effects. On these machines, local memory serves as an important memory

component that affects the performance of parallel computers.

Chapter 1. Introduction 12

The old models of the Cray series do not have local memory, but the Cray-2 is

manufactured with 16K 64-bit words of local memory per processor in place of cache

memory (21]. The ETA-10 has 32M bytes of local memory per processor (40]. In

machines with cache memory, the size of cache memory is usually small compared

to local memory. For example, the RP3 has 32K bytes of cache memory and up to

4M bytes of local memory per processor [13]. Hence, restructuring techniques for

improving data locality have been developed to reduce the size of the working set.

If the working set fits into cache memory, then utilization of local memory, which is

ineffective, is not needed. Sometimes, however, working set size can not be reduced to

fit into cache memory by restructuring alone. In that case, cache memory generates

frequent cache miss interrupts that request data from memory at a higher level of

hierarchy. We can utilize local memory to improve the performance by putting it

between cache memory and shared or external memory. This will reduce the time to

service cache miss interrupts.

The programmer has explicit control over local memory through local variable

declaration or dynamic allocation features that are provided by high level languages.

It is the programmer's responsibility to use local memory efficiently. In complex

problems, efficient algorithms aimed at utilizing local memory are often called for

to get good performance [65]. Brewer et al. [14] developed a useful tool to help in

programming parallel algorithms. It displays memory access patterns of one or two

dimensional arrays that are being accessed in a program. With the information made

available by using this tool, the programmer can decide which part of the data should

be in local memory for better performance.

Most scientific computations store data in array structures, and can be run in

parallel. On parallel machines, the data are usually shared between processors and

are thus stored in shared or distributed memory, i.e., external or remote memory. If

there is no data access conflict between sets of data accessed by processors, it may

Chapter 1. Introduction

forall i = 1, n
for j = 1, n

c(i,j) = 0
for k=l,n

c(i,j) = c(i,j) + a(i, k) * b(k,j)
endf or

endf or
endf orall

(a) Input to Localization System

forall i = 1, n
Declare la(l: n, 1: n),lb(l: n, 1: n),lc(l: n, 1: n)
Copy b(l : n, 1 : n) to lb(l : n, 1 : n)

loop
Copy a(i, 1: n) to la(i, 1 : n)
for j = 1, n

lc(i,j) = 0
for k = 1, n

lc(i,j) = lc(i,j) + la(i, k) * lb(k,j)
endf or

endf or
Copy lc(i, 1 : n) to c(i, 1 : n)

endf orall
(b) Output from Localization System

Figure 1: Example of Data Localization

13

be helpful to copy data required by a processor from external memory into its local

memory and access it there, or vice versa. We call the process of defining a variable

in local memory and inserting such copy operations data localization. For example,

the input to, and the output from, the data localization system developed here are

shown in Figure 1 for a matrix multiplication program.

The complete data localization system discussed in this thesis is shown in Figure

2. The system takes a parallel loop as input. It does not matter whether the parallel

loop is directly coded by a programmer, is the result of a parallelizing system, or

is itself restructured to improve data locality. As output, the system produces a

Chapter 1. Introduction

Programmer

'
' . .
~

:
.. ···············'

:·

Parallelizer

. .
i

'
'

'

.

. .

Localization

Parallel Loop
with Localization

··········· ... \

' .
.
'

' .
'

. .
' . .

i.·········

. .

.
' '

.
··············· l

Restructurer

Improved
Parallel Loop

'
........................ -'

Figure 2: Loop Transformation Systems

14

Chapter 1. Introduction 15

parallel loop with local copy operations, as shown in Figure 1. The parallel loops

thus generated have the same loop structure as the input parallel loop, except that

data localization statements are inserted in appropriate places.

1.5 Thesis Overview

This thesis discusses a data localization system that can improve the performance of

parallel loops. An example is offered by the matrix multiplication program in Figure

1 (a), whose detailed syntax and semantics will be explained in Chapter 2. When the

parallel loop runs on a distributed memory system of P processors, a processor makes

~ of array accesses to local memory and P'Pl to remote memory, if we assume that

all arrays are evenly distributed over all memory modules. Since most data accesses

are made remotely, the delay caused by remote data accesses is a significant part of

the computation time. The above statement is also true of a shared memory system,

if all arrays are stored in shared memory.

A better version of a program is the one that utilizes local memory for fast data

access. The object of this thesis is to generate a program with data localization as

shown in Figure 1 (b). In (a), the array variables, a, b, and c, are mostly referenced

by an assignment statement enclosed by the nested loop of depth three, and many

elements of these arrays are stored in remote memory; thus the number of remote

memory accesses is O(n3). However, in (b), arrays are copied just inside the forall

loop by a row of n elements, and thus the number of remote accesses is O(n
2
). The

primary effect of data localization is that the number of remote memory accesses are

reduced from O(n3) for program (a) to O(n2
) for (b). Because a remote memory

access takes a much longer time than a local memory access, reducing the number of

remote memory accesses is crucial for improving performance. For example, remote

access takes eleven times longer than local access on a Butterfly GPlOOO.

Chapter 1. Introduction 16

The problem to be studied here can be stated as follows: How can a compiler

automatically generate data localization in such a way that the resulting code is

nearly optimal? We shall consider three aspects of this problem:

1. Where to put copy operations

2. How much data to copy

3. What method to use to make a local copy

Before any further discussion, we need to define the reference mode of a variable

in statements. In a statement, we say that the reference mode of a variable is in read

mode if its value is used, in write mode if its value is modified, and in read/write mode

if its value is used and modified. In the example code, arrays a and bare used in read

mode, and c is used in write mode in one statement and in read/write mode in the

other statement.
With respect to the question of where to put the copy operations, the location

depends on the reference mode and index function of the variable to be localized.

The reference mode determines whether the copy goes before the variable reference

or after (or both). The index function determines the loop level of localization. If

the reference mode of a variable is in read mode, it should be localized before the

computation; if in write mode, after computation; if in read/write mode, it must go

both before and after the computation. Because a and bare both in read mode, they

should be localized before the computation. The index function for referencing b,

(k,j), is independent of forall loop variable i. The whole array b can be localized

before starting parallel tasks. The index function for a, (i, k), does not have j, but has

the term i; i.e., each parallel task accesses only one row of array a. Each parallel task

needs to make a local copy of the row it may access. Therefore, a can be localized

before the for loop j. Unlike a and b, c is used in read/write mode in the code.

However, since the first usage of c is in write mode, the original values are not used.

Chapter 1. Introduction 17

Thus, the local array variable le is used for computation and later copied into c. Since

the index function for c, (i,j), has forall loop variable j, it is localized just after

for loop j.

The program with localization shown in Figure 1 (b) has localization statements

in the right places according to the algorithms developed in this thesis. One might

ask why a is not localized along with ·b, even though a is used in read mode. Should

we do so, we could still get correct results. However, we also have to take into

account a performance problem that might result. Since the whole array a is not

needed by each processor, copying unnecessary elements would waste local memory,

and local memory may not be large enough to contain the whole array. If a is

localized like b all processors may access the same data almost at the same time
' '

possibly causing network congestion and memory hot spot problems. Therefore, it is

necessary to scatter localization requests throughout the parallel execution to avoid

those unwanted effects on performance.

In the process of data localization, we need to copy data from external memory

into local memory, or vice versa. If the data to be copied are contiguous, i.e., if the

data are stored in consecutive areas in memory, then the data can be copied as a block,

which may reduce the localization time. For example, the Butterfly GPlOOO provides

such a method, called block transfer, which can move contiguous data by blocks of

up to 64 4-byte words. It takes approximately 72 µsecond to move 64 4-byte words

by block transfer, 7 µ second to read a 4-byte word from remote memory, and 0.38

µ second to write a 4-byte word into local memory [8]. Therefore, in localizing 64

4-byte words from remote to local memory, the block transfer is 6.56 times faster

than word-by-word transfer. (See Appendix A for more details about the Butterfly

GPlOOO.) Thus, determining whether the data are contiguous is very important if

fast block transfer is to be used for better performance. Suppose that the statement

Chapter 1. Introduction 18

for the matrix computation of Figure 1 is replaced with

c(i, 2j) = c(i, 2j) +a(i, 2k) * b(2k, 2j).

Every other element on a row of arrays is referenced. Therefore, the data are not

contiguous, and word-by-word localization will be used, provided that the time to

localize and access data in local memory is less than the time to access data without

localization. This case raises the question of why a whole row should not be copied

using fast block transfer, if row major array allocation is assumed. For a and b, such

a transfer does not cause any problem, but there may be a problem with c. If a row

is copied back from a local array, le, to the original remote array, c, then half of the

original values may contain garbage values. Also, in some cases, each parallel task

may modify a different set of elements on a row.

More problem definitions and assumptions for the issues of this thesis are described

in Chapter 2.

The compilation steps of a data localization system are shown in Figure 3. We

propose new concepts, the tessellation process in Chapter 3 and q-contiguity in Chap­

ter 4, to solve the problems discussed above. The tessellation process takes a parallel

loop as input and divides the set of d-dimensional array elements referenced in a

nested loop of depth n into (~) subsets. By dividing the referenced elements into

several small pieces, the tessellation process simplifies the other procedures discussed

in this thesis. Further, each subset provides information about the locations of the

array elements in the subset that will be used by other parts of the algorithms. (The

usage of the term "tessellation" differs here from that of Hudak et al. in their paper

[38], where tessellation divides the iteration space into P partitions for P processors,

and each partition is allocated to a processor.) Currently, the tessellation process is

restricted to 1- and 2-dimensional arrays. It has not yet been generalized to higher

I

I

I

I

I

I

I
I

I

I

I

I

Chapter 1. Introduction

Tessellation
Process

,__ __ __,.....---------' · ..

Access Pattern
d-contiguous ?

no

........ ...
..........

Localize Data
with Block-transfer

Localize Data
word-by-word

. .
.
. .

. . . .
. .
. . . .

Figure 3: Data Localization System

Parallel Loop

.

.
. . .

19

Chapter 1. Introduction 20

dimensional arrays.

As mentioned before, contiguity of referenced elements is very important for ef­

ficient localization. First, q-contiguity is introduced to determine whether all the

referenced array elements form contiguous blocks, where q is a positive integer and

less than or equal to the dimension of the array. The concept can be understood

easily by using an example. Let X be a 2-dimensional array. If all referenced ele-

ments are X(l, 2), X(2, 2), ... , X(9, 2), then the array is called I-contiguous, and if

they are X(2, 1), X(2, 2), ... , X(2, 9), then it is called 2-contiguous. The condition of

I-contiguity is important for column major array allocation, and that of 2-contiguity

is important for row major array allocation. We can determine whether all the ref­

erenced array elements satisfy the condition of q-contiguity by using the information

from the tessellation process.

The localization algorithms differ depending on whether or not all the referenced

elements form contiguous blocks. Chapters 5 and 6 present algorithms that localize

the contiguous and non-contiguous data, respectively. The algorithms developed for

non-contiguous data are extensions of the research by Gallivan et al. [24]. That paper

provides the concepts of data localization, and of a face in the iteration space. The

data localization in that paper provides the concept of localizing the image of a face,

but does not consider the precise algorithms needed to implement localization of all

the referenced elements. In this thesis, we relate the face to the tessellation process,

and develop concrete algorithms based on the improved theories.

In Chapter 7, some test programs, run on the Butterfly GPlOOO machine, will

show how the performance is improved by programs with data localization. Finally,

Chapter 8 summarizes and further suggests what future research might be required

to improve the algorithms developed in this thesis.

Chapter 2

Problem Definitions

Most programming languages provide loop constructs which have similar syntax and

semantics. Before we start developing algorithms, we need to define the syntax and

semantics of a loop construct for a clear description of algorithms, and we need to

explain the assumptions of this thesis.

2.1 Loop Constructs

Most widely used programming languages have constructs, called loops, to denote the

repetitive execution of a group of instructions, such as do in Fortran, for in Pascal

and C, and so forth. Each loop consists of a loop variable whose value is updated on

every iteration, loop bounds that are the lower and upper bounds of the loop variable,

a stride which is the value added to the current value of the loop variable for the next

iteration, and a loop body which is a group of instructions that are executed repeatedly

for different values of the loop variable on every iteration. It is also possible to enclose

several loops within the body of another loop, called a nested loop. In this case, the

nesting depth of a loop is defined as the number of enclosing loops.

With the development of parallel computers, many programming languages such

as Cedar Fortran [32] have been extended with constructs for parallel execution.

Examples of those constructs used in parallel programming are doall and forall,

designated using the suffix all with the names of loop constructs. In this thesis ,

for will be used for serial loops and forall will be used for parallel loops. The

21

Chapter 2. Problem Definitions

forall i = l, u

initialization
loop

loop body
endf orall

Figure 4: Syntax of forall Construct

22

syntax of the forall construct used in this thesis looks like Figure 4. Initialization

may consist of variable declaration statements and/ or executable statements, or it

may be null. When there is no statement in initialization, the keyword loop may

be omitted. The loop body contains a sequence of executable statements. When a

forall construct is run on a parallel computer, each processor allocates variables

declared in initialization to its local memory and executes the loop body accordingly.

After initialization, (u - l + 1) parallel tasks are generated which execute the loop

body for i = l, .. . , u in parallel.

2.2 Assumptions

The first concern of this thesis is to develop data localization algorithms in a nested

loop whose outermost loop is a parallelized forall loop which looks like Figure 5

(a). If the keyword loop is omitted, we assume that there is no initialization. Our

first assumption is that there is no synchronization problem with the array variable we

want to localize. If a variable (a scalar or an array element) needs to be synchronized,

it may be accessed in write mode by several processors, or given a value by one iterate

that is needed by a later iterate, and thus it is not eligible for data localization.

To simplify the initial process of algorithm development, we assume that all oc­

currences of references to an array have the same index function. (The resulting

algorithms, we presume, will serve as a base for considering cases of different index

Chapter 2. Problem Definitions

for all io = lo, uo
for i1 = l1, u1

endf or
endf orall

for in = ln, Un
X(c10io + · · · + C1nin, .. ·, Cdoio + · · · + Cdnin)

endf or

(a) Parallelized nested loop

for in = ln, Un
X(c11i1 + · · · + C1nin, · · ·, Cd1ii + • · · + Cdnin)

endf or

endf or
(b) Standard nested loop

Figure 5: Nested Loops

23

functions in future research.) For example, if the following statements are coded

inside the innermost loop,

Y(ii, ii+ i2) = Z(ii, i2) + X(ii, i2 + 1)
Z(ii, i2) = Z(ii, i2) + X(i1, i2 + 1)

then the two references to X have the same index function (ii, i2+1), Y has (ii, ii +i2),

and the three references to Z have (i1, i2)· We handle each array independently, as

if there were only one reference to each array. Thus, only one array reference, which

represents all occurrences of references to that array, will be coded in a nested loop

like Figure 5 (a).

In this example, Xis used in read mode, Yin write mode, and Zin read and write

mode. When all occurrences of the references to Z are represented as one reference,

the reference mode is regarded as read/write mode. However, we will not specify the

array reference mode, whether that be read, write, or read/write mode, because each

Chapter 2. Problem Definitions 24

data localization process is quite simple and straightforward. Clearly, if the reference

mode is read mode, the remote data should be copied first into local memory before

they can be used. If it is write mode, then the opposite is true, in that the data will be

modified in local memory and then sent back to remote memory. If it is read/write

mode, both of the above operations must be carried out. For simplicity, however,

from now on we will assume that the reference mode is read mode, unless otherwise

specified.

The constant terms in index functions do not affect the algorithm development,

because they imply the simple translation of referenced elements and we assume that

all references to an array have the same index function. Thus they can be ignored in

developing algorithms. Moreover, in the nested loop of Figure 5 (a), the loop variable

io of the parallelized forall loop behaves like a constant inside that loop. When a

processor fetches one parallel task and runs it, the value of io remains fixed until the

process terminates. Therefore, we can also ignore the term io in index functions, and

omit the outermost for all loop, as shown in Figure 5 (b). Consequently, we assume

that there is no constant term in the index function.

Little difficulty is presented by the stride. Many loop statements have a stride of

1, and even a loop with a stride of another value can be easily transformed to have a

stride of 1 by the following normalization process:

for i=l,u,s for i=O,lu;1J,l
X(i) X(l + si)

endfor endfor

Therefore, we can assume that the loop stride is 1, and thus omit specifying the stride

in the loop structures.

We also assume that loop bounds are independent of other loop variables. To be

sure, many problems in linear algebra are programmed using nested loops whose loop

bounds depend on other loop variables. However, these cases, for which different

kinds of tessellation process may be developed in the future, are not considered in

Chapter 2. Problem Definitions 25

this thesis.

The index functions of array references are assumed to be linear combinations of

loop variables on integer domain and range. With the exception of sparse matrix

representations, we seldom see index functions that are not linear combinations of

loop variables. This assumption makes it possible to handle index functions in matrix

form.

Throughout this thesis, we assume that the depth of a nested loop is n, the

loop variables are i 1, ... , in, inwards from the outermost loop, and the dimension

of the array to be localized is d. Here, the algorithms are developed for the cases

n 2: d. If n 2: d, the number of accesses to the array is not less than the number of

referenced elements. As the difference between n and d becomes larger, the number

of accesses is much greater than that of the referenced elements, and the benefit of

data localization becomes greater. In fact, the case of n 2: dis common in parallel

programming, and many significant applications are based on matrix multiplication

types of array operations, as shown in Figure 1. The case of n < d is not supported

by the tessellation process, unless at least d - n indices of the index function are

constant.

Finally, it is assumed that arrays are allocated in row major, but all algorithms

can be applied to the column major allocation scheme with minor modifications.

To summarize the assumptions made thus far:

• There is no synchronization problem.

• All occurrences of references to an array have the same index function.

• There are no constant terms in index functions.

• The loop stride is 1.

• Loop bounds are independent of other loop variables.

--

Chapter 2. Problem Definitions

for i1 = 0,3
for i2 = 0,4

for i3 = 0, 5
X(i1 + i2, i2 + i3)

endf or
endf or

endf or

Mapping

Figure 6: Nested Loop and Vector Space

• Index functions are linear combinations of loop variables.

26

• The depth of a nested loop is greater than or equal to the dimension of the

array to be localized; i.e., n ~ d.

• Arrays are allocated in row major.

In Figure 5, the parallelized loop of (a) satisfies all the assumptions, and the standard

nested loop of (b) has the outermost forall loop omitted from the code of (a).

Since all parallelized loops have a forall loop enclosing a nested loop, we will use

the standard nested loop of (b) for algorithm development and omit the outermost

forall loop.

2.3 Nested Loops and Vector Spaces

4

Chapter 2. Problem Definitions 27

We start developing algorithms by matching a nested loop structure with a map­

ping from and to vector spaces.

In a nested loop of depth n, an iteration space is defined on an n-dimensional

space, where its axes are defined by th~ loop variables of the nested loop and its

boundaries are defined by the loop bounds of the loop variables. A d-dimensional

array can be considered as a hyper-cube in a d-dimensional space, where its axes are

named x
1

, •.. , xd. We will follow the same naming convention throughout this thesis.

For example, in Figure 6, the iteration space is defined on a 3-dimensional space with

axes i
1

, i
2

, and i
3

, and the array X is defined on a 2-dimensional space with axes

x
1

and x
2

. In the figure, it is assumed that the array X is declared as X(0:8,0:10).

Therefore, a nested loop can be regarded as a mapping from a domain in an n­

dimensional space to a range in ad-dimensional space. In particular, we regard the

spaces as the modules zn and zd. The domain is the iteration space of the nested

loop, and the bounds of loop variables specify the boundaries of the domain. The

range is defined by the array elements referenced by the nested loop. The mapping

function is characterized by the index function, that is, by the coefficients of the

iteration variables in indices of the index function for the array reference. Then the .

mapping function of the nested loop of Figure 5 (b), H, can be represented in the

following matrix form.

cu

H=

The matrix H of the nested loop in Figure 6 is represented as

H=(l 1 O)·
0 1 1

Chapter 2. Problem Definitions 28

The domain of each iteration variable is denoted by

The domain, i.e., the iteration space D, and the range R can be represented as

D Di x · · · x Dn c zn,

R H(D).

For example, the domain of the nested loop in Figure 6 is

D =Dix D2 x D3 = [0,3] x [0,4] x [0,5].

The domain resembles a hyper-cube in an n-dimensional space with axes named

by the iteration variables. Likewise, the range is a set in a d-dimensional space with

axes xi, ... , xd. Therefore we may think of a unit vector of the kth iteration variable,

i.e., ek, as a unit vector of the ik axis, fork= 1, .. . , n,

1

0

0

0

1

0

0

0

0

1

To denote values of loop variables at an instant, n-tuple values for i 1 , ... , in are

represented by a vector

'{ = (ii,···, in) = (i1 . . . Zn) T,

Chapter 2. Problem Definitions 29

and the corresponding n-tuple of lower and upper bounds by

r - (Z1, ... 'Zn) = (Z1 . . . Zn) T'

U - (U1, ···,Un) = (U1 • . . Un) T

For example, in Figure 6,

f=(0,0,0)= (o o of, it=(3,4,5)= (3 4 5 r
The coefficient in the rth row and cth column of H represents the amount of the

contribution of the iteration variable ic to the rth index of the array reference. The rth

row is the sequence of coefficients of iteration variables in the rth index of the index

function for the array reference, and the cth column is the sequence of coefficients of

the iteration variable ic from the indices of the index function. Let us denote the kth

row in the row vector form:

9k = (Ck! · • • Ckn) , for k = 1, ... , d.

Each index of the index function for the array reference is denoted by

The column vectors of Hare the images of unit vectors under mapping H, and they

are represented as

, fork=l, ... ,n.

Chapter 2. Problem Definitions 30

Thus, H may be represented in the following equivalent forms:

~ ~1

H = = (h1 · · · hn) =

The row and column vectors of the nested loop in Figure 6 are

91 = (1 1 0) ' 92 = (0 1 1) '

Since ek is a unit vector of iteration variable ik, under H, hk is the image of ek,

and (Uk - lk)hk is the image of Dk· Let the image vector of Dk= (Uk - lk)hk, be vki

that is,

For example, in Figure 6,

These image vectors, v1, v2 , and V3, are illustrated in Figure 6.

2.4 Terminology

In this section, we define some terminology that is used very often throughout this

thesis.
In a nested loop with loop variables ii, . . . , in, we define a nested loop induced by

Chapter 2. Problem Definitions 31

{iii, ... , ij,} as the nested loop whose loop variables are ij1 , ••• , ii1 , and whose other

loop variables are set to a value within the loop bounds. For example, the following

code is a nested loop induced by { i 1, i3} at i2 = 0 from the nested loop of Figure 6.

for i1 = 0,3
i2 = 0
for i3 = 0,5

X(i1 + i2, i2 + i3)
endf or

endf or

In a nested loop with an array reference, the collection of the array elements

referenced by the nested loop is called the footprint of the nested loop, and a sub­

footprint is a subset of a footprint. The base-element is the array element referenced

by the nested loop at i = ~ that is, H(l1, ... , ln) is the coordinate of the base­

element. The base-space for {iii = lii, ... , ii1 = lj1 }, which is also a subfootprint,

is defined as the array elements referenced by the nested loop induced by a set of

loop variables { ik
1

, ••• , ik.}, when loop variables iii, ... , ij, are set to lii, . .. , ti1 , re­

spectively, within the loop bounds of those loop variables, where t + s = n and

Chapter 3

The Tessellation Process

When a d-dimensional array variable is referenced in a nested loop of depth n as in

Figure 5, the footprint of a nested loop can be divided into (~) subfootprints. Each

subfootprint is the footprint of a nested loop induced by a set of d loop variables,

and the other (n - d) loop variables are set to either the lower or upper bound of

the loop variables. The subfootprints are mutually disjoint except at the boundaries

which are the intersections of the adjacent subfootprints. (We use the term boundary

in two ways: here, it represents the intersection of the adjacent subfootprints, and

later it will be used to represent the border of the iteration space.)

For an example of a 1-dimensional array referenced in a nested loop, refer to

Figure 7. Since its nesting depth is 3, there are G) = 3 disjoint subfootprints. There

are two possible ways to divide the footprint of the nested loop, as shown in (a) and

(b) of the diagram. In (a), the interval BC is the footprint of the nested loop: the

subinterval OA is the subfootprint for ii =0 to 5, i2 = i3 = O; OB for i2=0 to 6,

i
1

= i
3

= O; and AC for i3=0 to 7, ii=5, i2=0. In (b), the interval QR, which is the

same as BC in (a), is the footprint of the nested loop: OP is the subfootprint for

i
3
=0 to 7, ii = i2 = O; OQ for i2=0 to 6, ii = i3 = O; and PR for ii =0 to 5, i2=0,

i
3
=7. In both (a) and (b), the points 0, A, and Pare the boundary points.

For an example of a 2-dimensional array referenced in a nested loop, refer to

Figure 8. Since its nesting depth is 3, there are G) =3 disjoint subfootprints that are

parallelograms. Here, too, there are two possible ways to divide the footprint of the

32

Chapter 3. The Tessellation Process

for ii= 0, 5
for iz = 0,6

for i3 = 0, 7
X(ii - iz + iJ)

endf or
endf or

endf or

B 0 A C --+_...
(a)

Q 0 P R --+ ... ~_...
(b)

Figure 7: Tessellation of a 1-dimensional Array

33

nested loop, as shown in (a) and (b). In (a), the parallelogram A is the subfootprint

for ii =0 to 5, i
2
=0 to 6, i3=0; the parallelogram B for iz=O to 6, i3=0 to 7, ii =0;

and the parallelogram C for ii=O to 5, i3=0 to 7, iz=6. In (b), the parallelogram p

is the subfootprint for ii =0 to 5, iJ=O to 7, i2=0; the parallelogram Q for i2=0 to 6 '

i
3
=0 to 7, ii=5; and the parallelogram R for ii=O to 5, i2=0 to 6, i3=7. In both (a)

and (b), there are three boundary lines between subfootprints.

Furthermore, there are some other important aspects in the examples offered by

Figure 7 and 8. Using the notation defined in Chapter 2, we know of Figure 7 that

for a 1-dimensional array,

H = (hi h2 h3) = (1 -1 1) ,

v
1
= (u

1
- li)h

1
= (5) , v, = (u2 -12)"2 = (-6) , V3 = (u, - l,)h3 = (7) .

Clearly, in both (a) and (b), there are three vectors that span the whole footprint:

namely, vi, v
2

, and v
3

• In (a), vi is OA, v2 is OB, and V3 is AC. The base-points

of the subfootprints are H(O, 0, 0) for OA and OB, and H(5, 0, 0) for AC. In other

words, the subfootprints OA, OB, and AC are H(Di X 12 X l3), H(li x D2 x Z3),

and H(ui x 1
2

x D3), respectively. Similarly, in (b), the subfootprints OP, OQ, and

PR are H(li x [
2

x D3), H(li x D2 X l3), and H(Di x 12 x u3), respectively. Notice

that Di x [
2

x [3, li x D2 x [3, ui X l2 X D3, li X 12 X D3, and Di x l2 x u3 are

Chapter 3. The Tessellation Process

for i 1 = 0,5
for i2 = 0,6

for i3 = 0, 7
X(i1 + i2, i2 + iJ)

endf or
endf or

endf or

2nd index

' ' ' ' . '-... '
•• ', •• & ••• ',

' '
' ' • • • • • • • • • • • •

' A ' ' '-. -'""'- . . ·- .. --- -..... -.
"' I I ' '

', .. ' '
'• • ~ •• £, ••• :

'• ' ' 'I I ·-· ... _ -..... -.
1st index

(a)

2nd index
•' ' ' ' . '"'

•• .P ••• : •• ', ' ... ' ..
I ' , _ _ _
' .R. ' ' '. . ' ' '-... ', ', .. '

'• • A • • • '• • :
' ' ' ' ,, ·-· ---· ---· .,._.

1st index
(b)

Figure 8: Tessellation of a 2-dimensional Array

34

1-dimensional boundaries of the iteration space, and the rank of H is 1. (Here, the

term boundary refers to the border line of the iteration space.) In the iteration space,

there are (D2(J-l) = 12 1-dimensional boundaries, but by choosing the appropriate

number of 1-dimensional boundaries - in this case, (i) = 3 - the whole footprint

can be covered by the images of the chosen boundaries.

Similarly, in Figure 8, we have, for a 2-dimensional array,

v
1

= (u
1
-1

1
)h

1
= (~) , "2 = (u2 - li)h2 = (:) , v, = (ua - la)h3 = (~)

In both (a) and (b), there are three vectors that span the whole footprint: namely,

Chapter 3. The Tessellation Process 35

v
1

, v
2

, and v
3

. In (a), the parallelogram A is spanned by V1 and v2 ; the parallelogram

B by v
2

and v3; and the parallelogram C by v1 and v3. The base-points of the

subfootprints spanned by two vectors are H(O, 0, 0) for the parallelograms A and B,

and H(O, 6, 0) for the parallelogram C. In other words, the parallelograms A, B, and

Care H(D1xD
2

x13), H(li x D2 x D3), and H(D1 x u2 x D3), respectively. Similarly,

in diagram (b), the parallelograms P, Q, and R are H (D1 x 12 x D3), H (u1 x D 2 x D3),

and H(D
1

x D2 x u3), respectively. Again notice that D1 x D2 x 13, l1 x D2 x D3,

Di x u
2

x D3, D1 x 12 x D3, u1 X D2 X D3, and D1 x D2 x U3 are 2-dimensional

boundaries of iteration space, and the rank of H is 2. (Here, the term boundary

refers to the border plane of the iteration space.) In the iteration space, there are

G) 2<3- 2) = 6 2-dimensional boundaries, but by appropriately choosing G) = 3 2-

dimensional boundaries, the whole footprint can be covered by the images of the

chosen boundaries.
The boundaries in the above two examples are called faces of the domain (iteration

space). In this chapter, a method, called the tessellation process, is developed by

which we can divide the range (footprint) of the nested loop given in the form of

Figure 5 (b) into disjoint areas (subfootprints). The tessellation process is equivalent

to the method of choosing faces, the union of whose images covers the whole footprint.

Definition 1 Given a nested loop in the form of Figure 5 (b), let the rank of H be r .

An r-dimensional boundary of the iteration space is called a face, and denoted by F.

An example of a face is D1 X · · · X Dr X 17r+l X · · · X 1Jn, where 1}j = lj or Uj for

j = r + 1, ... , n.
The iteration space of a nested loop is defined on an integer domain, and the

index function maps the iteration space to an integer range, since the coefficients are

integers. For the purposes of the tessellation process we consider in this chapter, they

are assumed to be real numbers. In the following chapters, this process will be used

Chapter 3. The Tessellation Process 36

to divide the footprint of the nested loop, and then algorithms will be developed on

an integer domain and range.

Since H, the matrix form of the index function for an array reference in a nested

loop, is linear, the range of H can be represented as

R H(D) = (h1 . . . hn) (D1 x . . . x Dn)
n

""""D ·h · ~ J J
j=l

n

{ """"a ·h · I l · < a · < u ·} ~JJ J-J-J
j=l

n

{""'(a ·h · + l ·h ·) I 0 < a· < u · - l ·} ~ J J J J - J - J J
j=l

n

{"""'(a ·v· +l ·h ·) I 0 <a·< 1} ~JJ JJ -J-
j=l

n

{Laivi +H(i} I 0 ~ ai ~ l}.
j=l

(by using vi = (Uj - lj)hi)

Note, in the last expression, that the range R may be represented by a set of linear

combinations of v1 , . . . , Vn, with the coefficients between 0 and 1, and with a displace­

ment H(i} which is the coordinate of the base-element. This representation is the

main one used in this chapter. The term H(i}, being a constant, will be omitted for

simplicity in the following construction.

Definition 2 Let d vectors v1 , ... , vd be in a d-dimensional space. A cone is defined

by
d

cone(v1 , ... ,vd) = {Laivi I 0 ~ ai}·
j=l

In the definition of cone, only d vectors are given in a d-dimensional space; in other

words, all vectors are given in ad-dimensional half space. Therefore, we can think of a

cone as restricted to a half space. Although a cone can be defined on any dimensional

Chapter 3. The Tessellation Process 37

spaces, in the light of the complexity of the problem in higher dimensional spaces, as

well as our belief that the 1- and 2-dimension cases cover most examples, our present

algorithms will only cover the range of the index functions of 1- or 2-dimensional

spaces.
The tessellation process provides the information about the locations of the array

elements referenced in a nested loop. The locations are represented in terms of the

vectors, vk = (Uk - lk)hk for k = 1, ... , n , which are characterized by the column

vectors of the mapping matrix and the loop bounds. The following definition defines

an ordering of those vectors in the 1- or 2-dimensional space. The ordering is used to

represent the locations of the subfootprints.

Definition 3 Let n non-zero vectors V1, .. • , Vn be in a d-dimensional half space,

where vi = (Uj - lj)hi. First, reorder V1, •.. , Vn according to the following criteria:

for any pair of i,j E {1, ... , n},

1. vi precedes vi if the angle between Vi and the X1 -axis is less than the angle

between Vj and the x1 -axis.

2. When the angles are equal, Vi precedes Vj if llhill < llhill, where II · II is the

Euclidean norm.

3. When the norms are equal, Vi precedes Vj if i < j.

Let vk
1

, ••• , vkn be a new ordering. Then, Vinside is defined for d = 1 or 2 as follows:

• When d = 1, for any integer t E { 1, . .. , n}, define v}!:~de by

V(kc) - Vk + ... + Vk inside - I 1-1 •

• When d = 2, for any two integers b, t E {1, ... , n }, b < t, define v}!~i~~ by

Chapter 3. The Tessellation Process 38

For example, when d = 1, let the index function be

Since the norms of the column vectors are

vector v
2

can move to the first place, vectors v1 and V4 to the next two places, and v3 to

the last place. Since the norms of V1 and V4 are equal, according to the subscripts, v1 is

placed on the second place. Now all vectors are completely reordered as (v2 , v1, v4 , v3).

Then
(2) - 0

Vinside - '

The vector v~t) .d is the sum of the vectors that precede Vt in the reordering
1ns1 e ·

For example, when d = 2, let the index function be

Then the angles between the xi-axis of the range space and vi vectors are

The norms of the column vectors h1 and h4 are

Chapter 3. The Tessellation Process

The ordering should be (v2 , v4, v1 , V3). Then

(2,4) - 0
vinside - '

(4,1) - 0
vinside - '

(1,3) -
Vinside - 0,

(2,1) -
Vinside - V4'

(4,3) -
Vinside - V1'

(2,3) -
Vinside - V4 + V1 ·

The vector v~~~)de is the sum of the vectors that are inside cone(vb, Vt)·

39

As we can see in the above example, the notation is a bit too complex because

of the two level subscript indices. In order to avoid using double subscripts, all

vectors v
1

, ... , Vn are assumed to have already been properly ordered according to

the reordering scheme of Definition 3.

Definition 3 uses a half space, but we may extend it to the full space as well. When

n vectors v
1

, •. . , Vn are given in the range of ad-dimensional space, and the vectors

are properly ordered as described in Definition 3, Vinside for d = 1 or 2 is defined as

follows:

• When d = 1, for any integer t E { 1, ... , n}, collect vectors that have the same

direction as vi, and let them be Vk1 , ••• , vk.. Then Vk1 , ••• , vk. are in the same

half space. Therefore, Definition 3 can be applied to those vectors.

• When d = 2, for any two integers b, t E {1, ... , n }, b < t, we can divide the

space into the two half spaces so that the two vectors Vb and Vt are in the same

half space, and then apply Definition 3 to the vectors in that half space.

Definition 4 Let n non-zero vectors V1, . .. , Vn be in a d-dimensional half space,

where vi = (Uj - li)hi. Assume that they are properly ordered as described in Defini­

tion 3. Let a vector v be a linear combination of v1, ... , Vn with coefficients in [O, l].

Then, Vdif
1

is defined for d = 1 or 2 as follows:

• When d = 1, for any integer t E { 1, ... , n}, define the difference vector between

Chapter 3. The Tessellation Process 40

d (t) b v an vinside y
(t) (t)

vdiff = v - vinside·

• When d = 2, for any two integers b, t E {1, . .. , n }, b < t , define the difference

d (b,t) b
vector between v an vinside Y

(b,t) (b,t)
vdif f = v - vinside·

Using the above definitions, we may start building the tessellation process at last.

Because of the different notations for the 1- and 2-dimensional cases, however, the

tessellation process for each case will be developed separately.

3.1 Tessellation of a 1-dimensional Array

In this section, the tessellation process is developed for a nested loop that has a 1-

dimensional array reference in the loop body of the innermost loop. If the rank of

the index function is 0, the index function does not include any loop variable; i.e.,

the nested loop accesses only one element of the array. In this section, therefore, it is

assumed that the rank of the index function is 1 (the same as d).

When n non-zero vectors, v1, ... , Vn, are given in a I-dimensional half space, then

the I-dimensional space is divided into two disjoint cones at the boundary point

v};~ide· For any arbitrary vector v that is a linear combination of the n vectors with

coefficients between 0 and 1, the head of a vector v is located inside one of those two

cones. The following theorem formalizes this concept.

Theorem 1 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a

1-dimensional half space, where Vj = (uj - lj)hj. Then for any vector v E R, the

vector v can be represented as one of the following two cases:

Chapter 3. The Tessellation Process 41

1 - (n)
· V - anVn + Vinside1

if v~7}1 E S1 ==cone(vn)

2
a a f (n) S ((n))

. v = p1V1 + ... + jJn-1Vn-l1 i vdiff E 2 =cone -vinside

Proof Note that S
1

and S2 have a point in common, when an= 0 and [31 = ... =
f3n-l == 1. If the boundary point is excluded, S1 and S2 may be regarded as a partition

of a I-dimensional space. The boundary point can be handled with any set in which

it is included.

Case 1: When v~7}1 E S1,

(n) (n) - h 0 < Vdiff = V - Vinside - O'.nVn, W ere - O'.n ,

(n)
V == O'.n Vn + Vinside •

In this representation, an E [O, 1], since otherwise v is not a member of R.

Case 2: When v~7}1 E S2,

(n) (n) _ a((n))
vdiff == v - vinside - jJ -vinside '

where f3 E [O, 1),

(
(n)) (n) _ (1 a) (n)

V == /3 -Vinside + Vinside - - JJ Vinside ·

In this representation, (1 - /3) E [O, l]. Hence the vector v may be rewritten as

v = /31V1 + · · · + f3n-1Vn-li where /3j E [O, 1].

D

For an example of the above theorem, see Figure 9. When

V1 == OA, V2 =AB, V3 ==BC, V4 =CD

Chapter 3. The Tessellation Process 42

0 A B V c D

Figure 9: 1-dimensional Tessellations

are given, the head of an arbitrary linear combination of those four vectors is to be

between points 0 and D. Let v be St:ch a linear combination,

Then

cone(v4) =CD,

The location of the head of v is determined by the direction of the vector

(4) - (4) - () - ...
vdiff - v - v ins ide - v - V1 + V2 + V3 - CV.

In the diagram, it is inside cone(-v~~~ide)·

Applying Theorem 1 recursively for n non-zero vectors in a 1-dimensional half

space, we can divide a 1-dimensionalspace into n disjoint areas except at the (n -1)

boundaries v~~~ide,. . . ,v~~;ide · Therefore, the set of linear combinations of n vectors

with coefficients between 0 and 1 can be divided into n disjoint subsets.

Theorem 2 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a

1-dimensional half space, where Vj = (uj-lj)hj. For anyt E {l , ... ,n}, let

Chapter 3. The Tessellation Process 43

be the area spanned by Vt with coefficients in [0,1} at the point vf!~ide· Then

n

R = LJ Rt.
t=l

Proof To prove Rs;;;- U~=l Rt, it must be shown that

n

\-I "'""' { } [1 h h - (t) vV=L...JajVjER, 3tE l, ... ,n ,atE 0,1 suet at v-atvt+vinside·
j=l

Initially v = 'L'J=1 ajVj. From Theorem 1, the vector v can be represented as one of

the following two possible linear combinations:

1 - (n)
· V - an Vn + Vinside1

2 /3 f3 "f (n) S - ((n)) · v= iv1+···+ n-1Vn-l1 l Vdif/E 2-cone-vinside

where aj,/3j E fO, l].

If v is as in case 1, then v E Rn-

If v is as in case 2, the vector v is represented with (n - 1) vectors. The number of

vectors is decreased by one. We can repeat this process until for some value oft, the

represented satisfies case l; i.e.,

- (t) v - atVt + vinside E Rt.

Eventually, this process terminates with t = 1. Therefore, we can find t E {l, ... , n}

such that v E Rt.

To prove R 2 U~=l Rt, let

t-l

v =at Vt+ vf:/side = <ltVt + L Vj E Rt.
j=l

Chapter 3. The Tessellation Process 44

c 0 A B

v

Figure 10: Dividing 1-dimensional Space into Half Spaces

Setting

ai = · · · = at-l = 1, at = ati at+l = · · · =an = 0,

we can say that v E R.

0

So far, we have proved the case when all vectors are in one half space. The next

theorem generalizes the above theorem to the full space.

Theorem 3 Let n non-zero vectors vi, ... , vn, which are properly ordered, be in a

1-dimensional space, where Vj = (uj - lj)hj. Then

n

R=LJRt.
t=l

Proof For an arbitrary vector v = Ej=1 aivi E R, there exists a half space such

that all vectors in the half space are in the direction of the vector v and all vectors in

the other half space are in the opposite direction to the vector v. Then the vector v

can be represented with the vectors in the half space containing the vector v. Finally,

by applying Theorem 2, the proof is complete.

0

For example, refer to Figure 10. The point 0 is the origin, v1 = OA, V2 = AB,
V3 = OC, and v = OV. Then the vectors v1 and v2 are in the direction of the

vector v, but the vector v3 is in the opposite direction. Therefore, the vector v can

be represented with a linear combination of v1 and v2 , which are in the half space to

the right of the point 0.

From the process of the construction of the Ri, it is clearly seen that the Rt are

Chapter 3. The Tessellation Process 45

mutually disjoint except at the boundary points when the coefficient O'.t is 0 or 1.

It may also be noted in the above theorem that any linear combination of vectors

v1 , ... , Vn falls into one of Rt. This implies that the images of (~) faces cover the

whole image of the domain under H, since Vk = (uk - lk)hk is an image of (Uk - lk) ek

under H. When all vectors v1, ... , Vn are properly ordered as described in Definition

3, the faces are

'T/1 X • • • X 'T/k-1 X Dk X T/k+l X • • · X 'Tin, for k = 1, ... , n

{

U·
where T/j =

1

l · J

·f · t f (k) 1 Vj IS par 0 Vinside

otherwise

The images of the faces, H(ry1 x ... x 'T/k-l x Dk x T/k+l x ... x 'Tin) = Rk, fork = 1, ... , n,

are mutually disjoint except at the boundaries. The images of the faces are called

tessellations for the 1-dimensional space, and the process of constructing tessellations

is the tessellation process.

As a final example with the case of a 1-dimensional array, consider the nested loop

of Figure 7. From the code,

According to the reordering scheme described in Definition 3, the vectors should be

reordered as

Since vi and v3 have the same direction, v 1 and v3 are in the same half space, but v 2

Chapter 3. The Tessellation Process 46

is in the other half space. From the reordering,

(1) - 0 (3)
Vinside - ' Vinside = V1'

(2)
vinside = 0,

and the faces for tessellations are

So the figure of the tessellations is like Figure 7 (a).

With the tessellation process, we can locate all the array elements referenced in a

nested loop using the concept of vr~side .

3. 2 Tessellation of a 2-dimensional Array

In this section, the tessellation algorithm is developed for a nested loop that has a

2-dimensional array reference in the loop body of the innermost loop. If the rank of

the index function is 0, the index function does not include any loop variables; i.e.,

the nested loop accesses only one element of the array. If the rank is 1, the problem

may be reduced to the I-dimensional case. In this section, therefore, it is assumed

that the rank of the index function is same as d = 2.

When n non-zero vectors, v1 , ... , vn, are given in a 2-dimensional half space, the

2-dimensional space can be divided into three disjoint cones, except at the boundaries

of v1, Vn, and -v}~~~~e, at the head of v}~~~~e. For any arbitrary vector v that is a linear

combination of the n vectors with coefficients between 0 and 1, the head of a vector

v is located inside one of those three cones. The following theorem formalizes this

concept.

Theorem 4 Let n non-zero vectors v1 , ... , vn, which are properly ordered, be in a

2-dimensional half space, where vi = (Uj - li)hi. Then for any vector v E R, the

Chapter 3. The Tessellation Process 47

vector v can be represented as one of the following three cases:

J (1,n) S () i vdiff E 1 =cone v1 , Vn

J (1,n) S _ ((l,n))
i vdiff E 2 - cone V1, -vinside

3 •J (1,n) S _ ((1,n)) . v = /2V2 + ... + /nVn, 0 vdiff E 3 - cone Vn, -vinside

Proof Note that each pair of S1, S2 , and S3 has a vector in common. If the boundary

vectors are excluded, S1 , S2 , and S3 may be regarded as a partition of a 2-dimensional

space. The boundary vectors can be handled with any set in which they are included.

C 1 Wh (1,n) S
ase : en vdiff E 1,

In this representation, a 1, an E [O, 1]; otherwise, v is not a member of R.

C 2 Wh (1 ,n) S
ase : en vdiff E 2,

(1,n) _ (1,n) _ (J (J((1,n)) h 0 < (J (J
Vdiff - V - Vinside - lVl + -Vinside ' W ere - 1, '

_ (J (J((1,n)) (l,n) _ (J (l (J) (1,n)
V - 1 V1 + -Vinside + Vinside - 1 V1 + - Vinside·

In this representation, {31 , (1 - (J) E [O, l] . Hence the vector v can be rewritten as

v = f31v1 + · · · + f3n-1Vn-1, where (Jj E [O, 1], for j = 1, ... , n - 1.

Case 3: When v~~if E S3, the vector v can be

v = /2V2 + · · · + /nVn, where /j E [O, 1], for j = 2, ... , n.

Chapter 3. The Tessellation Process 48

cone (V1, V4)

Figure 11 : 2-dirnensional Tessellations

0

For an example of the above theorem, see Figure 11. When v1, v2 , v3 , and V4 are

given as in the diagram, the head of an arbitrary linear combination of those four

vectors is to be inside the convex area. Let v be such a linear combination,

Then

(
(1,1) '

cone V1' -vins ide)

cone(TA, TB),

cone(TO, TB),

Chapter 3. The Tessellation Process 49

(
(1,4))

cone V4, -Vinside cone(TO, TA).

The location of the head of v is determined by the direction of the vector

(1,4) - (1,4) - () Vdiff - V-Vinside - V- V2 +v3 ·

In the diagram, it is inside cone(v4, -(v2 + v3)), that is, cone(v4, -v~!~~~e)·

Applying Theorem 4 recursively for n non-zero vectors in a 2-dimensional half

space, we can divide a 2-dimensional space into (~) disjoint areas, except at the

boundary vectors, at the points v~~~]de for 1 ~ b < t ~ n. Therefore, the set of linear

combinations of n vectors with coefficients between 0 and 1 can be divided into (~)

disjoint subsets.

Theorem 5 Let n non-zero vectors v1, ... , Vn, which are properly ordered, be in a

2-dimensional half space, where vi = (Uj - li)hi. For any b, t E {1, .. . , n} such that

b < t, let

be the area spanned by vb and Vt with coefficients in {0,1] at the point v~~~]de· Then

n

R = LJ Rb,t·
b<t

Proof To prove R ~ Ui:<t Rb,ti it must be shown that

n

\:fv = Laivi ER, 3b,t E {l, ... ,n},ab,at E [0,lj
j=l

Such that - + + (b,t) V - abVb atVt Vinside·

Initially it is clear that v is inside cone(v1, Vn) because v is a linear combination of

vi, ... , Vn and v2, ... , Vn-1 are inside cone(v1, vn)· From Theorem 4, the vector v can

Chapter 3. The Tessellation Process 50

be represented as one of the following three possible linear combinations:

"f (1,n) S () 1 vdiff E 1 =cone V1, Vn

"f (1,n) S _ (_ (1,n))
1 vdiff E 2 - cone V1, vinside

3 1
.f (1,n) S _ ((1,n))

. v = /2V2 + ... + /nVn, vdiff E 3 - cone Vn, -vinside

where O'.k, /Jki /k E [O, 1].

If v is as in case 1, then v E R1,n·

If v is as in case 2 or 3, the vector v is represented with (n - 1) vectors. The number

of vectors decreases by one. We can repeat this process until for some pair of (b, t),

the representation falls into case 1; i.e.,

Eventually, this process terminates with t - b = 1. Therefore, we can find band t in

{ 1, ... , n} such that v E Rb,t.

To prove R ~ Ui:<t Rb,ti let

Setting

we can say that v E R.

0

u-1

v = O'.bVb + O'.tVt + L Vj E Rb,t·
j=l+l

So far, we have proved the case when all vectors are in one half space. Just as

Theorem 2 has been extended to Theorem 3 for a I-dimensional space, Theorem 5

Chapter 3. The Tessellation Process 51

Figure 12: Dividing 2-dimensional Space into Half Spaces

for a 2-dimensional half space may be e:ctended to the full space. The process is so

simple that it need not be repeated here, but an example will be given to show how

the extended theorem might work for a 2-dimensional space. In Figure 12, any vector

inside the cone(v1 , v2), e.g. Va, can be represented as a linear combination of v1 and

V2 that are in a half space divided by line H1 . Similarly, vb inside the cone(v2, v3) (Ve

inside cone(V3, v1)) can be represented as a linear combination of v 2 and v 3 (V3 and

v1) that are in a half space divided by li:ie H2 (H3.)

From the process of the construction of Rb,t, it is clearly seen that Rb,t are mutually

disjoint except at the boundary vectors when coefficient ab or at is 0 or 1. In addition,

any linear combination of vectors v1, ... , Vn falls into one of Rb,t. This implies that

the images of (;) faces cover the whole image of the domain under H, since vk =
(uk - lk)hk is an image of (uk - lk)ek under H. When all vectors v1, ..• , Vn are properly

ordered as described in Definition 3, the faces are

'T/1 X · · • X 'T/b-l X Db X T/b+l X · · · X 'T/t - 1 X D 1 X T/t+l X · · · X rJn, for 1 ~ b < t ~ n

Chapter 3. The Tessellation Process

{

U·
where T}j = 1

lj

if Vj E cone(vb, Vt)

otherwise

52

The images of faces, H(T}1 x · · · x T}b-1 x Db x TJb+l x · · · X TJt-1 X Dt X TJt+I X • • · X 1Jn) = Rb,t,

for b < t are mutually disjoint except at the boundaries. The images of faces are called

tessellations for a 2-dimensional space, and the process of constructing tessellations

is the tessellation process.

As a final example with the case of a 2-dimensional array, consider the nested loop

of Figure 8. From the code,

According to the reordering scheme described in Definition 3, the vectors should be

reordered as

In this example code, since all vectors are in the same half space, the theorems for

half space can be applied.

(1,2) - (2,3) (1,3) -
Vinside - 0, Vinside = 0, Vinside - V2,

and the faces for tessellations are

So the figure of the tessellations looks like Figure 8 (a).

Chapter 3. The Tessellation Process 53

With the tessellation process, we can locate all the array elements referenced in a

nested loop using the concept of v~~·:ide·

Chapter 4

Contiguity

In parallel computer systems, processors that run parallel processes interact with each

other through shared memory or by passing messages via the network that connects

them. Since each processor has the ability to run a process while other processors are

concurrently running other processes, tlte sharing of the data becomes inevitable. If

the system provides shared memory, then the data to be shared are allocated there

and then fetched from there by all processors. The data thus fetched move through

the switching network or data bus. If bere is no shared memory, then the data are

usually allocated on each processor's local memory.

Since the capacities of the switching network and data bus bandwidth are lim­

ited, both of these system components may not function well when the data traffic

approaches their capacity limits. Heavy traffic between shared memory and proces­

sors or between processors may cause the data transfer to be delayed. To reduce

the resulting performance degradation, several remedies have been suggested. One of

them is to allocate data to the local mer.10ries of those processors that are most likely

to access the data. With this method , however, the task of data allocation places a

heavy burden on the programmer, malling parallel programming difficult. Another

method is to develop a compiler capable of transforming nested loops so as to reduce

remote data accesses and increase local data accesses. This method alleviates the

burden of data allocation, and developi r.g it is one of the main concerns of this thesis.

Most scientific programs handle arrays of large size in nested loops, which are

54

Chapter 4. Contiguity

for io = 1, 10
for i1 = 0, 6

for i 2 = 0, 8
A= X(io, i1, i2)

endf or
endf or

endf orall
(a) Given code

forall io = 1, 10
for i 1 = 0, 6

for i 2 = 0,8
A= X(io, i1, i2)

endf or
endf or

endforall
(b) Parallel code

Figure 13: Parallelization

55

usually shared. Once dependence analysis determines that a nested loop is paral­

lelizable, then the nested loop will result in a parallelized form as in Figure 13 (a)

and (b). In the figure, there are ten parallel processes. Those parallel processes are

assigned to processors and run concurrently. Because all processors frequently need

to access the data in the shared array X, the required data must be transferred from

either the shared or distributed memories through the network or the data bus. If a

data element is referenced several times by one processor, it may be efficient to keep

that element in local memory. Even if each data element is accessed only once, if a

processor accesses all data in a block (contiguous area), we may be able to utilize a

fast block copy to take them to local memory before they are used for actual compu­

tation. Block copy, a feature found in many parallel computer systems, is a method

of transferring data from one contiguous block in memory to another at high speed.

In this chapter, we develop an algorithm in order to decide whether the data

accessed in a nested loop form contiguous blocks. Without loss of generality, it is

assumed throughout this thesis that arrays are allocated in row major order.

4.1 q-contiguity

In this section, we introduce q-contiguity to help determine whether all the referenced

array elements form contiguous blocks. In order for the concept to be applied to any

Chapter 4. Contiguity 56

array allocation scheme, whether row major or column major, q is prefixed. For

example, Figure I4 (a) is I-contiguous and 2-contiguous; (b) is 2-contiguous but

not I-contiguous. In (b), the referenced elements on a row are contiguous in the

memory with the row major allocation scheme, but not contiguous with the column

major scheme. For a language whose array allocation scheme is row major, like C,

if the referenced elements satisfy the condition for d-contiguity (recall that d is the

dimension of the array referenced in a nested loop), then they form contiguous blocks

in memory. Conversely, if the array allocation scheme is column major, like Fortran,

then the condition for I-contiguity should be satisfied for contiguous blocks.

Definition 5 In the nested loop of Figure 5, let I s; q s; d and

is a d-tuple of integers with an undefined value at position q where

n

where 9k(0 = L Ckjij.
j=l

S ili = {!I 9k(0 = rk, fork= I, ... , d, k # q}, (I)

(2)

Then the footprint is said to be q-contiguous, if

Chapter 4. Contiguity

for ii = 0, 6
for i 2 = 0, 5

X(i2, ii + i2)
endf or

endf or

2nd index

_ _. _ _._ _.__. _ _. _ _.__._ _~_ -~ .. -i-- ~- -­
__ t _~_l_l_l_+· -~-l L ... L .. J

, 1 r T "'T • T .. ,
I f I I I I I I I I I

--~·-:·-t-·•-................. : ·-~---
--~- -i--i--+-•-+-... +-•-+-i---
--[--f ·-1-·+-f-t·t·t-f-t·t--

1st index

(a) !-contiguous and 2-contiguous

for ii = 0, 6
for i 2 = 0, 5

X(2i2, ii + i2)
endf or

endf or

2nd index
f I I I I I I I I I I
I I I I I I I I I I I ••r,, .. ·-r••r• .. ., · .. .,,.. ··r-• .,, .. •"'

I : : : : : : : : : :

. .; . ..,..'". ~ . ., . ..,. .t-·;·-~ --:·· ~- - ·
I I I I I I I I I f I

...... - ,,_1 --"1
I I I I I I t I I I I

--~·++·+·+++-+·+·! ·+--
• I I I I I I I I I I • • r•••, -r --r, .. • .,,... r • .. ,.,

--~ --f--~ -+-~-+-~-+-~--f- -~-
I I I I I I I I t I I

--~--!- -~---:-- .. ~--:- -~··-:- --~- -:- -~---
--~--i--i--+-•-+-... +-•-+-i---

t I I I I I I I I I I

.... ~ --~ ~- .. -;.. --~- -:- -~--..:..- -~ ~--~- --
--~·-f · -~--+-~-+-~-·-~-+-~--

: : : : : : : : : ! :

1st index

(b) Not !-contiguous, but 2-contiguous

Figure 14: q-contiguous Footprints

57

In this chapter, algorithms will be presented that determine if the footprint of an

array by a nested loop given in the form of Figure 5 is q-contiguous. The results can

be applied for any arbitrary value of q, 1 ~ q ~ d. Here, the algorithms are developed

for q = d because the row major allocation scheme is assumed. Relevant algorithms

for other values of q can be easily obtained, based on the algorithms of the case q = d.

4.2 Contiguity When Nesting Depth is Equal to

Array Dimension

Let's consider the simplest case where the nesting depth and the dimension of the

array variable are the same, i.e., n = d, and the mapping matrix, H, for the index

Chapter 4. Contiguity 58

function is non-singular. If it is singular, either the case can be reduced to the

lower dimensional case when some indices of the index function are constant, or

the footprint is not contiguous because the simultaneous linear equation (3) does not

have a solution. These possibilities will be discussed in detail for 1- and 2-dimensional

arrays in the appropriate sections.

In a nested loop of depth d with a d-dimensional array reference whose index

function is

we will develop the condition for the footprint to be d-contiguous. The mapping

function , H , is

H=

The following theorem states the necessary and sufficient condition for the footprint

to be d-contiguous.

Theorem 6 In a nested loop of depth d with ad-dimensional array reference, let the

mapping function, H , be non-singular. Then the footprint is d-contiguous if and only

if

where

Mdk
:::; Uk - lk are integers, fork = 1, ... , d,

M

M = det(H), !V1dk = det(Hdk),

Cu C1,k-l C1,k+i C1d

.Hdk =

Cd-1,1 cd-l,k- 1 Cd-l,k+l Cd-l,d

(3)

Proof Suppose that the footprint is d-coritiguous. Then there exist two different

Chapter 4. Contiguity 59

vectors of loop variables, i-=/= P, so that the two coordinates

d d d d

c~= C1jij, .. . 'L Cdjij) and (L c1/j, ... 'L Cdjij)
j=l j=l j=l j=l

are adjacent along the direction of the xd-axis in the range; that is,

d d d d

(L c 1iij, ... , L cdiii) - (L c1ij, ... , L Cdjij) = (0, ... , 0, ±1),
j=l j=l j=l j==l

d d I

(L c 1j(ii - ij), .. . , L cc1;;(ij - ij)) = (0, ... , 0, ±1)
j=l j=l

has a solution. For simplicity, put f = i - P. Then the problem becomes equivalent

to the following simultaneous systems of llnear equations:

L-1=l cd-1j lj 0

'£1=1 Cdj f j ±1

Since H is assumed non-singular, according to Cramer's rule,

I
. ., ±(-l)d-kMdk

k = zk - zk = Jvl fork= 1, ... , d.

Since ik and i~ are between lk and uk, and integers,

I

Mdkl M :S Uk - lk are integers, fork= 1, . .. , d.

Conversely, suppose condition (3) is true. For any Rd= (r1, ... ,rd-i,*), we can

compute md and Md from Equation (2). Let md::; rd::; Md. If an element with the

Chapter 4. Contiguity 60

coordinate (r1, ... , rd-I, rd) is in the footprint, the coordinate of the base-element,

H(i), can be obtained by subtracting some displacement

d d

(L C1jtj, ... 'I: CdjtJ, where 0 ~ f ~ u - r
j=l j=l

from the coordinate

Note that the above subtraction tends to move the coordinate (r1, ... , rd-1, rd) toward

the coordinate of the base-element, because 0 ~ i'. Therefore,

d d d d
(r1, ... , rd-1, rd) - (L C1jtj, ... , L cditJ = (L C1jlj, ... , L cdili)

j=l j=l j=l j=l

d d

(r1, ... , rd-1, rd)= (L C1j(ti + lj), ... , L Cdj(ti + lj))
j=l j=l

should have a solution such that 0 ~ f ~ u - [We get the following systems of

equations:

Solving the equations yields:

1

M

Since rk = r:,j=1 Ckjij, for k = 1, ... , d - 1, if i E S Rd' the above equation can be

Chapter 4. Contiguity 61

expanded as follows:

From the assumption, I ~k I are integers, fork= 1, ... , d. So tk + lk are integers. As

the difference between rd and gd(D increases by 1, the value of tk + lk changes by the

amount of I ~k I· Let us assume that

7
_ ("m ·m)

Zm - il ' ... 'id '

or

(_j

Chapter 4. Contiguity

for ii = 0, 8
for i2 = 0, 7

X(i2,ii +i2)
endf or

endf or

2nd index

-~-~-~-~-~-~-~-~-~-~-~-+-~-~-~--
-+-~-~-~-~-~-~-~-+-+-+-+-+-+-+--
-+-+-~-~-·-·-~-~-~-~-~-+-+-+-+--
-+-+-+-~-~-~-~-~-~-~-~-~-+-+-+-
-+-+-+-+-~-~-+-+-+-+-+-+-+-+-+-
-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-+-+-+-+-t-t-+-+-+-+-+-t-+-+-+--

1st index

(a)

for i 1 = 0,4
for i 2 = 0, 7

X(i2,2ii +i2)
endf or

endf or

2nd index

-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--
-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~--
-~-~-~-~-~-~-~-~-~-~-~-~ -~-~-~--
-~-~-~-~-~-~-~ -~-~-~-~-~-~-~-~--
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--
·t·t·t·t·t·t·t·t·t·t·t·t·t·t·t··

I I I I I I I I I I I I I I I

1st index

(b)

Figure 15: 2-contiguity When Nesting Depth is Equal to Array Dimension

62

from ik to i t1 by the step (-1)k+d ~k. Therefore, the value of tk + lk is bounded by

·m d ·M · ik an ik ; i.e.,

Since lk :S ik, it1 :S uki tk is positive and less than Uk - lk. So the footprint is d­

contiguous.

D

For example, when d = 1, the index function is (cuii). The condition that the

footprint is 1-contiguous is

Mu I = 12-1 :Sui - li is an integer.
M cu

So if icu I = 1 and 1 :S ui - li, the footprint is 1-contiguous.

When d = 2, the index function is (c11 ii + c12i2, c2i ii + c22i2). The condition that

Chapter 4. Contiguity 63

the footprint is 2-contiguous is

and

For example, refer to the two nested loops in Figure 15. In (a), the array index

function is (i 2 , i1 + i 2). From the coefficients of the loop variables,

The above two values are integers, so the footprint is 2-contiguous, as we can see in

the illustration.

In (b), the array index function is (i2 , 2i1 + i 2). From the coefficients of the loop

variables,

I
C12 I 1

Cu C22 - C12C21 = 2'
Since one of the above values is not integer, the footprint is not 2-contiguous, as

illustrated in the figure.

Whereas most theorems in this thesis are restricted to the 1- and 2-dimensional

arrays, Theorem 6 is applied to an array of any dimension.

4.3 Contiguity When Nesting Depth is Greater

than Array Dimension

We need to generalize Theorem 6 for the d-contiguity of the footprint when the nesting

depth is greater than the array dimension. When n > d, the footprint of a nested

Chapter 4. Contiguity 64

loop is the area swept by the footprint of the nested loop induced by a set of (n - 1)

loop variables, as the other loop variable changes the value from its lower bound to

the upper bound. The following theorem formalizes this property.

Theorem 7 In a nested loop of depth n with ad-dimensional array reference, where

n > d, if the footprint of a nested loop is d-contiguous, then there exists a nested loop,

induced by a set of (n - 1) loop variables, whose footprint is d-contiguous.

Proof There are (n~i) choices to select (n - 1) loop variables from n loop vari­

ables. Suppose that the footprint of the nested loop is d-contiguous and none of the

footprints of the nested loops induced by any set of (n - 1) loop variables is not

d-contiguous. For a nested loop induced by {ii, ... , in-i}, let the submatrix of H be

C = (hi · · · hn-1) ·

For any Rn (r1, ... ,rn-i,*), we can compute mn and Mn from Equation (2).

Let mn ~ rn ~ Mn. Because the footprint of the nested loop is d-contiguous,

X(ri, ... , rn_1 , rn) is one element of the footprint. For some tn E [Zn, un], the co­

ordinate

is in the base-space for {in = ln}. (Note that the base-space for {in = ln} is the

footprint of the nested loop induced by {ii, ... , in-i}.) But since the base-space is

assumed not to bed-contiguous, the point X(r) can not be a referenced point, which

is a contradiction. Therefore, at least one set of (n - 1) loop variables should induce

a nested loop whose footprint is d-contiguous.

0

Chapter 4. Contiguity

for i 1 =0,5
for i2 = 0, 6

for i3 = 0, 7
X(i1 + i3, i2 + 2i3)

endf or
endfor

endf or

2nd index

• • • • • • • • • •tr • • ! • • • •
• • • •ao ! • • • • • •
• • • • • !qo • • • • • • •

-·-·-·-·-·-· . ·~
• • • • • • • • •xo • • •

1st index

• • • • • • • • • • •
• • • • • • • • •

• • • • • • •

Figure 16: 2-contiguity When Nesting Depth is Greater than Array Dimension

65

For example, in Figure 16, the index function in matrix form of the nested loop is

As we can see in the illustration, the footprint of the nested loop is 2-contiguous.

There are three nested loops induced by {i1,i2}, {i2,i3}, and {i3,ii}. The footprint

of the nested loop induced by { i1, i2} or { i2, i3} is 2-contiguous, but the footprint of

the nested loop induced by { i3, i1} is not. In the illustration, the element x is not in

the base-space for { i3 = 0}. By subtracting t 3 (1, 2) from the coordinate of x, we can

get the element p when t3 = 1, q when t3 = 2, a when t3 = 3, and b when t3 = 4.

The points p and q are not in the base-space for { i3 = 0}, but a and b are in that

base-space.

Theorem 7 can be applied recursively by reducing the value of the nesting depth

by 1 until it reaches d. When the nesting depth is reduced to d, then we can apply

Theorem 6 to determine the d-contiguity of the footprint.

In the following sections, we will develop concrete conditions for the footprint to

be d-contiguous when d = 1 and 2.

Chapter 4. Contiguity 66

4.4 Contiguity of I-dimensional Array

4.4.1 Contiguity When Nesting Depth is 2

To develop the condition for 1-contiguity when the array dimension is 1 and the nest­

ing depth is 2 in this chapter, it is necessary to define the term extended tessellation

for a 1-dimensional space. For each tessellation, an extended tessellation can be de­

fined as follows. The extended tessellation of the tessellation OA in Figure 17 (a) is

the segment PQ, where P is the next point on the left of 0, and Q is the next point

on the right of A.

When d = 1 and n = 2, the index function of the nested loop, in matrix form, is

H = (9i) = (hi h2) = (Cn Ci2) ·

If rank(H) = 0, all coefficients are zero; i.e., there is only one array element

referenced by the nested loop. We assume rank(H) = 1 if d = 1.

From Theorem 7, there should exist at least one loop induced by one loop variable

whose footprint is 1-contiguous. In this section, we will deduce the condition for the

footprint of a nested loop to be 1-contiguous, provided that the footprint of a nested

loop induced by a loop variables ii is I-contiguous.

Figure 17 (a) shows the footprint of the loop induced by {ii} at i2 = l2, i.e., the

base-space for { i 2 = l2}. First, let us assume c11 = 1. Then, the thick solid line

segment 0 A is the base-space for { i 2 = l2 }, and is assumed to be 1-contiguous. Let

us also assume that the point 0 is the base-element and its coordinate is H(l1, Z2),

which is the minimum index value, and the coordinate of A is H(ui, l2), which is

the maximum index value. The points P and Q are H(li, l2) - 1 and H(ui, l2) + 1,

respectively. The footprint of the loop induced by {ii} at some value i 2 E [l2, u2] is

the footprint to which the base-space, segment 0 A, is moved by the displacement

Chapter 4. Contiguity 67

0 A

p Q
(a) Ba8e-Space

0 A B -o----·-------
p Q

(b) A Tessellation

p 0 Q

p n-1 On-2 On-1

(c) Overlap of Extended Tessellations

Figure I 7: I-contiguity in a I-dimensional Space

c12i2 and it is I-contiguous. As the value i2 grows, the footprint is thus moved farther

from the base-space for { i2 = l2}. In order for the footprint of the given nested loop

to be I-contiguous, either the coordinate H(l1,l2 +I) or H(u1,l2 +I) must be in

the extended tessellation, i.e., between P and Q inclusively. So the condition for the

footprint to be I-contiguous is ·

{
H(l1, l2) - I ~ H(l1, l2 +I)~ H(u1, l2) +I, or

H(l1,l2)- I~ H(u1,l2 +I)~ H(u1,l2) + 1.

Using the coefficients, we get the following condition:

{

cul1 + C12l2 - I ~ C11l1 + C12(l2 +I)~ C11U1 + C12l2 +I,

c11l1 + C12l2 - I ~ Cu U1 + C12(l2 +I) ~ Cu U1 + C12l2 + 1.

{

-I~ c12 ~I+ cu(u1 - l1),

-I-c11(u1 -l1) ~ c12 ~ 1.

or

(4)

or

Chapter 4. Contiguity

for ii= 0,3
for i2=0,2

X(ii + 4i2)
endf or

endf or

0 D D 0 8 I I I I I I I ..

(a)

for ii= 0,3
for i 2 =0,2

X(i1 + 5i2)
endf or

endf or

0 D Cl 0 a I I I I I I a ...

(b)

Figure 18: 1-contiguity of 1-dim Array When Nesting Depth is 2

Finally, we get the condition for the footprint to be 1-cori.tiguous

Similarly, if c11 = -1, the condition for the footprint to be 1-contiguous is

{
H(u1,l2) -1~H(l1,l2+1) ~ H(l1,l2) + 1, or

H(u1,l2) -1~H(ui,l2+1) ~ H(l1,l2) + 1.

Here, the corresponding condition to (5) is

68

(5)

(6)

(7)

Consequently, from the two conditions (5) and (7), when d = 1, n = d + 1, and

I c11 I = 1, the con di ti on for the footprint to be 1-contiguous is

(8)

For example, in Figure 18, the set of points marked with o is the base-space for

{ i 2 = O} and is 1-contiguous. The nested loop in (a) satisfies condition (8);

I "

Chapter 4. Contiguity 69

So the footprint is !-contiguous. But the nested loop in (b) does not satisfy the

condition;

So the footprint is not 1-contiguous.

4.4.2 Contiguity When Nesting Depth is Greater Than 2

When d = 1 and n > 2, the index function of the nested loop, in matrix form, is

From Theorem 7, if the footprint is !-contiguous, there should exist a nested

loop induced by a set of (n - 1) loop variables whose footprint is 1-contiguous. In

this section, the condition for the footprint of a nested loop to be 1-contiguous is

deduced, provided that the footprint of a nested loop induced by a set of loop variables

{i1, ... , in-dis 1-contiguous.

In the 1-contiguous footprint of a nested loop induced by a set of loop variables

{ii, ... , in-1}, there exist (n - 1) tessellations, R1, ... , Rn-I that are disjoint line

segments except at the boundary points. In the footprint of the base-space for {in =

ln}, the minimum and maximum values in the index occur, respectively, at

if elk 2: 0

if elk < 0

When in = Zn+ 1, the coordinates H(lmo) and H(iMo) in the base-space are moved

Chapter 4. Contiguity 70

to the coordinates H(im1) and H(iM1), where

iml = Z'mo + (0, ... , 0, 1), iMl = iMo + (0, ... , 0, 1).

In order that the footprint is 1-contiguous, either the coordinate H(im1) or H(iM1)

should be inside one of the extended tessellations in the base-space.

As for a tessellation Rki let us assume c1k > 0. Figure 17 (b) shows a tessellation

Rk when elk > 0. The point 0 is the base-element and its coordinate is H(f). The

coordinates of the points A and B are H(f) + v;!~ide and H(f) + v;!~ide + (Uk - lk)hk,

respectively. Since the index function is linear,

(
i"\ (k)

H l J + vinside =

n

v· J

(u · - l ·)h · J J J

L8ihi = H(b)
j=l

bi= J
{

l ·

U· J

·f · t t f (k) I Vj IS no erm o vinside

"f . t f (k)
I Vj IS erm 0 Vinside

The condition for either the coordinate H(im1) or H(iMI) to be inside the extended

tessellation Rk, i.e., between P and Q, is

{
H(b) - 1 ~ H(imi) ~ H(b) + (uk - lk)hk + 1,

H(b) - 1 ~ H(iM1) ~ H(b) + (uk - lk)hk + 1.

or

Chapter 4. Contiguity

Similarly, when c1k < 0, the condition is

{
H(b) + (uk - lk)hk - I~ H(im1) ~ H(b) +I, or

H(b) + (uk - lk)hk - I~ H(iM1) ~ H(b) + 1.

71

In summary, ifthere exists any tessellation such that either the coordinate H("!mi)

or H(iM1) is inside the extended tessellation, the footprint is I-contiguous. As in

Figure I 7 (c), either the coordinate H(im1) or H(iMi) is in any interval [Pki Qk] for

k = I, ... , n - I. In that figure, it will be noticed that, as is characteristic of a

I-dimensional space, the union of all extended tessellations makes one big interval

PQ. Therefore, we can get the following simple unified condition for I-contiguous

footprint:

{
H(~mo) - I ::; H(~m1) ::; H(~Mo) + I, or

H(imo) - I ~ H(iM1) ~ H(iMo) +I

{

-I ::; H(im1) - H(imo)::; I+ (H(iMo) - H(imo)), or

-I - (H(iMo) - H(imo)) ::; H(iM1) - H(iMo) ::; 1

{ -I~ H(O, ... ,O,I)::; l+Ej;fjc1jj(uj-lj), or

-I - Ej;f lciil(ui - li) ~ H(O, ... , 0, I)~ 1

n-1
lc1nl::; I+ L lc1jl(uj - lj)·

j=l

4.5 Contiguity of 2-dimensional Array

4.5.1 Contiguity When Nesting Depth is 3

(9)

The extended tessellation of a 2-dimensional space can also be defined in the above

manner. The extended tessellation of the tessellation ABCD in Figure I9 (a) is the

parallelogram enclosed by the points P1, P2 , P3 , Q1, Q2 , and Q3 , where P1, P2 , and

Chapter 4. Contiguity 72

P3 are the next points on the left of A, B and C, respectively, and Q1, Q2 , and Q3

are the next points on the right of A, D, and C, respectively.

When d = 2 and n = 3, the index function of the nested loop, in matrix form, is

If rank(H) = 1, one row of the matrix H is a multiple of the other; that is,

C1j = ka c2j or c2j = kbclj for j E { 1, 2, 3}. If ka = 0 (the first row is zero), this case is

reduced to the case where d = 1, because only the elements on one row of the array

are referenced. If kb= 0 (the second row is zero), only the elements on one column

of the array are referenced. Since the row major allocation is assumed, the footprint

can never be 2-contiguous when kb = 0. When c2i / c1i = ka or 1 /kb, then ka and kb

are not zero, and all vectors v1, v2, and v3 are on the same straight line with the slope

ka or 1 /kb. The footprint of this case can never be 2-contiguous, because the line is

slanted, not horizontal. Therefore, it is assumed that rank(H) = 2 if d = 2.

From Theorem 7, there should exist at least one nested loop induced by a set of

two loop variables whose footprint is 2-contiguous, in order for the footprint of an

array by nested loop of depth 3 to be 2-contiguous. In this section, such a condition

will be deduced, provided that the footprint of a nested loop induced by { i1, i2} is

2-contiguous.

There is only one tessellation in the footprint of a nested loop induced by a set

of two loop variables. In Figure 19 (a), the shaded parallelogram Tis the base-space

for { i3 = l3} and is assumed to be 2-contiguous. In order for the footprint of the

nested loop to be 2-contiguous, the extended parallelogram and the base-space for

{ i3 = l3 + 1} must overlap. They may overlap in four possible ways, represented in

the figure by T1, T2, T3, and T4 , depending on the coefficients of the loop variables

in the index function. Combined with the 2-contiguous parallelogram, T, T1 and

Chapter 4. Contiguity 73

2nd index (x2)

1st index (x1)

(a) Footprint of Base-Space

0

•
•

•

'

' B ,-

-

(b) A Tessellation

Figure 19: 2-contiguity in a 2-dimensional Space

Chapter 4. Contiguity 74

T3 keep the property of 2-contiguity, but T2 and T4 do not. From this fact, we

notice that if the point A or C of the base-space in the figure is moved inside of the

extended parallelogram of T, i.e., the parallelogram P1P2P3Q3Q2Qi, the footprint is

2-contiguous, where P1, P2, P3 , Q1, Q2 , and Q3 are one position left or right from A,

B, C, and D accordingly. In general, the point with the minimum or maximum value

in the first index should be moved into the inside of the extended tessellation.

In the 2-contiguous base-space for { i3 = Z3}, the minimum and maximum values

in the first index occur, respectively, at

lk if C1k > 0

imo = (v1, V2, l3), where llk = Uk if C1k < 0

lk or Uk if C1k = 0

Uk if C1k > 0

iMo = (µ1, µ2, l3), where µk = lk if elk< 0

uk or lk if elk= 0

When i3 = l3 + 1, the coordinates H(imo) and H(iMo) on the base-space are moved

to the coordinates H(im1) and H(iM1) respectively, where

~l = imo + (0, ... , 0, 1), ~ ~) i Ml = i MO + (0, ... , 0, 1 ·

In order for the footprint to be 2-contiguous, the coordinates H(im1) or H(iM1) should

be inside the extended tessellation of the base-space for { i3 = [3}.

According to the directions of vectors h1 and h2 , i.e., the sign of the coefficients

cu and C12, the base-element of the base-space can be A, B, C, or D, and we must

consider each case. In all cases, it is assumed that the vectors Vk = (Uk - lk)hk,

for k=l or 2, are ordered by the angles between the x1-axis and vk. This is to be

Chapter 4. Contiguity 75

consistent with the assumptions of the tessellation process.

Case 1: When c11 > 0 and c12 > 0.

In this case, the base-element is A and v1 = AB, v2 = AD. The points A and C have

the minimum and maximum values in the first index, respectively, at

Here, li and bu are equivalent to imo and iMo· However, it should be noted well in

advance that li and bu will be different from imo and iMo in the next subsection.

From the figure, we have four equations of lines, P1P2, P2P3 , Qi Q2, and Q2Q3 as

in the following:

c11[x2 - (g2(8i) - 1)] = c2i[x1 - gi(li)J for line P1P2

C12[x2 - (g2(bu) - 1)] = C22(x1 - gi(bu)] for line P2Pa

c11[x2 - (g2(bu) + 1)] = c2i[x1 - gi(bu)] for line Q2Q3
(10)

C12[x2 - (g2(8i) + 1)] = c22[x1 - gi(li)J for line QiQ2

In order for the footprint to be 2-contiguous, H(im1) or H(iM1), which constitutes

the minimum or maximum value in the first index in the base-space for { ia = l3 + 1},

should be inside the extended tessellation, where

iml = imo + (0, 0, 1),

From equations (10), the condition for the footprint to be 2-contiguous is

c11[x2 - (g2(8i) - 1)] > c2i[x1 - gi(li)J, and

C12[x2 - (g2(bu) - 1)] > C22[X1 - gi(bu)J, and

c11[x2 - (g2(bu) + 1)] < c2i[x1 - gi(bu)], and

(11)

(12)

(13)

Chapter 4. Contiguity

where

Solving inequality {11) for x = (::) = H(imi) or H(i,,i),

X1 - (g1(8i))
~o

C21 X2 - (g2(li) - 1)

I h1 H(z - bi) I+ cu ~ 0, where z = im1 or ;Ml·

76

(14)

In a similar way, from inequalities (12), (13), and (14), we may derive the following

conditions, where z = im1 or iM1,

I hi H(z - bu) I - cu ~ o,

Chapter 4. Contiguity 77

In summary, the condition for the footprint to be 2-contiguous is

I h1 H(z - li) I+ cu ~ o, and

I h2 H(z - bu) I+ ci2 ~ 0, and
(15)

I hi H(z - bu) 1- cu ~ 0, and

I h2 H(z - li) I - ci2 ~ o

where z = imi or iMI·

Case 2: When c11 > 0 and c12 < 0.

In this case, the base-element is B and vi = BC, v2 = BA. The points A and C

have the minimum and maximum values in the first index, respectively. Therefore,

the minimum and maximum values in the first index occur, respectively, at

In a manner similar to case 1, we obtain a condition similar to condition (15)

I h2 H(z - li) I+ c12 ~ o, and

hi H(z - bu) I+ cu ~ 0, and
(16)

h2 H(z - bu) I - ci2 ~ 0, and

hi H (z - li) I - C11 ~ 0

where z=imi or iMi·

Case 3: When c11 < 0 and ci2 < 0.

In this case, the base-element is C and vi = CD, v2 = CB. The points A and C

have the minimum and maxi.mum values in the first index, respectively. Therefore,

Chapter 4. Contiguity
78

the minimum and maximum values in the first index occur, respectively, at

In a manner similar to case 1, we obtain a condition similar to condition (15)

I hi H(z-tr) l +cu~O, and

I h2 H(z - bu) I + c12 ~ o, and
(17)

I hi H(z - bu) I - cu ;::: o, and

I h2 H(z - tr) I - c12 ;::: o

-+ 7 -!
where z == im1 or i Ml.

Case 4: When cu < 0 and c12 > O. ·
In this case, the base-element is D and V1 == DA, V2 == DC. The points A and C

have the minimum and maximum values in the first index, respectively. Therefore '

the minimum and maximum values in the first index occur, respectively, at

In a manner similar to case 1, we obtain a condition similar to condition (15)

I h2 H(z - tr) I + c12 ;::: o, and

I hi
H (z - bu) ·I + cu ~ o, and

I h2
H(z - bu) I - c12;::: o, and

(18)

I hi H (z - tr) I - cu ~ o

... ...
where z == im1 or iM1 ·

Chapter 4. Contiguity 79

Case 5: When c11 = 0 and C12 > 0.

In this case, the base-element is A and v1 = AB, v2 = AD, but AB is parallel to the

axis x2. If A, C, B, or D is moved inside of the extended parallelogram of T, then

the footprint is 2-contiguous. Therefore the minimum and maximum values in the

first index are regarded as the points A and C, respectively, at

or as the points B and D, respectively, at

Hence, the condition of Case 1 or that of Case 4 above can be applied to this case.

Case 6: When c11 = 0 and c12 < 0.

In this case, the base-element is C and v1 =CD, v2 =CB, but CD is parallel to the

axis x2. If A, C, B, or D is moved inside of the extended parallelogram of T, then

the footprint is 2-contiguous. Therefore the minimum and maximum values in the

first index are regarded as the points A and C, respectively, at

or as the points B and D, respectively, at

Hence, the condition of Case 3 or that of Case 2 above can be applied to this case.

Case 7: When c 11 > 0 and c12 = 0.

In this case, the base-element is A and v1 =AB, v2 =AD, but AD is parallel to the

Chapter 4. Contiguity
80

axis X2. If A, C, B, or D is moved inside of the extended parallelogram of T, then

the footprint is 2-contiguous. Therefore the minimum and maximum values in the

first index are regarded as the points A and C, respectively, at

or as the points B and D, respectively, at

Hence, the condition of Case 1 or that of Case 2 above can be applied to this case.

Case 8: When c 11 < 0 and c12 == 0.
In this case, the base-element is C and vi ==CD, V2 ==CB, but CB is parallel to the

axis x
2

. If A, C, B, or D is moved inside of the extended parallelogram of T, then

the footprint is 2-contiguous. Therefore the minimum and maximum values in the

first index are regarded as the points A and C, respectively, at

or as the points B and D, respectively, at

Hence, the condition of Case 3 or that of Case 4 above can be applied to . this case.

For an example of Case J, see Figure 20. There are two nested loops, of which

(a) is 2-contiguous, but (b) is not. Both have a nested loop induced by (i
1

, ;
2

} whose

footprint is
2
-contiguous. The base-space for { i3 ~ 0}, the set of points marked with

0

in the picture, has the minimum and maximum values in the first index, respectively,

at

Chapter 4. Contiguity

for ii= 0,4
for i 2 = 0,3

for i3 =O,1
X(ii + i2 + 3i3, i2 + 4i3)

endf or
endf or

endf or

2nd index

0

0 0

0 0 0 •

0 0 0 • •

0 0 0 • • •

0 0 • • • •

0 • • • •

• • •
• •

•

1st index

for ii == 0, 4
for i2 == 0, 3

for i 3 == 0, 1
X(ii + i2 + 3i3, i2 + 5i3)

endf or
endfor

endf or

2nd index

0

0 0

0 0 0 •

0 0 0 • •

o a o • • •
0 0 • • • •

0 • • • •

• • •
• •

•

1st index

(b)
(a)

Figure 20: 2-contiguity of 2-dim Array When Nesting Depth is 3

imo == ~ == (0, 0, 0) and iMo ==bu == (4, 3, 0).

81

The base-space for { ia = 1} has the minimum and maximum values in the first index,

respectively, at

im
1

= l;,.
0
+ (0, 0, 1) = (0, 0, 1) and iM1 = iMo + (0, 0, 1) = (4, 3, 1).

First, we will show that the footprint of the nested loop in (a) is 2-contiguous. If we

82
Chapter 4. Contiguity

apply z = imi = (0, 0, 1) to condition (15), we get the following result:

I hi H(z - bi) I+ cu =
1 3

+1=5~0
0 4

1 h2 H(z - bu) I + ci2 ==
1 -4

+1=6~0
1 1

1 hi H(z - lu) I - cu=
1 -4

-1=0~0
0 1

I h2 H (z - ti) I - ci2 =
1 3

-1=0~0
1 4

The result satisfies condition (15) for 2-contiguity. Alternatively, we will show that

the footprint of the nested loop in (b) is not 2-contiguous. The base-space for { ;
3

= 1}

has the minimum and maximum values in the first index, respectively, at

!;,.
1

= ?mo+ (0, 0, 1) = (0, 0, 1) and TM! = iMo + (0, 0, 1) = (4, 3, 1).

Applying z = imi = (0, 0, 1) to condition (15), we have,

1 hi
H(i - bt) I +cu ==

1 3
+1=6~0

0 5

1 h2
H(z - bu) I + c12 =

1 -4
+ 1 =7~0

1 2

I hi
H(z - bu) I - cu =

1 -4
-l=liO

0 2

1 h2
H(z - bt) I- c12 =

1 3
- l=liO

1 5

The result does not satisfy condition (15) for 2-contiguity. If we use z = ?Mi

83
Chapter 4. Contiguity

(4, 3, 1), we have the following:

I hi H (i - bi) I + cu =
1 10

+1=9?0
0 8

1 hz H(z - bu) I+ Ci2 =
1 3

+1=3?0
1 5

1 hi
H(i - bu) I - cu =

1 3
-1=4i0

0 5

I hz H(i-bi) I- ci2 =
1 10

-1 = -3 ~ 0
1 8

This result also does not satisfy condition (15) for 2-contiguity.

4.5.2 Contiguity When Nesting Depth is Greater Than 3

When d = 2 and n > 3, the index function of the nested loop, in matrix form, is

From Theorem 7, if the footprint is 2-contiguous, there should exist a nested

loop induced by a set of (n - 1) loop variables whose footprint is 2-contiguous. In

this section, the condition for the footprint of a nested loop to be 2-contiguous is

deduced, provided that the footprint ofa nested loop induced by a set ofloop vaxiables

{ i1' · .. , in-d is 2-contiguous.
In the 2-contiguous footprint of the nested loop induced by a set of loop variables

{ i 1, ... , i. _ t), there exist (•; 1) tessellations, Rb,t for 1 S b < t S n - 1, that are

disjoint parallelograms except at the boundaries. In the footprint of the base-space

for (i. = z.), the minimum and maximum values in the first index occur, respectively,

Chapter 4. Contiguity 84

at

zk if elk> 0

Zmo =(vi,· . ·, Vn-1, Zn), where vk = Uk if elk< 0

Zk or Uk if elk= 0

Uk if elk> 0

ZMo = (µ1, · · ·, µn-1, Zn), where µk = zk if elk< 0

uk or Zk if elk= 0

When in = Zn+ 1, the coordinates H(zmo) and H(zMo) on the base-space are moved

to the coordinates H(zm1) and H(zM1) respectively, where

~l = Zmo + (0, ... , 0, 1),

In order for the footprint to be 2-contiguous, the coordinates H(~1) or H(zM1) should

be inside one of the extended tessellations on the base-space.

Let us think about a tessellation Rb,t· In a similar way to the case when d = 2

and n = 3, we must consider this kind of tessellation according to the shape of the

tessellation which is characterized by the sign of coefficients c1b and Cit· However,

because the base-element is not part of a tessellation, we must handle it a little

differently from our approach when d = 2 and n = 3.

Case 1: When c1b > 0 and e1t > 0.

For example, see Figure 19 (b), which shows a tessellation Rb,t of this case. The point

0 is the base-element and its coordinate is H(I'), where f = (l1 , ... , Zn)· The coordinate

of the point A, which has the minimum value in the first index, is H(f) + v~!~lde' and

the coordinate of the point C, which has the maximum value in the first index, is

Chapter 4. Contiguity

(
1\ (b ,t)

H lj + vinside +Vb+ Vt .

(
7\ (b ,t)

H l J + vinside

where go

H(r (b,t)
~) + Vinside + Vb + Vt

n

(b,l)
v; : term of vin•ide

L bjhj = H(la)
j=l

(81, ... , 8n) 1

v · J

(U · - l ·)h · J J J

{

l ·r · t r (b,t) j I Vj IS no term o vinside

·r . f (b ,t)
Uj I Vj IS term o vinside

85

H(lu)

where "lu go+ (0, ... , 0, (Ub - h), 0, . . . , 0, (Ut - Zt), 0, · · · , O) .·

So the minimum and maximum values in the first index occur, respectively, at

8i go and

lu la+ (0, ... , 0, (Ub - h), 0, ... , 0, (Ut - lt), 0, . .. , 0) .

The condition for either the coordinate H(zmi) or H(zM1) to be inside the extended

tessellation of Rb,t is , from condition (15),

I hb H(z-li) I +c1b ~ o
I ht H(z - °lu) I+ c it ~ o
I hb H(z - bu) I - c1b :S 0

(19)

I ht H (z - 8i) I - Cit :::; 0

Chapter 4. Contiguity 86

Case 2: When c1b > 0 and Cit < 0.

In this case, the tessellation has the minimum and maximum values in the first index,

respectively,

(i\ (b,t) (7\ (b,t)
H l) + vinside + Vt and H l) + vinside + Vb.

Therefore, the minimum and maximum values in the first index occur, respectively,

at

bi J: + (0, ... , 0, (Ut - lt), 0, ... , 0) and

bu la+(0, ... ,0,(ub-h),0, ... ,0).

The condition for either the coordinate H(im1) or H(iMi) to be inside the extended

tessellation of Rb,t is, from condition (16),

I ht H(z - bi) I+ cit :::; o

I hb H (z - bu) I + C1b ;:::: 0

I ht H(z - bu) I - cit S 0

I hb H(z - bi) I - c1b ;:::: o

where z= {ml Or iMI·

Case 3: When c1b < 0 and clt < 0.

(20)

In this case, the tessellation has the minimum and maximum values in the first index,

respectively,

H(li\ (b,t) (1\ (b,t)
~) + vinside +Vb+ Vt and H l) + vinside·

Therefore, the minimum and maximum values in the first index occur, respectively,

Chapter 4. Contiguity 87

at

bi la+ (0, ... , 0, (Ub - h), 0, ... , 0, (Ut - lt), 0, . . . , 0) and

bu la.

The condition for either the coordinate H(im1) or H(iM1) to be inside the extended

tessellation of Rb,t is, from condition (17),

I hb H(z-li) l+c1bSO

I ht H(z-bu) l+citSO

I hb H(z - bu) I - c1b 2: 0

I ht H (z - li) I - Cit 2: 0

where z = iml or ZMl·

Case 4: When c1b < 0 and Cit > 0.

(21)

In this case, the tessellation has the minimum and maximum values in the first index,

respectively,

(
i\ (b,t) (i\ (b,t)

H l) + vinside +Vb and H l) + vinside +Vt·

Therefore, the minimum and maximum values in the first index occur, respectively,

at

li la+(O, ... ,O,(ub-h),O, ... ,O) and

bu la+(O, ... ,O,(ut-lt),0, ... ,0).

The condition for either the coordinate H(im 1) or H(iMi) to be inside the extended

Chapter 4. Contiguity

tessellation of Rb,t is, from condition (18),

ht H (z - ~) I + Cit ~ 0

hb H(z - bu) I+ c1b :So

ht H (z - bu) I - Cit ~ 0

I hb H (z - ~) I - C1b :S 0

where z = lm1 or ;Ml·

Case 5: When cu = 0 and c12 > 0.

88

(22)

As we saw previously when d = 2 and n = 3, the condition for Case 1 or Case 4

above can be applied to this case.

Case 6: When cu = 0 and c12 < 0.

The condition for Case 3 or Case 2 above can be applied to this case.

Case 7: When cu > 0 and c12 = 0.

The condition for Case 1 or Case 2 above can be applied to this case.

Case 8: When c11 < 0 and c12 = 0.

The condition for Case 3 or Case 4 above can be applied to this case.

In summary, if there exists any tessellation such that either the coordinate H(im1)

or H(iM1) is inside one of the extended tessellations on the base-space for (in =Zn),

then the footprint is 2-contiguous.

For example, see Figure 21. The nesting depth of the nested loop is four. As

shown in the diagram, the base-space for {i4 = O}, marked with o in the illustration,

is 2-contiguous, and divided into three tessellations. With the terminology defined in

Chapter 3,

Chapter 4. Contiguity

for ii = 0, 3 <>-0--0--0-0-9
,d"o o o o ,d',9

for i2=0,5 ,1l 0 0 0 o_,a' 0 ? 2nd index
for i 3 =0,4

for i 4 =0,1
X(i1 - i3 + i4, i2 + i3 + 8i4)

endf or
endf or

,.a o o o o ,.a o o /'

o o o o 0 o cl'• • • • • •
o o o o 6 cs''• • • • • • •

-0--0--0-0--c)'' • •••••••

• • • • • • • • •
• • • • • • • • •
• • • • • • • •
• • • • • • •

endfor • • • • • •
endf or 1st index

Figure 21: 2-contiguity of 2-dim Array in General Case

R1,2 {a1v1 + a2v2 I a1,a2 E [O, l]}

R2,3 { a2v2 + a3v3 I a2, a3 E [O, 1]}

R1,3 { a1 V1 + a3v3 + v~!~~~e I a1, a3 E [O, 1]}

{a1v1 + a3v3 + v2 I a1,a3 E [O, l]}

89

The base-space has the minimum and maximum values in the first index, respectively,

at

If the footprint of the nested loop is 2-contiguous, the point H(zm1) or H(zM1) is

inside one of the extended tesselleations, where

Zm1 = Zmo + (0, 0, 0, 1) = (0, 0, 4, 1), ZM1 = ZMo + (0,0,0, 1) = (3,5,0, 1).

In the diagram, the point H(zmi) is clearly inside the extended tessellation of Ri,3·

The tessellation is spanned by v1 and v3. Because c11 > 0 and c13 < 0, the tessellation

falls into Case 2, and the corresponding value of ba is

Chapter 4. Contiguity 90

The minimum and maximum values in the first index occur, respectively, at

bi la+ (0, . . . , 0, (Ut - lt), 0, . . . , 0) = (0, 5, 0, 0) + (0, 0, 4, 0) = (0, 5, 4, 0) and

bu la+ (0, ... , 0, (Ub - h), 0, ... , 0) = (0, 5, 0, 0) + (3, 0, 0, 0) = (3, 5, 0, 0).

Applying z = ~1 = (0, 0, 4, 1) to condition (20), we have,

H (z - bi) I + Cit =
-1 1

I ht = -5 ~ 0
1 3

H(z - bu) I+ c1b =
1 - 6

I hb =8~0
0 7

H(z - bu) I - cit~
-1 -6

I ht =0~0
1 7

H(z - bi) I - c1b =
1 1

I hb =2~0
0 3

This result satisfies condition (20) for the point H(Zmi) to be inside the extended

tessellation R 1,3 , thus determining that the footprint is 2-contiguous.

Chapter 5

Localization of Contiguously Accessed

Data

5.1 Loop Transformations

In the previous chapter, conditions for the footprint of a nested loop to bed-contiguous

when d = 1 or 2 were developed. Based on those conditions, in this chapter algorithms

are developed to decide the proper location for a block copy statement to be inserted.

The template of a parallelized nested loop used for this section is given in Figure 22.

The first step to check if the footprint is d-contiguous is to look into the index

function, and search for a set of loop variables { ik
1

, ••• , ikd} with the coefficients

satisfying the conditions described in Theorem 6. If any such set exists, we set aside

the loop variables. (If not, the footprint is not 2-contiguous.) Next, we are to look

for all io = lo, uo
Ii: for i1 = l1,u1

for in = ln, Un

X(c11i1 + · · · + C1nin, ... , Cd1i1 + · · · + Cdnin)

endfor

endf or
endf orall

Figure 22: Parallelized Nested Loop Code

91

Chapter 5. Localization of Contiguously Accessed Data 92

into the index function for a loop variable ikd+i with coefficients satisfying condition

(9) if d = 1, or one of conditions (15), (16), (17), and (18) if d = 2. We repeat this

process until the searching process fails or all eligible loop variables are selected. When

the process stops, if there is no remaining loop variables unselected, the footprint is

considered d-contiguous. If so, a block copy statement can be inserted before the loop

statement Ii.

Even if the footprint is not d-contiguous, we may still use block copy to localize

data for a set of some loops, that is, when the footprint of the nested loop induced by

a set of loop variables is d-contiguous and their loops are inside the other loops. To

select the loop variables of the most innermost loops we can reach, we therefore need

to select the innermost loop variable whenever possible. When the process terminates,

we then divide the selected loop variables into two sets,

so that G1 and G2 satisfy the following criteria:

• ki > k1, for j E {1, ... ,s},l E {s+ 1, ... ,t}.

• Subscripts of elements in G1 are consecutive integers, i.e. { ik1 , ••• , ik,}

• The number of elements in G1 is maximized.

The above criteria are required to make sure that the loop variables in G1 are from

the innermost loops. If they are not from the innermost loops, the data cannot be

localized by using a block copy. But, if there does exist such a set of loop variables

to satisfy the above criteria, let G1 = { ij, ... , in}· During the execution of the nested

Chapter 5. Localization of Contiguously Accessed Data

f orall io = lo, uo
dimension Xtmp(· · ·)

loop
for i1 = Z1, u1

for ij-1 = lj-1, Uj-1

endf or
endf orall

block copy from X to Xtmp
for ii = lj, Uj

for in = Zn, Un
Xtmp(c11i1 + · · · + C1nin, ... ,cd1i1 + · · · + Cdnin)

endf or

endfor
endf or

Figure 23: Data Localization by Block Copy

93

loop for loop variables in the set G1, the values of the loop variables i1, ... , ij-1 are

fixed, and the referenced data are d-contiguous. Therefore, a block copy statement

can be inserted before the loop statement Ii, as shown in Figure 23.

5.1.1 Localization of a 1-dimensional Array

When a 1-dimensional array is referenced in a nested loop, and G1 = {ij, ... , in}, the

footprint of the nested loop induced by those loop variables is 1-contiguous. Since

the array is 1-dimensional, the 1-contiguous data form a single block. To localize

the data by block copy, the lower and upper bou~ds of the block, l and u, can be

computed as follows:

Chapter 5. Localization of Contiguously Accessed Data 94

where
...

(ii, ... , ij-i, Vj , .. . , Vn), { 1, if elk 2: O
Zm Vk =

Uk if elk< O

-:'
(ii, ... , ij-i,µj , · · ·, µn), { u, if elk 2: O

ZM µk =
lk if elk< O

For example, consider Figure 24. In the first step of the process to select a loop

variable with the coefficient of absolute value I, select i4 rather than ii because the

loop for i4 is inside the loop for ii. In the second step, there are three possible choices
'

ii, i3, and is. To satisfy condition (9), choose is, i3, and ii, in that order. In the next

step, since there are no more loop variables satisfying condition (9), stop the process.

Because the loop variable i2 is not selected, the footprint is not I-contiguous. So far,

the loop variables are selected in the order i4, is, i3 , and ii. According to the above

criteria, we then divide the selected loop variables into two sets,

The lower and upper bound of the I-contiguous block are

[9i (ii, iz, U3, [4,ls)

ii + I4i2 + (-2)2 + (I)O + (2)0

U gl (ii, i2, [3 , U4, U5)

i1 + I4i2 + (-2)0 + (I)2 + (2)2

With this result , the array can be localized by inserting a block copy statement just

after the loop statement for i2 , as shown in Figure 24 (b).

Chapter 5. Localization of Contiguously Accessed Data

forall io = 0, 9
for i1 =0,2

for i2=0,2
for i 3 = 0, 2

for i 4 = 0, 2
for i 5 = 0, 2

X(i1+14i2 - 2ia + i4 + 2i5)
endf or

endfor
endfor

endfor
endfor

endforall
(a) Given parallelized nested loop

forall io = 0, 9
dimension Xtmp(· · ·)

loop
for i1 =0,2

for i 2 = 0,2
l = i1 + 14i2 - 4
u = i1 + 14i2 + 6
bcopy(&X(l), &Xtmp(l), (u - l + 1))
for ia = 0, 2

for i 4 = 0,2
for i 5 = 0,2

Xtmp(i1+14i2 - 2ia + i4 + 2i5)
endfor

endf or
endfor

endfor
endfor

endforall
(b) Localization by block copy

Figure 24: Localization of a !-dimensional Array

95

Chapter 5. Localization of Contiguously Accessed Data 96

5.1.2 Localization of a 2-dimensional Array

When a 2-dimensional array is referenced in a nested loop, and G1 = {iii ... , in}, the

footprint of the nested loop induced by the set G1 is 2-contiguous. Since the array

is 2-dimensional, there are several rows in the footprint, each of which has a single

2-contiguous block. To localize the data by a block copy, we first have to know the

minimum and maximum index values of each row of the footprint. Similarly to the

case of the 1-dimensional array, they can be computed as follows:

lk if elk> 0
...

where Zm (i1, ... 'ij-11 Vj, ... 'Vn), Vk = Uk if elk< 0

lk or uk if elk= 0

Uk if elk> 0
...

(i1, · · ·, ij-1 1 µj, · · · 1 µn), ZM µk = lk if elk< Q

uk or lk if elk= 0

For each row of the index T between row1 and row11 , the lower and upper bounds

of the 2-contiguous data block should be pre-determined if we want to effect the block

copy. To find the lower and upper bounds, land u, of the 2-contiguous data block on

the row r, we derive the following integer linear programming problem:

Solve :

subject to :

{
l = min(e21 i1 + · · · + e2jij + · · · + e2nin)

u = max(e21i1 + · · · + e2jij + · · · + e2nin)

{

Chapter 5. Localization of Contiguously Accessed Data 97

Because the value of the loop variables ii, ... , ij-i are fixed inside the loop statement

Ij-i, the expressions of those terms are equivalent to the constant terms, where

Then, the above integer linear programming problem can be rewritten into:

Solve:

subject to :

{

l = C2 +min(C2jij + ... + C2nin)

U = C2 +max(C2jij + · · · + C2nin)

{
For example, see Figure 25. In the first step of the process to select a set of two

loop variables with the coefficients to satisfying the condition described in Theorem

6, i4 and i2 are selected. In the second step, i3, whose coefficient satisfies condition

(15), is selected. In the next step, since there are no more loop variables that satisfy

any of conditions (15), (16), (17), and (18), the process terminates. Because there is

a loop variable ii which is not selected, the footprint is not 2-contiguous. So far, the

loop variables i4, i2, and i3 are selected in that order. According to the criteria, we

divide the selected loop variables into two sets,

The minimum and maximum index values of rows that have a 2-contiguous data block

are

row1 gi(ii,l2,l3,l4) = ii+(l)O+(l)O+(l)O =ii and

rowu 9i(ii,u2,u3,u4) = ii+(1)2+(1)2+(1)2 = ii+6.

Chapter 5. Localization of Contiguously Accessed Data

for all i0 = 0, 9
for i1 =0,2

for i2 = 0,2
for i 3 = 0, 2

for i 4 = 0,2
X(i1 + i2 + i3 + i4, 5i1 + i2)

endfor
endf or

endf or
endf or

endforall
(a) Given parallelized nested loop

forall i 0 = 0, 9
dimension Xtmp(· · ·)

loop
for i1=0,2

row1 = z1

rowu = i1 + 6
for r = row1, rowu

get_block_bound(r, &l, &u)
if (l ~ u) bcopy(&X(r, l) , &Xtmp(r, l), (u - l + 1))

endf or
for i2=0,2

for i 3 = 0, 2
for i 4 = 0,2

Xtmp(i 1 + i2 + i3 + i4, 5i1 + i2)
endfor

endf or
endfor

endfor
endf orall

(b) Localization by block copy

Figure 25: Localization of a 2-dimensional Array

98

Chapter 5. Localization of Contiguously Accessed Data

forall i 0 = 0, 9
dimension Xtmp(· · ·)

loop
for i 2 = 0, 2

l = 14i2 - 2
u = 14i2 + 8
bcopy(&X(l), &Xtmp(l), (u - l + 1))
for i 1 =0,2

for i3 = 0, 2
for i4 = 0, 2

for i 5 = 0, 2
Xtmp(i1 +14i2 - 2i3 + i4 + 2is)

endfor
endf or

endf or
endf or

endfor
endf orall

Figure 26: Improved Localization

99

With this result, the array can be localized by inserting a block copy statement just

after the loop statement for i 1, as shown in Figure 25 (b).

5.2 Loop Interchange

So far, a block copy statement is inserted before a loop statement only when the

footprint of a nested loop induced by loops enclosed by that loop is d-contiguous.

However, there may be some other loop variables whose footprint is d-contiguous but

whose loop statements do not occur in the innermost loops. In such cases, the block

copy method cannot be used to localize array data. Still, the same method can be

used, provided only that interchanging loops to move the loops whose footprints are

d-contiguous to the innermost loops does not violate the data dependence rule for

Chapter 5. Localization of Contiguously Accessed Data 100

parallel execution [68], which requires that the data dependence should be forward

directed in the execution sequence.

For example, reconsider Figure 24. In the process of selecting loop variables to

satisfy the I-contiguous condition, i4, is, i3, and i1 are selected. By contrast, the

loop of i1 is not selected and not inside the loop of i2. Even though the loop of i1

can contribute to form a larger I-contiguous block, it is excluded from the set G1.

Nevertheless, if it can be shown that there is no dependence conflict resulting from

interchanging the loops of i 1 and i 2 , localization can be done more effectively by doing

so, as shown in Figure 26.

Chapter 6

Localization of Non-contiguously

Accessed Data

In this chapter, we describe how to localize data that are not contiguously accessed

in a nested loop as in Figure 5. When the data referenced in a nested loop is not

contiguous, we can not utilize a fast block copy. Instead, we have to copy elements

word-by-word if we do intend to localize them.

In a nested loop with an array reference , let r be the rank of the mapping function;

i.e. , rank(H) = r . When the nesting depth of a nested loop is equal to the rank of

the index function for the array reference, i.e., n = r , the number of accesses to the

array is equal to that of the referenced elements; thus, we cannot expect performance

improvement by data localization, because the localization time for copying word­

by-word is same as the time for accessing to the array during computation. If the

nesting depth is greater than the rank of the index function , i.e., n > r, the total

number of accesses to the array is much greater than the number of the referenced

array elements . In such a case, therefore, if we can accurately take into account the

overall system overhead, which depends on the relative access time to remote and

local memory, then copying elements word-by-word from remote to local memory

and computing with local data may result in better system performance. Therefore,

throughout this chapter, we assume that n > r.

101

Chapter 6. Localization of Non-contiguously Accessed Data 102

6.1 The Thickened Face

6.1.1 Concept of Thickened Face

This subsection is mostly based on the work of Gallivan, Jalby, and Gannon [24]. The

main concept of thickened face found in this paper will be summarized here to give a

theoretical basis to our extension.

In order to localize all the elements of an array, say X, we first declare a temporary

array X tmp in local memory. The simplest implementation would be to declare X tmp

as having the same shape as that of the original array X so that we may use the same

index functions.

The problem is to copy the exact set of elements referenced in the nested loop into

the temporary array as efficiently as possible. One way to do this is to get faces in the

domain, i.e., iteration space, and to copy the images of the faces, i.e., tessellations,

to the corresponding area of the temporary local array Xtmp.

The main problem is to characterize the geometrical structure of the referenced

array elements, H(D), by considering the mapping of faces, F, of the domain, D,

in zn. Let the set of r-dimensional faces generated by r iteration variables on the

iteration space be defined by

r

F ={FI F =IT Dki' where ki E {l, ... ,n}}.
j=l

Then,

H(D) = LJ H(F).
FEF

In the domain D, there are many faces, but as we saw in Chapter 3, we can select

(~) faces so that the whole range can be covered with the images of tho,se selected

faces, the tessellations, that are mutually disjoint except at the boundaries.

Chapter 6. Localization of Non-contiguously Accessed Data

for i1=0,5
for i2 = 0,4

for i3 = 0,6
X(i1 + 2i2 + i3, i2 + 2i3)

endf or
endf or

endfor
(a) Nested Loop

103

2nd index 2nd index ..
• •• I I I I I I I I I I I I I I I

.... r-·~;i--+- .. ;. ;.; y ;. ;. ; v ;. ; ; y
•' I •• I I I I I I I I I I I I I

--t-+-+·~~~-~--:--~·-+--:--f--~·-+--:--f·-~·-+--· 1• I I I .,... I I I I I I I I I I I

.... -~-.. -·--~-'1tr -: .. ·-:-·-~··:··~· · 7·-~- -!·--:·-7--·

-·-~-·-·-·-·-~~!·--~--~--~---t .. -~--t--~:-, :i·-. .. ~} ~--i -- ~--+-- ·
··· . .+-+:\ .•. ..!..+' • .i.. . +' _..i._.._:!._...i. .. t •. LL.L. • • 'T ~ "'T I I .,,. I I I I

-\-+-+-··.+-.. ·-+--+-·+-+--+-·+-·+··.-~--f--~--+--·
-·~~*-·-··~-·-·-·-·-·-·-•-\- .. i--1---i---· ·-~-\-•-•-•·-· ~ .. i--~---l---·
--~--!; :~~ ... -~ -~-·-~-1 .. t .. .L

I I •• I I I I •-;i I I I IT I '

--~- -f--t;-9--+-~-•-+-.. !'+-.-.•-·-~--+i~~--+-- ·
I I I. • I I I I I t ••• I I I ,.i I

--~·-t--1··.•·•- ······-.... -·!····· -•--t--·
.... ~ i ~ .. --.-~-~-·-·-·-···-·· .. · .. ·~ ·.+ : : : : •t •• I : I I I I I I I ·~:.•

--~·-:·-~--·--~-"+i;•··+·-+·+·+·+·-+·+·T"·1···
I I I I I I ~.I I I I I I I t

--~--~--~·-7·-~·-:·-~·-"t-··~-... -............... --·
I I I I I I I I •• f I I I I I

::t::1::t:t:t::1::t:t:t~:t·:·1;~tr:::::: :::
I I I I I I 1 t t I I I •• I I

-·+--f--~--+--:·-f ·-~·-+--:--f ·-~--+·-:·-· ;;-- --·
I I t I I I 1 I I I I I I I .. . -.. ·--........
I I I I I I I I I I I I I I I
I t I I I I I I I I t I I I I I

••• I I I I I I I I I I I I t I I

··-~· .. ·~-;--+--~- .. ~--; + ~ ; y ~ ; ; + .. -·
••• : I : : : : : : : : : : : :

-\--:--~--~-·--=--~--i·-:- .. : .. -~ i :-·:·-~-- 7·· ·
1• I I t --,.. t I I t I t I I t I I

--,·'; ! .. ·!" .. : --r-'t· .. ·t: .. T .. -:- -:- .. :--: --:--:--:--:-...
.. \.·~---:- --t·-~-!··-~·-t·-~---:---~--t--~ .. --:---·
-·-~~--·--~- .. i;.. .. :~·-·~-~--+--~--i--~ +

•• I I .i_ : : I : : I : I : : : :

·.-+·+-.,;·-;-·-~-+-~·--:-·-+··:·-~·-"t··~·-:·-~·--:-···
~. I ••• t I t t I I I I t• I I I t .. ,--..-~·.-:- -.. !--~-··--~· .. :--.. -7·.-~--!- .. ~--7-··
--t~*-•-• ... t--t--•-+--t .. •-i--+-\ f i;.

I •t t • ••• t I I t I I I '• I I I

--~ .. -\ ~ .. • ; y ; ~.,; ; +
: ,• I • : I I : : I : : 1 : : :--:'~t .. + .. -:-+ .. 1·-~.- ·:·-t·-r··:·-.,:--~"'-i " " '
I I .. • I I I I --,.. I I I J. I;. I I ~--!--·-·--~-..- .. ~- .. ·- -~·~.-.~· .. 7-..,.·-! ~~--7--·

--t--i--i:\•--t-+-i·-•··t-•-.t:!••:t-.. +--•·+--·
: : : •• : t : I : I : I ~·· I ••. :

-·r··r··r-,•:1·~-1·-~·-r-~·1·-~·-r·~;;·.;r···
-+-:·-~·-+-·t-·:.+i;~·-+··r·+-~·-+··r·+-~·._1···

I I I I I I ~.I I I I I I I I --:·-: --:--: .. -: .. -:-· r-.,.• :~ :-t .. :- .. ' .. -:--,.-:-..
--:--:- .. :--:·-:--:--:--:--:-~·.t:·!'"":'""!""'t·-
::t::t:t:!::t::t:t:!::t::t:t:t:1.:.:tt: :::

: : : : : : : : : : : : : : . .,
I I I I I I I t I I I I I I I
t I I I I I I I I I I I I I t I

1st index 1st index

(b) Footprint (c) Images of Faces

Figure 27: Footprint and Tessellations

Chapter 6. Localization of Non-contiguously Accessed Data 104

If the domain is real, the image of · a selected face will cover the corresponding

tessellation completely. But since the domain of the nested loop, i.e., the iteration

space, is integer, the image of a selected face may not refer to all the elements in

the corresponding tessellation. For example, consider Figure 27. The nested loop is

shown in (a), and the footprint is illustrated in (b). In the iteration space, there are

n) = 3 faces:

• Fi : '[O, 5J x [O, 4] including (0, 0, O)'

• F2 : '[O, 4] x [O, 6J including (0, 0, O)'

• F3 : '[O, 5] x [O, 6] including (0, 4, O)'

The faces Fi, F2 , and F3 are the iteration spaces for ii and i2 at (0, 0, 0), for i2

and i3 at (0, 0, 0), and for ii and i3 at (0, 4, 0), respectively. The images of the three

faces are illustrated in (c). From (b) and (c), we know that the images of the three

faces do not refer to all the elements of the footprint. While the image of the face Fi

is the same as the elements in the tessellation for the face, the images of F2 and F3

do not refer to all the elements in the corresponding tessellations of the footprint.

The points, which are in the footprint but not included in the image of the face,

may be determined with the effect of other iteration variables that are not used to

form the face. For example, reconsider Figure 27. In the tessellation for the face F2,

to cover all the elements in that tessellation of the footprint with the image of the face

F2, all the images of the face F2 at (0, 0, 0), at (1, 0, 0), and at (2, 0, 0) are required.

In this case, we need images of three clone faces of F2 along the ii-axis. Thus the

effect of ii to the face F2 is 3 so that the image of F2 can cover all the referenced

elements in the tessellation. Similarly, in the tessellation for the face F3 , the images

of the face F3 at (0, 4, 0) and at (0, 3, 0) are required to cover all the elements in the

tessellation for F3 of the footprint. Thus the effect of i2 to F3 is 2.

Chapter 6. Localization of Non-contiguously Accessed Data 105

The effect of each iteration variable to a face F is called the thickness of a face F

along the axis of the iteration variable; F is extended along each axis by the amount

of its effect and forms a new face, called the thickened face and denoted by thk(F),

that is a higher dimensional space than r = rank(H).

The thickness and thickened face are constructed as follows. Let ei, ... , er be the

basis to form a face F. Since rank(H) = r, and the vector space we are working with

is on the integer domain, for every t > r, we have, for some positive integer at,

(23)

The thickness of F along et is the smallest positive integer at satisfying Equation (23).

The thickened face of F depends upon the vertex that F includes. Let us assume

that F includes the vertex (0, ... , 0, 1Jr+I, ... , 'Tin), where 'T/j = lj or Uj, for j = r+ 1, n.

Define Tt by

{

[it, min(lt +at - 1, Ut)]
Tt=

[max(lt, Ut - at+ 1), ut]

Then the thickened face of F is

n

if 'T/t = lt
if 'T/t = Ut

thk(F) = F x IT Tj.
j=r+l

With this construction, we can get the following formula:

H(D) = LJ H(thk(F)).
FE:F

6.1.2 Thickness of Face

In this section, we explain how to compute the thickness of a face, which is an iteration

space for ik1 , ••• , ikr, along the direction of a vector et, where t rf. { k1, ... , kr} ~

Chapter 6. Localization of Non-contiguously Accessed Data 106

{1, ... , n}.

Lemma 1 Let ao, ... , ar be integers. Then the smallest positive integer a satisfying

is

a ·
...l.... ·a are integers, for j = 1, · · ·, r
ao

ao
a=--~~~~~

gcd(ao,ai, ... ,ar).

Proof Let {pi, ... ,pn} be a set of prime numbers which are factors of ao, ... , ar.

Then the prime factorization of ai can be denoted by

aj = p~;i ... p~in, where Aji, ... , Ajn are non-negative integers.

For any value of j,
>-;1 >-;n

aj Pi · · · Pn
-a = >-01 >-o •

0 Pi · · · Pn n

In order to get integer value for ~ · a,

ao
a = min{>.;1 ,.>.oi} min{>.;n,>-on}.

Pi · · · Pn

The above should be true for all j = 1, ... , r. Thus,

D

Chapter 6. Localization of Non-contiguously Accessed Data 107

Let { ei, ... , er} be a set of basis vectors to form a face F. Then Vp = { h1, ... , hr}

is a set of the basis vectors to produce the image of a face Fin an r-dimensional space.

The image of a face generated by the iteration of loop variables i1, •.. , ir, i.e., the

footprint of the nested loop induced by those loop variables, is the linear combination

of h 1 , .. . , hr with the integer coefficients in the range of [11 , u1], ... , [Zri ur] respectively.

The following theorem provides an efficient method to compute the thickness of a face

F along the direction of et, where t > r.

Theorem 8 Let rank(H) = r, E F = { e1, ... , er} be a set of basis vectors to form a

face F, Vp = {h1, ... , hr}, C = (h1, ... , hr), and et'/. Ep. Then the thickness, O'.t, of

the face F along the direction of et is

<it = { ~OO(N.,::i,., ... ,N,,)

where

if Not# 0

otherwise

Proof The thickness of a face F along the direction of e1 is the smallest positive

integer a.1 such that

O'.tht E span(h1, ... , hr)= f 1h1 + · · · + fi·hri where fl, ... ,fr are integers,

that is, in matrix form,

fl fl

(i.e., C (24)

fr fr

Chapter 6. Localization of Non-contiguously Accessed Data 108

Recall that d is the dimension of the array variable that we are interested in. The

matrix C is a (d x d) square matrix if r = d, but a (d x r) rectangular matrix if r < d.

If r = d, the answer is a straightforward one. In the case r < d, however, we have to

think differently. If the r columns selected are linearly independent, we can select r

linearly independent rows, and the remaining (d - r) rows are generated by a linear

combination of the selected r rows, so the square matrix of selected r rows is regarded

as C. But if the r columns are not linearly independent, selecting any combination

of r rows gives a singular matrix, so C is a singular matrix. From now on, let C be

a (r x r) square matrix in any case.

If the matrix C is not singular (i.e., Not -/; 0), then we get the following equation,

using Cramer 's rule,
Nkt

/k = 11.r ·at, fork= 1, ... , r.
lYQt

Since /k are integers, from Lemma 1,

If the matrix C is singular, then Equation (24) can be reduced to

So a 1 should be 0.

D

(25)

For example, consider the nested loop of Figure 27 (a). If a face F generated by

the iteration i 2 and i 3 is being considered, then

Chapter 6. Localization of Non-contiguously Accessed Data 109

for ii =0,2 or for ii =3,5
for i2 = 0,4

for i 3 = 0,6
Xtmp(ii + 2i2 + i3, i2 + 2i3) = X(ii + 2i2 + i3, i2 + 2i3)

endf or
endf or

endfor
(a) Code to Copy Image of Thickened Face

2nd index

·:{:t:~:~~~:t::t::~::t::t::j::~::t::~::t::~::t:::
--<i~ 9 .1~"". ;_ . .!. • -~ •• : •• ;_ • .!. •• ~ •• :. _ ;_ • .!. •• .

I • I I : 1 •••• : : : : : : : : : \--o--•-•--o-lo-t .. !•·-~--t--'{--7--~--t--'{--~ - · ..
--~-~•-•-~-•-•-o .. :~·_ . ..__~--.:.--~--i--~--.:.

I I •1 I I I I I I I .,.. I I I I I

--~--+--9;-9--.-+-<>·+-;--9- - ~-~ ... --~--~--~--+-- ·
--~--:--<>··.•-.. ·4-·•·+·Q· ... ·t- · 9\-~--:--~·--:-·-·
--~·-t· ·•·•r~-•-•·o·•·• -&-•-~·-t·-i---t--·

I I I I •• I I I I I I I '• I I I

--~--··-{--6-•-·.-.-0- -0- <).,;; +
.. t .. l--L+--t-~:t~ ... -~ -t-~-~-=\--~--l--.

: : : I : I I ·->. I I 1• : :

··•··•··•··-··•·-+-·•··.l..i._ -9'••·--···
: : : : : I : : I :··+. I I I ·.: : .. -:··t··:--:·-~-·t--1--!· .. :-~-!"!!··~.-~-!-:-- ·

--~-·•--.;--+--~--1--.;--+--~-+-.;--o-•-·Alh-c>··+-- · : : : : : : : : : : : I : I •;:·I
· -·--·-···-~·-·-·······~···········+·-··.A.- I I I I I I I I I I I I y T

--~--!--~--+·-~·-f ·-~·-+·-~--;--~--+ .. -~ ~ Q
f I I I I I I I I I I I I I I I

--~--t--i--~--~·-t--~·-7--~--t--i-·7- .. ~--t--i·-·--·
I I I I I I I I I 1 I I I I I I

.... ;. ... ; ; y ;. ; ; + } ; ;--+--}--T--;--+--·
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I _
I I I I I I t I t I I I I I I I
I I I I t I I I I I t I I I I I -.... -.... -- --.. -...... -.................. -.... -.................... -.. -....... -- '
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I

1st index

(b) Image of Thickened Face

Figure 28: Image of Thickened Face

Chapter 6. Localization of Non-contiguously Accessed Data 110

No1 = 3,

The thickened face is

{

[0,2] x [0,4] x [0,6]
thk(F) =

[3, 5] x [O, 4] x [O, 6]

Na1=1,

if F include (0, 0, 0)

if F include (5, 0, 0)

So the image of thk(F), H(thk(F)), can be obtained from the code of Figure 28 (a),

and diagram (b) shows the image of the thickened face, where the black circles, white

circles, and white circles with cross represent the elements of the image of the face F

when i 1 = 0, i 1 = 1, and i 1 = 2, respectively. Unlike Figure 27 (b), the image of the

thickened face covers all the elements in the tessellation.

As we can see in Theorem 8, when the vectors forming a face are not linearly

independent, the thicknesses of the face along any vectors are zero. In that case, we

do not have to generate codes to localize the elements.

Corollary 1 If Not= 0, then Ut = 0, fort= r + 1, ... , n.

Corollary 2 If Not# 0, then at# 0, fort= r + 1, ... , n.

Corollary 3 If Not= 1, then at= 1, fort= r + 1, ... , n.

The proofs of these Corollaries are clear from Equation (25), because the denom­

inator is the greatest common divisor of some numbers, of which one is Noi, and the

numerator is Not·

6.1.3 Optimizing Thicknesses of Faces

A thickness of a face along vector et for a loop variable it corresponds to the number

of iterations of the loop variable it. So a smaller thickness is definitely preferable.

Chapter 6. Localization of Non-contiguously Accessed Data 111

An optimization process may well be required to reduce the values of the thicknesses.

Here, we will consider such optimization methods.

The thickened face of the construction described so far does not take into con-

sideration the thicknesses of a face along those vectors that have been considered

previously. Once we get a thickness along a vector, however, we can consider the ef­

fect of the thickness of that vector on the thickness along another vector. By selecting

vectors in the proper order in the process of applying thicknesses of a face, we can

reduce the thicknesses of a face along the vectors to be applied later.

If the tessellation for a face is a smaller dimensional space than that of the face,

i.e., the images of the basis vectors that form the face are not linearly independent,

then the thickness of any direction is zero; thus, we do not have to compute any

thickness for these cases. Otherwise, the thicknesses of the face are not zero, which

follows from Corollary 2. From among these non-zero thicknesses, therefore, we need

to select the smallest thickness, and use that thickness along the vector to optimize

thicknesses along other directions.

When there happen to be more than one vector with the same thickness, which

is the smallest, we need another criterion to choose one of them. Since the purpose

of thickness is to fill the inside of the tessellation for a face, with the actual elements

referenced in a nested loop, when the thickness is applied, the vector that produces

a denser image is better. The criterion to decide whether it produces a denser image

is the value of the Euclidean norm of the coefficient vector ht for the corresponding

loop variable it. Because the norm is the distance between points, the smaller the

norm, the denser the image. For example, in Figure 29 a sample nested loop is given

in (a). The mapping matrix His

(

3 1 -2

H = 0 1 2

Chapter 6. Localization of Non-contiguously Accessed Data 112

for i 1 =0,3
for i2 = 0, 9

for i3 = 0, 9
for i 4 = 0, 9

X(3i1 + i2 - 2i3 - i4, i2 + 2i3)
endf or

endfor
endfor

endf or

(a) Nested Loop

I I I I f I I I I I I I I

--!--~- -.:.--6- -!-- ~--.:.--~--!--~--.:.--~- -!- --
• I I I I I I I I I I I I

--f--~--+--~--9--~--+ .. ·+-·!--+·-+--~--!-- -
--i--O.--~--~--i--O.--~--~--i--i---~--~--i---

I I I I I I I I I I I I I

--t--1--<;>--<;>--!--1--~--r--t--i-·t··f .. ·t-- .. 2nd index
I I I I I I I I I I

• I I I I I I I I I I

:~-9-·+·-~--9--Q.-+--~--9--~--+--~--~--­
-.. t :~ Q .. .Q .. -t .. -0.-0 .. -~ --t .. -0.--t- -~ --f--..

I I • I I I I I I I I I I I

- - ~ - - ~- -··-.0--0.-~--6·.0--~ ~--6--~-· ~ -

-+-~ - +:·i:"*--~-+-~-"*--~--+-4--l---
--!--+.-9-.Q-.... Q. .. Q--~--9--9-·+--~-~--
.. .. f--i- -•-.0--0-: Q .. .Q f Q. .. Q .. -~- -t. --
-•-O.-~- •--O--O.:·•-<i--6--~--o-<i- -i----_ ; __ ._ _;. __ ~ - +· -6.-;.·:~ _ _A__c!,._J. __ ~-.6---

• 1 Y I I "(,.y 1 I I I

;-:--~--·-.Q--i--.. -c!>-.Q-·1· -c!>-c!>-++-­
.. ~-i--~--•--O--i--•-.O- -i--o-.O--i---

• •.I I I I I I I I I I I

.... ~ V- .. ;. .. +-6--4--•- -o---:.- .. ;.--O-
I ••• I I t I I t I I I I

--!--~- -··--~ --!--+--«>--~- -9-9--~- -!---
--l--~- -+ :·i--l-+-•-~-i-+-c!>-~- -l---
.. -t- .. ~- --:---~-·+.-~--..:..- ·~--..:---~--0- - ..

I I I I I • I I I I I I I ~ ~:,.. ~ .. -~-----+--~- -o--+--~- .. ~ - --
1 I I I I I • I I I I I I

- - !--~--+--r--f--~--·•.--r-- --~--<>--r- .. :---
• I I I I I I ••• I I I I

- .. !--~---:-·-~- - !·-~·-7-·-- --~--7--~-·!·--

--i--i- -+--~- -i--i--+--~=· -i--+--~- -i---
I I I I I I I I I I I I I
I I I I I I I I I I I I I

1st index

I I I I I I I I I
I I I I I I I I I --·--·-----·--. --·-----·--·---• I I I I I I I I
I I I I I I I I t

... 1.
I I I I I I I I I

--i- -i--+--t--i--i-- -~ --t--i---
I I I I I I I I I

. ..(). .. ~--..:---~--~--~;.. ~ ~--- 2 d
I I : : : : : : : n

1st index

index

(b) Image of Thickened Face along e3 (c) Image of Thickened Face along e4

Figure 29: Effect of Applying a Thickness to a Face

Chapter 6. Localization of Non-contiguously Accessed Data 113

When a face F formed by the basis vectors { e1, e2}, the thicknesses of the face along

e3 and e4 are all 3; i.e., a3 = a 4 = 3. Here the new criterion can be applied. From

the definition of the Euclidean norm,

Therefore, the thickness along e4 is first selected. The effect of applying the thickness

of a face is shown in Figure 29 (b) and (c). In the diagram, the parallelogram with

dashed lines is the tessellation of a face, the set of black circles is the image of the

face, and the set of white circles is the im<;tge of the face thickened along a direction,

which is e3 in figure (b) and e4 in (c). It is clear that by applying the thickness

along e4 the inside of the tessellation is covered completely, and it is not necessary to

apply the thickness along e3; but if the thickness along e3 is applied first, then there

are many uncovered elements in the tessellation and it is still necessary to apply the

thickness along e4 .

So far, we have made two levels of criteria by which to choose a thickness along a

vector among many thicknesses for a face:

1. Choose vectors with smallest thickness.

2. Choose a vector et when llhtll is minimum.

With the selected thickness along a vector, we can optimize the other thicknesses.

For instance, let { e1 , . . . , eri es, ei, ew} be a set of unit vectors for loop variables

ii, ... , ir, is, it and iw, and Ep = { e1 , ... , er} be a set of basis vectors of a face F.

We need to compute thicknesses as, ai, and aw along vectors es, et, ew ¢ Ep. First,

compute as, ai, and aw and select one of them with the criteria stated above. Let as

be the first one selected as the smallest. After a thickened face of the face F is formed

along es direction, we can interpret that thickened face in the following (r + 1) ways:

Chapter 6. Localization of Non-contiguously Accessed Data 114

• Thickened face of the face formed by the basis vectors {es, e2, ... , er} along e1

direction .

. . . .
• Thickened face of the face formed by the basis vectors { e1, ... , er_1, es} along

er direction.

From the first interpretation, we can compute the thickness of the face formed by

{es, e2, ... , er} along et . From all interpretations, we can get r at values, but all

zero values should be discarded, because the thicknesses of the face are not zero.

From among those non-zero at values computed at this step and the original at value

computed at the first step, select the one with the smallest value as the new thickness

of the face F along et. Similarly, we can computer additional aw values and select

one of them as aw value at this step. In this way, we can get better thickness of a

face along all vectors not in the set E F.

In the next optimization step, select one value of at and aw according to the

selection criteria. Let at be the second one selected as the smallest. Then the face

F is thickened along es and et. The thickened face of F along es and et can be

interpreted as one of the following (;) thickened faces:

• - Thickened face of the face formed by the basis vectors {es, ei, e3, ... , er}

. . . .

along e1 and e2 directions.

- Thickened face of the face formed by the basis vectors {es, e2, ... , er-1, et}

along e1 and er directions .

• - Thickened face of the face formed by the basis vectors { ei, ... , er-2, es, et}

along er-1 and er directions.

Chapter 6. Localization of Non-contiguously Accessed Data 115

From the above interpretations, we can get additional (;) thicknesses aw values.

From among those non-zero aw values computed at this step and the current aw

value, select the one with the smallest value as the new thickness of the face F along

the ew. In this second optimization step, we can improve thickness vall_\es for the face

along all vectors not in the set EF. This optimization is carried out further.

Figure 30 shows the algorithm to compute optimal thicknesses. The inputs to the

algorithm are H, the index function in matrix form, and :F, the set of r-dimensional

faces that are properly selected according to the tessellation process. :F is modified to

keep the faces whose thicknesses are to be computed. The outputs are the thicknesses

of faces returned through a 2-dimensional array a whose first subscript refers to a

face and whose second subscript refers to the direction of the thickness. The variable

U is the set of all unit vectors for iteration variables in the nested loop. EF is the set

of unit vectors forming the face F. SF is the set of vectors along whose directions the

thicknesses of the face F is to be computed. Tp is the set of vectors along which the

thicknesses are fixed and thus are not to be improved further. The value of np is the

number of vectors in the set TF but does not exceed r = rank(H), and np vectors

from the set Ep replace np vectors from the set TF.

In the first large scoped for loop, thicknesses are computed for every face along

every vector not in the set E p; all the faces are removed from the set :F either if the

vectors in EF are not linearly independent, i.e., N = 0, or if all the thickp.esses are

one, i.e., N = 1. From Corollary 1, if N = 0, all the thicknesses are 0, and from

Corollary 3, if N = 1, all the thicknesses are 1, which cannot be reduced further.

Once we get all thicknesses, select the one vector with the smallest thickness (in the

case that there happen to be more than one vector with the same smallest thickness,

then select the one with the smallest norm of corresponding column vector of H) and

remove the vector from Sp and add it to Tp so that the thickness of the face along

the vector is fixed.

Chapter 6. Localization of Non-contiguously Accessed Data 116

Procedure OptimaLThickness(H, :F, a);
/* Input : H: (d x n) mapping function array */

/* Input : :F: set of (;) faces */

/*Output: a:((;) xn) array*/

/* where r = rank(H) */
U = {e1, . .. ,en}; /* set of unit vectors of iteration space*/
for (every face F E :F) {

Ep = set of basis vectors forming face F;
Sp=U - Ep;
if (N == 0) { /* N is defined in Theorem 8 */

for (every et E Sp) a(F, t) = 0;
F = F- {F};

} else {
if (N == 1) {

for (every et E Sp) a(F, t) = 1;
F=F-{F};

} else {
for (every et E Sp) Compute a(F, t);
Select one index s such that

llhsll =min{ llhs1 ll I a(F,s') = min{a(F,t)let E Sp}};
Sp = Sp - {es}; Tp = {es}; np = 1;

} } }
while (Sp ::j:. ¢, for any FE F) {

for (every face FE :F) {

} }

for (every e1 E Sp) {

}

np = min(np, r); j3 = oo;
for (every Pp, where Pp: set of np elements in Ep)

for (every Qp, where Qp: set of np elements in T'p) {

E~, = (Ep - Pp) U Q p; /* basis for face F' */
if (a(F' ,t) > 0) j3 = min(j3,a(F',t));

}
a(F,t) = min(a(F,t),/3);

Select one index s such that
llhsll =min{ llhs1 ll I a(F,s') = min{a(F,t)let E Sp}};

Sp= Sp - {es}; Tp = TpLJ{es}; np = np + 1;

Figure 30: Algorithm to Compute Optimal Thicknesses

Chapter 6. Localization of Non-contiguously Accessed Data 117

forall i0 = 1, np

for i 1 = 0, 9
for i2 = 0, 9

for i 3 = 0,9
for i4 = 0, 9

X(3i1 + i2 - 2i3 - i4, i2 + 2i3)
endf or

endfor
endf or

endf or
endf orall

Figure 31: Nested Loop to be Localized

The while loop runs while there are any faces with a non-empty SF set, because

if SF is not empty, then there are still some vectors whose thicknesses are not yet

optimized. On every iteration, one vector for a face is selected as an optimal thickness,

removed from SF, and added to TF. Thus SF finally becomes empty. In the for

(every et E SF) loop, an improved thickness at of the face F along the et direction

is set to the smallest among the thicknesses of the faces, which are formed by the unit

vectors in EF by replacing nF vectors with nF vectors in TF, along the direction of

et. The optimal thickness of a face along a direction of a vector, whose thickness is

not yet optimized, is chosen in the for (every face F E F) loop by applying the

two levels of criteria: choose vectors with the smallest thickness, and choose a vector

with the minimum norm of column vector.

6.2 Loop Transformation

Using the theories developed so far, we can localize non-contiguously accessed data

efficiently. In this section, we explain how to transform the given nested loop into one

with data localization and how the transformed code affects program performance.

For example, consider the nested loop shown in Figure 31.

Chapter 6. Localization of Non-contiguously Accessed Data 118

The array variable X cannot be localized by a fast block copy as described in

Chapter 5 because the footprint is not 2-contiguous. Each processor executes the

nested for loop in parallel with other processors. For each processor, the total number

of elements referenced is 1324, but the number of accesses to t.he array X is 10000.

Since the number of accesses to the array is 7.6 times greater than the number of

elements accessed, if we make a copy of an element into local memory, then further

access to the element can be carried out very rapidly within local memory.

Let us apply the procedure developed so far. The index function in matrix form,

H, is

H = (3 1 -2 -1) .
0 1 2 0

The column vectors are properly ordered as described in the tessellation process,

and rank(H) = 2. Therefore, The faces stated in the tessellation process are 2-

dimensional. There are 6 faces by selecting 2 vectors out of 4:

• F1 : formed by basis {e1,e2}, [0,9] x [0,9] including (0,0,0,0)

• F2 : formed by basis { e2 , e3}, [O, 9] x [O, 9] including (0, 0, 0, 0)

• F3: formed by basis {e3,e4}, [0,9] x [0,9] including (0,0,0,0)

• F4: formed by basis {e1,e3}, [0,9] x [0,9] including (0,9,0,0)

• Fs : formed by basis { e2 , e4}, [O, 9] x [O , 9] including (0, 0, 9, 0)

• F6 : formed by basis { e1 , e4 }, [O, 9] x [O, 9] including (0, 9, 9, 0)

The unoptimized and optimized thicknesses corresponding to the faces are computed

as in Table 1. From the table, we can construct the thickened faces. When thicknesses

are unoptimized, the corresponding thickened faces are

• thk(F1) = [O, 9] x [O, 9] x [O, 2] x [O, 2]

Chapter 6. Localization of Non-contiguously Accessed Data 119

thickness
face unit vectors unoptimized optimized

ai a2 a3 a4 ai a2 a3 a4
Fi ei,e2 3 3 1 3
F2 e2,e3 4 4 1 4
F3 e3, e4 1 2 1 2
F4 e1,e3 6 3 2 3
Fs e2,e4 1 1 1 1
F6 e1,e4 0 0 0 0

Table 1: Computed Thicknesses of Faces

• thk(F2) = (0 , 3J x [O, 9J x [O, 9J x [O, 3J

• thk(F3) = [O, OJ x [O, lJ x [O, 9] x [O, 9]

• thk(F4) = [O, 9] x [4, 9] x [O, 9] x [O, 2]

• thk(Fs) = [O , OJ x [O, 9] x (9 , 9] x [O, 9]

• thk(F6) = [O, 9J x ¢ x ¢ x [O, 9J

When thicknesses are optimized, the corresponding thickened faces are

• thk(F1) = [O, 9] x [O, 9J x [O , OJ x [O, 2]

• thk(F2) = [O, OJ x [O , 9J x [O , 9] x [O, 3]

• thk(F3) = [O, OJ x [O, 1] x [O, 9J x [O , 9]

• thk(F4) = [O , 9] x [8, 9] x [O, 9J x [O, 2]

• thk(Fs) = [O, OJ x [O, 9] x [9, 9] x [O, 9]

• thk(F6) = [O, 9J x ¢ x ¢ x [O, 9]

Chapter 6. Localization of Non-contiguously Accessed Data 120

for i1 = 0, 9
for i2 = 0, 9

for i 3 = 0, 2
for i 4 = 0, 2

Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)
endf or endf or endfor endf or
for i 1 = 0, 3

for i2 = 0,9
for i3 = 0, 9

for i 4 = 0,3
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endf or endf or endfor endf or
ii= 0

for i2 = 0, 1
for i 3 =0,9

for i 4 =0,9
Xtmp(3i1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endfor endfor endfor
for i1 = 0, 9

for i 2 = 4, 9
for i3 = 0,9

for i 4 =0,2
Xtmp(3i1 + i2...,. 2i3 - i4, i2 + 2i3) = X(3i 1 + i2 - 2i3 - i4, i2 + 2i3)

endf or endf or endf or endf or
ii = 0

for i 2 = 0,9
i3 = 9

for i 4 =0,9
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endfor endf or

Figure 32: Unoptimized Data Localization

Chapter 6. Localization of Non-contiguously Accessed Data 121

for ii = 0, 9
for i2 = 0,9

i3 = 0
for i4=0,2

Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3ii + i2 - 2i3 - i4, i2 + 2i3)
endf or endfor endfor
ii= 0

for i2 = 0, 9
for i 3 = 0,9

for i 4 =0,3
Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3ii + i2 - 2i3 - i4, i2 + 2i3)

endf or endf or endf or
ii= 0

for i 2 = 0, 1
for i3 = 0,9

for i 4 = 0,9
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endf or endfor endfor
for ii = 0, 9

for i 2 = 8, 9
for i3 = 0,9

for i 4 = 0,2
• Xtmp(3ii + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endf or endf or endf or endf or
ii = 0

for i2 = 0, 9
i3 = 9

for i 4 = 0,9
Xtmp(3i 1 + i2 - 2i3 - i4, i2 + 2i3) = X(3i1 + i2 - 2i3 - i4, i2 + 2i3)

endf or endfor

Figure 33: Optimized Data Localization

Chapter 6. Localization of Non-contiguously Accessed Data 122

The loop transformations for data localization are based on the thickened faces.

The nested loop given in Figure 31 is transformed with the data localization as shown

in Figure 32 and Figure 33. The code in Figure 32 is based on the unoptimized

thickness and the one in Figure 33 on the optimized thickness. The number of copy

operations of the unoptimized code is 4600 with 24 73 overhead, but that of the

optimized code is 1600 with 21 % overhead. This overhead comes from around the

boundaries of tessellations when thicknesses are applied along several directions.

6.3 Optimizing Performance

For a given nested loop with an array reference, we can calculate the total number of

accesses to the array. If we apply the tessellation process to make a local copy, we can

calculate the number of copy operations thus required. Because remote access time

is usually much greater than local access time (for example, it is about eleven times

greater for Butterfly) if the number of accesses is much greater than the number of

local copy operations, then we can get big performance improvement by making a

local copy; but if there is not a big difference between the number of accesses and

local copy operations, making a local copy might degrade the performance because

of the overhead. The following analysis does not take into consideration any adverse

effects caused by network traffic saturation, memory hot spot contention, and so on.

Let the access time be l machine cycles for local data, and r machine cycles for

remote data. Assume that there are P processors executing in parallel, the number of

data access for each processor is N, and data are distributed evenly over all memory

modules. Then the probabilities to access local and remote data are ~ · 1; = ~ and

N*(P-l) 1 P-1 · 1 P · N = -p respective y.

Chapter 6. Localization of Non-contiguously Accessed Data 123

When the data are not localized, the time for each processor to access all data is

1 P-1
(l · p + r · ----p-) · N. (26)

When all data are localized by using the tessellation process, if the calculated number

of copy operations to localize all required data is C, the time for each processor to

copy all required data is
1 P-1

(l · p + r · ----p-) · C.

Once all the data needed for execution are copied into local memory, all the data

accesses during computation occurs locally. So the total time to reference data is

l · N. The sum of the time to make a local copy and to access it locally is

1 P-1
(l · p + r · ----p-) · C + l · N. (27)

From the two equations (26) and (27), the localization effort is worthwhile only

when the following inequality holds:

1 P-1 1 P-1
(l · - + r · --) · N > (l · - + r · --) · C + l · N. p p p p

Expressing the above equation in terms of the ratio of the remote access time to the

local access time and the ratio of the number of copy operations to the total number

of references, we get
c 1
N<l-r 1 1·

-(1- -) + -l p p

(28)

The right hand side is the upper bound of ~ where the localization may improve

the performance. When the number of processors, P, is fixed, the value f affects the

condition of the equation. As the ratio f approaches to 1, i.e., the remote access time

approaches to the local access time, the right hand side of Equation (28) approaches

Chapter 6. Localization of Non-contiguously Accessed Data 124

No. of r /l
Pro cs 2 4 8 11 16 32

2 0.33 0.60 0.78 0.83 0.88 0.94
4 0.43 0.69 0.84 0.88 0.92 0.96
8 0.47 0.72 0.86 0.90 0.93 0.96
16 0.48 0.74 0.87 0.90 0.93 0.97
32 0.49 0.74 0.87 0.91 0.94 0.97

Table 2: Upper Bound of ~ for Performance Improvement

to 0, and as the ratio f increases, the right hand side of Equation (28) approaches to

1. Therefore, if the remote access time is much larger than the local access time, then

data localization is efficient in most cases. However, if there is not a big difference

between the remote and the local access time, data localization is efficient only for

the small value of the ratio ~-

In Table 2, the upper bound of ~ for the better performance are computed for

various combinations of the number of processors and the ratio of the remote to local

access time. As expected, the upper bound gets larger as the ratio f increases. In the

case of the Butterfly GPlOOO parallel machine, the remote read and write accesses

take 7 µ second and 4 µ second, and the local read and write accesses take 0.53 µ

second and 0.38 µ second [8]. Therefore, the approximate ratio f is 11. From the

table, we can see that using data localization may be more efficient than the original

program, when the ratio ~ is less than 0.83.

Chapter 7

Experiments

In the previous chapters, we have considered data localization techniques to improve

the execution performance of nested loops. In this chapter, we present the experi­

mental results of the localization algorithms run on a parallel machine, a Butterfly

GPIOOO. (See the Appendix A for its detailed description.) Since the GPIOOO is a

hybrid class machine, it has properties both of the shared memory and distributed

memory systems.

The GPIOOO machine can be equipped with up to 256 processors. The machine

used for this test has 28 processors, 3 for the public cluster, 1 for I/0 process, and 24

for users. At any given time, a user can secure as many processors as he wants, up to

24. The set of processors allocated to a user is called a cluster. Each processor has

a local memory of 4M bytes, and the combined local memory modules of processors

form the shared memory of the system. The shared data array is uniformly distributed

to the local memory of each processor in the user cluster to avoid memory hot spots.

To verify the effect of the program transformation, we have run two programs,

the original and the transformed one, on 1 through 24 processors. For convenience,

we will name the original program CONTu and the transformed program CONTL.

7.1 Contiguous Data Access

A simple matrix multiplication program CONTu, with a contiguous data access pat­

tern in a nested loop as shown in Figure 34, is chosen for this demonstration. When

125

Chapter 7. Experiments

for all i = 0, n - 1
for j = O,n -1

c(i,j) = 0
for k = O,n -1

c(i,j) = c(i,j) + a(i, k) * b(k,j)
endf or

endf or
endforall

Figure 34: Matrix Multiplication (Contiguous) - CONTu

126

the program runs on P processors, n parallel processes, each of which is to execute

the forall loop body for a value of i between 0 and n - 1, are generated, and P

processors fetch, and activate, the parallel processes until there is no process waiting

to be run.

Let us apply the techniques developed in Chapter 5 to the program CONTu.

In the k-loop, the array a is 2-contiguous, b is I-contiguous, and only one element

of c is referenced. Thus, the row elements of the array a are the only ones to be

localized outside the k-loop. In the j-loop, array a is still 2-contiguous, b is 1- and

2-contiguous, and c is 2-contiguous. The row elements of a and c, as well as all the

data elements of b, may be localized outside the j-loop. Array a can be localized

outside both the k-loop and j-loop. For better results, it is important to have as

much of the outer loop as possible localized in order to avoid duplicated local copies.

Array b can be localized outside the j-loop. However, it can also be localized outside

the i-loop, since b is in the special situation that the index function does not depend

on the for all loop variable i. In other words, array b may be copied into all local

memories of processors in the user cluster. Also, the reference modes are such that

a and b are referenced in read mode and c in read/write mode. Obviously, a and b

should be copied before they are referenced. For c, the process is a little tricky. Based

on the dependence analysis, c is initialized, modified, and keep the final results of the

loop: namely, c is independent of the original values. Unlike the others, therefore,

Chapter 7. Experiments

for all i = 0, n - 1
dimension la(O:n-1,0:n-1),lb(O:n-1,0:n-1),lc(O:n-1,0:n-1)
for k = 0, n ~ 1

bcopy(&b(k, 0), &lb(k, 0), n)
endfor

loop
bcopy(&a(i, 0), &la(i, 0), n)
for j = 0, n -1

lc(i,j) = 0
for k = 0, n -1

lc(i,j) = lc(i,j) + la(i, k) * lb(k,j)
endfor

endfor
bcopy(&lc(i, 0), &c(i, 0), n)

endf orall

Figure 35: Data Localization of CONTu - CONTL

it does not have to be copied into the local memory first. The computation can be

carried out using data in the local memory and the results should be copied from the

local array to the original array. The transformed program with data localization,

CONTL, is shown in Figure 35.

In CONTL, all of the arrays are localized by means of the fast block copy, and

all computations are carried out with those local variables. The number of remote

memory accesses is O(n3) in CONTu, and O(n2) in CONT£. Moreover, the remote

memory accesses in CONTL are done by a block copy. The remote data access time,

which adversely affects the program performance, is significantly reduced in CO NTL

by reducing the number of remote memory accesses and using a fast block copy.

Both programs CONTu and CONTL were run for n=32, 64, 128, and 256. In

Figure 38 and 39, graphs (a), (c), (e), and (f) represent the execution time in the real

time clock ticks of Butterfly machine, and graphs (b), (d), (f), and (h) represent the

speed-ups on varying number of processors. The speed-up S(n, P) on P processors

127

Chapter 7. Experiments

for matrix size n is defined by

S(n,P) = \

Eu(n,l)
Eu(n,P)

Eu(n,l)
EL(n,P)

for CONTu

for CO NTL

128

where Eu(n, P) is the execution time of CONTu, and EL(n, P) is that of CO NTL,

on p processors for a matrix of size n. In these graphs, solid lines with squares

represent the behavior of CONTu and dotted lines with circles that of CONT£. For

all matrices of any size, the speed-ups of CONTu on any number of processors are

below 2, but those of CONTL increase almost linearly. Thus, the bigger the size of

the matrix, the greater the increasing rate. When the matrix size is 256, the speed-up

of about 22 on 24 processors is almost perfect. Such improved performance may be

explained by the fact that the computation complexity is O(n3) while the number

of remote data accesses is O(n2
). The computation time dominates the remote data

access time as the matrix size gets bigger.

7 .2 Non-Contiguous Data Access

As a program to test the algorithm for non-contiguously accessed data, the modified

matrix multiplication program, named NCONTu, is chosen here as shown in Figure

36.

Let us apply the techniques of Chapter 6 first to the nested loop of loop variables

j and kin NCONTu, for they are all inside the forall loop of the loop variable i.

The index functions of the array references to a, b and c in matrix representation are,

respectively,

Chapter 7. Experiments

for all i = 0, n - 1
for j = 0, ~ - 1

c(i,j) = 0
for k = 0 !!. -1

'2

c(i,2j) = c(i,2j) + a(i,2k) * b(2k,2j)
endf or

endf or
endf orall

Figure 36: Matrix Multiplication (Non-Contiguous) - NCONTu

129

The first column of each matrix denotes the loop variable j, and the second column

k. The first row of each matrix is for the first index of each array variable, and the

second row the second index. As for the matrix Ha for the array variable a, its rank

is 1. Therefore, we can choose 1 column that is not zero. There is only one column

that is not zero, which is the second column for loop k. The thickness of the face { ek}

along the vector ej is 1, and that of the face { ej} is 0. Thus, the resulting localization

code for a is

for k = 0 !!. - 1
'2

la(i, 2k) = a(i, 2k)
endfor

Because the array a is used in read mode, it should be localized before the computa­

tion. The array c can be localized in the similar way to the array a. However, c is

used in write mode. Thus, the resulting localization code for c is

for J. = 0 !!. - 1
' 2

c(i, 2j) = le(i, 2j)
endf or

Finally, the rank of Hb is 2. Because the rank and the size of the array are the same,

it is not necessary to compute the thickness pertaining to b. Thus, the resulting

localization code for b is

Chapter 7. Experiments

forall i = 0, n - 1
dimension la (0 : n-1 , 0 : n-1) , lb (0 : n-1 , 0 : n-1) , le (0 : n-1 , 0 : n-1)

for k = 0, ~ - 1
for j = 0, ~ - 1

lb(2k, 2j) = b(2k, 2j)
endfor

endf or
loop

for k = 0, ~ -1
la(i, 2k) = a(i, 2k)

endfor
for j = 0, ~ - 1

le(i, 2j) = 0
for k = 0, ~ - 1

le(i, 2j) = le(i, 2j) +la(i, 2k) * lb(2k, 2j)
endfor

endfor
for j = 0, ~ - 1

e(i, 2j) = le(i, 2j)
endfor

endforall

Figure 37: Data Localization of NCONTu - NCONTi

for k = 0, ~ - 1
for j = 0, ~ -1

lb(2k, 2j) = b(2k, 2j)
endfor

endfor

130

In fact, all the localization codes are to be inside the forall loop, but the localization

code for b can be moved outside the forall loop, since the index of the array reference

to b is independent of the forall loop variable i. The transformed program with data

localization, NCONTi, is shown in Figure 37.

In NCONTi, all of the arrays are localized through copying referenced elements

word-by-word, and all computations are carried out using those local variables.

Unlike the localization process of CONTi, the fast block copy cannot be used.

Chapter 7. Experiments 131

However, the number of remote memory accesses is still O(n3) in NCONTu, and

O(n2
) in NCONTi, but the localization cannot be done as efficiently as CONTi

which utilizes the fast block copy.

Both programs NCONTu and NCONTi were also run for n=32, 64, 128 and

256. In Figure 40 and 41, graphs (a), (c), (e), and (f) represent the execution time in

the real time clock ticks of the Butterfly machine, and graphs (b), (d), (f), and (h)

represent the speed-ups on a different number of processors. The speed-up S(n, P)

on P processors for a matrix of size n is defined, as in the case of the contiguous data

access case, to be

{

Eu(n,l)

S(n, P) = Eu(n,P)
Eu(n,I)
EL(n,P)

for NCONTu

for NCONTi

where Eu(n, P) is the execution time of NCONTu and Ei(n, P) is that of NCONTi,

on P processors for a matrix of size n. In the graphs, solid lines with squares represent

the behavior of NCONTu and dotted lines with circles that of NCONTi . For all

matrices of any size, the maximum speed-ups of NCONTu are about 2 which is a

little higher than those of the CONTu. This improved performance results from

having fewer remote data accesses than CONTu. (The number of remote accesses

of NCONTu is one quarter of that of CONTu.) The reduction in remote accesses

can reduce the delay caused by network traffic. The speed-ups of NCONTi increase

almost linearly, and the linear property becomes more apparent as the matrix size

gets bigger, because the computation complexity O(n3) dominates the remote access

complexity O(n2). However, the speed-ups are less evident than those of the CONTi,

because a fast block copy cannot be used for data localization.

132

Chapter 7. Experiments

Time- 64-Contig

Cloc:l:Ticiul~ Time- 32.contig 100.00

90.00 ~
i<iiii*
lcXil"

~
80.00

70.00 '\ - -

\ "
_/~

~ ~

60.00 -_.,,

io.oo
q

00

00
~

0,
00

'O ,
'0 , 0-

'O .

lOO b-O.

'0-0· o-<> I , o- <>-o -o- °' -o-o-<>
Proa

tIT fl iJJ 2

(c)
10

(a)
SpeedUp· 64.Contig

I

Spocd-up
SpeedUp· 32.Contig

I

I

2.4.00 i;;;ii

24.00 71..llO
i.;if

r=olc

22.oo 10Cil" 21).00
o--0-0

:
20.00 11.00 '

18. 00 . 16.00 p-0-0--0- -6

16.00 14.00 :
-

14.00 12.llO l

1100 0.00

p
10.00

0--0-0- <>-
.00 p'

,(

s.oo~ .00 fJ

6.00 4.00)J

4.00

0.00 L . - u --...

0 10

o'

- . - - . - - -

~-
~ - - - ~~

Proa

0
ll 21J 2l

Pl"" 0.00
2l 0 (d)

(b)
, Matrix Multiplication - 1

Figure 38: Contiguous

____ ... 11

Chapter 7. Experiments

Cloct Td11 l~

700JX> /\
;

\
lOOJX>

400JX>

q

JOOJX)

Q
200JX>

lOOJX>

0.00
0

Speed-up

24.00
rc1ll<IC

22.00 1<iif

20.00

18.00

16.00

14.00

12.00

10.00

8JX>

6JX>

4Jl0
,~

ri
2.00

,-
~

OJX>
0

Time-128-Contig

itiiiie

1<iif i\ l.lO

\

\ _J
\
\

4.lO

4Jl0

~ NU-~ =-~
- -

Jj()

Jj)()
0

l.lO

2.00
".

l.lO
0, v ,

' o, .,.,
lJX>

0.-o ,

<>--0 - 0 -0.
-0-0--0--.0 - - 0-.-0-0 - 0

O.lO

Procs OJX>
10 ll 2l 0

(e)
SpeedUp· 128·Contig Spood-~

24.00 -22.00 1<iif

0- -0 -0 20.00

18.00
p- - o

16.00
,o- o--0

14.00

,0--0 12.00
ri

fJ 10.00

ri 8.00
.a

ri
6.00

, P

4.00
!'

,0
2.00

- - - -0--0-0-0
,v - - - - - -

Procs 0.00
10 1.l 20 2.5 0

(f)

Time-256.Contig

n:

~- n rr ~

v ,
'O ,

o.'O ,

,0

:"

'"" v - ().
- 0 - 0.<1--0-

10 ll

(g)
SpeedUp-256-Contig

IJ
,/

(h)

d
,/

Figure 39: Contiguous Matrix Multiplication - 2

-1<iif

1-0.-<>-o-o

-o

/
,._,/

133

Procs
2.5

Chapter 7. Experiments 134

Oxl:Ticbx I~ Time- 32-NonContig Oocl:Tdsxl~ Time- 64-NonContig

<?
iaiiiii

~
iiiiiiic

10i:if"
4.00

)j()

3.00

:z.so

2.00

·,
.0

R Q

lj()
ll 10.00

o,
~ "

1.00 'o. ,,,_
0 l.00

' o-o - O' .Q..
-0 - 0--0

-o-<>, o-.o--o...o- ·o- o- · o- -o- -<> -o- -o ,o-o--O

Qj() Proa Proa

0 10 ll 20 2S 10 ll 20 2S

(a) (c)
Spo<d-up Speed Up- 32-NonContig Speed.up SpeedUp- 64-NonContig

24.00 24.00
remooe

22.00 10Cif 22.00 10i:if"

20.00 20.00

18.00 18.00

16.00 16.00

14.00 14.00

12.00 12.00

10.00 10.00

, 0--0 -0 - 0.
,0,

8.00 8.00
p , _ 'O -0 - -

j)-(f
; '

6.00 . 6.00 • '
,' u--<> ·o. o- · - <> 0- -0 . , 0

• o. '0 -0 , ,O ' O'
4.00 ll 4.00

d a
2.00 . - o--0 - n' M 2.00

a
,o-v u ' -u "tJ trV ~ o--0'-0-U-

0.00 Proa 0.00 Proa

0 10 1.5 20 2S 0 10 1.5 20 2S

(b) (d)

Figure 40: Non-contiguous Matrix Multiplication - 1

Chapter 7. Experiments 135

Clodt TICin lif Time· 128-NonContig Time·256·NonContig
iiiiiiii ;;;;;;;;,

~ \icif 9 lOcif

\
\ ~
\\
\
~

ii ~ - -
f~-n-D

--

200.00

180.00

160.00

14().00

120.00

\
\\
\ \
\\

\ r'\rfa-u "
,r

~ - ,,, ..
ii / ,,, --

'
u lr'

I~

1.60

1.40

l.Jl

1.00

'
100.00 O.IMJ

'
~ 80.00 ~

O.!iO

60.00 b Q
'1 0.40

0.

v~ 'O -o .,
-0 -o.. 0--0. -- - -

4().00

21100
0.20

'O ,

'0 . °''0 - --
v -0 - 0-

-o -0 - 0- o- -0-0--0---0

10 ll 20 10 ll

(e) (g)
Spocd-up SpeedUp-128-NonContig SpeedUp-256-NonContig

24.00 24.00t----1-----1--- -l----+----+
n:mooe

22.00 1<i:if 22.001--~\icif=--=---1-----l---..!----+----+

20.00 20.00t----1-----1- ---l----+-- --+

18.00 18.00

16.00 16.00

14.00 14.00

llOO 0 _o-.,..-0, llOO
IJ - 0 - (f

10.00 n.- - 10.00
, cf

O'

8.00 8.00
a

a
6.00 ,.(6.00

.o· __ cf

4.00 -' 4.00 ;

,o
p'

lOO lOO

~--'"
0.00 """" 0.00

0 10 15 20 2l 0

(f) (h)

Figure 41: Non-cont iguous Matrix Multiplication - 2

Chapter 8

Conclusions

In this thesis we have introduced code transformations that influence the manage­

ment of local memory in MIMD parallel computers. These transformations localize,

preferably without redundancy, the array elements referenced by inner loops whose

outermost loop is executed in parallel. The set of these elements may be identified by

a combination of the coefficients and the lower and upper bounds of the loop variables

in the index functions. If it is determined that they happen to form contiguous blocks

in the memory, they may be efficiently localized by means of the fast block transfer.

If not, they may nevertheless be localized word-by-word, provided that such a tedious

process still promises to be more efficient.

A method, called the tessellation process, was introduced for 1- and 2-dimensional

arrays in Chapter 3; by this method, we were able to analyze the pattern of the array

elements referenced in a nested loop. Once a d-dimensional array variable is referred

to inside a nested loop of depth n, the process helps divide the referenced elements

into (~) subsets which are called their tessellations. A tessellation is an image of

the face of a d-dimensional subspace of the iteration space under the index function.

Each tessellation corresponds to a set of d loop variables and is characterized as the

area spanned by the loop variables with the coefficients between the lower and upper

bounds of the corresponding loop variables.

In Chapter 4, the tessellation process was applied to decide whether the array

elements thus referred to actually form contiguous blocks in the memory, relying on

136

Chapter 8. Conclusions 137

a specific array allocation scheme. If the array reference pattern is determined to be

contiguous, the localization of the remote data may then be carried out rapidly. For

a 2-dimensional array, a linear integer programming problem was derived from the

index function and loop bounds, so as to find the starting and ending locations of the

contiguous blocks. The localization of the contiguous data was discussed in Chapter

5.

In Chapter 6, simple algorithms to compute the thicknesses of the faces of the it­

eration space were considered. Further, the thicknesses were optimized to reduce the

percentage of redundancy in copy operations between the remote and local memory

from several hundred to a few tens of percent. Then, the nested loops were trans­

formed to localize the non-contiguously accessed array, using the information from

the tessellation process and the calculated thicknesses of faces.

Finally, in Chapter 7, a matrix multiplication program, which satisfies certain

assumptions, was chosen to demonstrate how much the algorithms improve program

performance on a parallel machine. The experimental results show that the data

localization algorithms greatly improve program performance on a parallel machine

equipped with local memory.

These achievements aside, this thesis suggests quite a few shortcomings that need

to be dealt with in the future, in order for the algorithms to be generalized. For one,

we made the initial assumption that the loop bounds are independent of the other

loop variables. In addition, we assumed that all the references to an array have the

same index functions, and further simplified the index functions to the exclusion of

any constant terms. Of course, even with these assumptions and simplifications, we

may handle a limited number of cases effectively and often get very good results, as

we have shown in Chapter 7. However, the range of cases might be much broader

if we try to apply these algorithms to a number of practical application programs.

In fact, there are many examples in linear algebra where many loop structures easily

Chapter 8. Conclusions 138

outgrow the simplifying assumptions prescribed in this thesis.

Therefore, we have to address the issue of constants in those cases where the

variables are referenced with different index functions. Suppose that a I-dimensional

array is referenced twice in a loop with the index functions, (2i) and (2i +I), where i

is the loop variable. Then, while the footprint is in fact contiguous, it will instead be

determined by the algorithms described in this thesis to be non-contiguous, because

the constant terms have not been sufficiently considered.

When we try to program those triangular matrices found in many problems in

linear algebra, our own experience tells us that the matrices are to be handled by

the nested loops, where the loop bounds of one variable often depend on other loop

variables. Therefore, further research needs to be done for such cases.

For these reasons, it is important that the tessellation process be generalized to

high-dimensional cases. So far , we have been able to achieve some tangible results,

using only the I-dimensional and 2-dimensional models. If we succeed in generalizing

the tessellation process, however, we can offer a consistent explanation for all kinds

of high-dimensional cases. Given that this may not be feasible to do so in the near

future, if we could extend the process at least to 3-dimensional cases, we would still

be able to cover a great number of practical problems.

Bibliography

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Tech­

niques, and Tools. Addison-Wesley, 1986.

[2] ALLEN, J. R., AND KENNEDY, K. Aparallelprogrammingenvironment. IEEE

Software 2, 4 (July 1985), 21-29.

[3] ALLEN, J. R. , AND KENNEDY, K. Automatic translation of Fortran programs

to vector form. ACM Transactions on Programming Languages and Systems 9,

4 (Oct. 1987), 491- 542.

[4] ALLIANT COMPUTER SYSTEMS CORPORATION. CONCENTRIX C Handbook.

Acton, MA, Aug. 1986.

(5] ALLIANT COMPUTER SYSTEMS CORPORATION. PX/Fortran Language Manual.

Acton, MA, Jan. 1986.

[6] ALLIANT COMPUTER SYSTEMS CORPORATION. FX/Series Architecture Man­

ual. Littleton, MA, Jan. 1986.

[7] AMETEK COMPUTER RESEARCH DIVISION. Concurrent Processing on Hyper­

cube, Feb. 1987.

[8] BBN ADVANCED COMPUTERS INC. The Butterfly GP1000 Switch Tutorial.

Cambridge, MA.

[9] BBN ADVANCED COMPUTERS INC. Programming in Fortran with the Uniform

System. Cambridge, MA.

139

BIBLIOGRAPHY 140

[10) BBN ADVANCED COMPUTERS INC. Programming in C with the Uniform Sys­

tem. Cambridge, MA, 1988.

[11] BBN ADVANCED COMPUTERS INC. Inside the GP1000. Cambridge, MA, May

1989.

[12] BOUKNIGHT, W., DENENBERG, S., McINTYRE, D., RANDALL, J., SAMEH,

A., AND SLOTNICK, D. The Illiac IV system. Proceedings of the IEEE 60, 4

(Apr. 1972), 369- 388.

[13) BRANTLEY, W., MCAULIFFE, K., AND WEISS, J. RP3 processor-memory ele­

ment. In Proceedings of the 1985 International Conference on Parallel Processing,

University Park, PA (Aug. 1985), IEEE, IEEE Computer Society, pp. 782-789.

[14] BREWER, 0., DONGARRA, J., AND SORENSEN, D. Tools to aid in the anal­

ysis of memory access patterns for Fortran programs. Parallel Computing 9

(1988/1989), 25-35.

[15] COFFMAN, E. G., AND DENNING, P. J. Operating Systems Theory. Prentice­

Hall, Englewood Cliffs, NJ, 1973.

[16] DAVIES, J., HUSON, C., MACKE, T., LEASURE, B., AND WOLFE, M. The

KAP /S-1: An advanced source-to-source vectorizer for the S-1 Mark II a su­

percomputer. In Proceedings of the 1986 International Conference on Parallel

Processing, St. Charles, IL (Aug. 1986), IEEE, IEEE Computer Society Press,

pp. 833-835.

[17] DEKKER, E. The Cray-2 architecture. In Parallel Computing 89, D. Evans,

G. Joubert, and F. Peters, Eds. Elsevier Science Publishers B. V., 1990, pp. 575-

580.

BIBLIOGRAPHY 141

(18] DENNING , P. J. The working set model for program behavior. Communications

of the ACM 11, 5 (May 1968), 323- 333.

[19] DONGARRA , J. J. , AND SORENSEN, D. C. SCHEDULE: Tools for developing

and analyzing parallel Fortran programs. In The Characteristics of Parallel

Algorithms, L. H. Jamieson, D. B. Gannon, and R. J. Douglass, Eds. The MIT

Press, 1987, ch. 15, pp. 363- 394.

(20] ETA SYSTEMS. ETA-10 System Overview: Introduction, Feb. 1986.

[21] FERNBACH , S ., Ed. Supercomputers: Class VI Systems, Hardware and Software.

North-Holland, 1986.

(22] FERRANTE, M. Cyberplus and Map V interprocessor communications for par­

allel and array processor systems. In Multiprocessors and Array Processors,

Karplus, Ed. Simulation Councils, Inc., San Diego, CA, Jan. 1987, pp. 45- 54.

[23] FLYNN , M. J. Some computer organizations and their effectiveness. IEEE

Transactions on Computers C-21, 9 (Sept. 1972), 11-23.

(24] GALLIVAN , K. , JALBY, W ., AND GANNON , D. On the problem of optimizing

da ta transfers for complex memory systems. In Proceedings of International

Conference on Supercomputing, St. Malo, France (July 1988), pp. 238-253.

[25] GANNON , D., JALBY, W. , AND GALLIVAN , K. Strategies for cache and local

memory management by global program transformation. Parallel and Distributed

Computing 5, 5 (Oct. 1988), 587- 616.

[26] GEHANI , N. Ada: Concurrent Programming. Prentice-Hall, Englewood Cliffs,

NJ , 1984.

[27] GEHANI , N ., AND ROOME, W. Concurrent C. Software - Practice and Experi­

ence 16, 9 (Sept. 1986) , 821- 844.

BIBLIOGRAPHY 142

(28] GELERNTER, D., CARRIERO, N., CHANDRAN, 8., AND CHANG, 8. Parallel

programming in Linda. In Proceedings of the 1985 International Conference on

Parallel Processing, University Park, PA (Aug. 1985), D. Degroot, Ed., IEEE,

IEEE Computer Society Press, pp. 255-263.

[29] GILMORE, P. A. The massively parallel processor. Tech. Rep. GER-17272,

Goodyear Aerospace Corporation, Akron, OH, May 1985.

(30] GOTTLIEB, A., GRISHMAN, R., KRUSKAL, C. P., MCAULIFFE, K. P.,

RUDOLPH, L., AND SNIR, M. The NYU ultracomputer - designing an MIMD

shared memory parallel computer. IEEE Transactions on Computers C-32, 2

(Feb. 1983), 175- 189.

[31] GRAHAM , J., AND RATTNER, J. Expert computation on the iPSC concurrent

computer. In Multiprocessors and Array Processors, Karplus, Ed. Simulation

Councils, Inc., San Diego, CA, Jan. 1987, pp. 167-176.

[32] Guzzi, M. Cedar Fortran reference manual. Tech. Rep. 601, Center for Su­

percomputer Research and Development, University of Illinois, Urbana, Illinois.,

Nov. 1986.

[33] HANSEN, P. The programming language concurrent Pascal. IEEE Transactions

on Software Engineering SE-1, 2 (June 1975), 199-206.

[34] HAWKINSON, S. The FPS T series: A parallel vector super computer. In

Multiprocessors and Array Processors, Karplus, Ed. Simulation Councils, Inc.,

San Diego, CA, Jan. 1987, pp. 147-156.

[35] HILLIS, W. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[36] HOARE, C. Monitors: An operating system structuring concept. Communica­

tions of the ACM 17, 10 (Oct. 1974), 549- 557.

BIBLIOGRAPHY 143

[37] HOARE, C. Communicating sequential processes. Communications of the ACM

21, 8 (Aug. 1978), 667-677.

[38] HUDAK, D. E., AND ABRAHAM, S. G. Compiler techniques for data partition- .

ing of sequentially iterated parallel loops. In Proceedings of the ACM Interna­

tional Conference on Supercomputing (1990), ACM, ACM Press, pp. 187-200.

(39] HUSON, C., MACKE, T., DAVIES, J., WOLFE, M., AND LEASURE, B. The

KAP /205: An advanced source-to-source vectorizer for the Cyber 205 supercom­

puter. In Proceedings of the 1986 International Conference on Parallel Process­

ing, St. Charles, IL (Aug. 1986), IEEE, IEEE Computer Society Press, pp. 827-

832.

[40] HWANG, K. Advanced parallel processing and supercomputer architectures. In

Proceedings of the IEEE (Oct. 1987), vol. 75 of 10.

[41] HWANG , K., AND BRIGGS , F. A. Computer Architecture and Parallel Process­

ing. McGraw-Hill, 1984.

[42] JORDAN, H. F . The Force. In The Characteristics of Parallel Algorithms, L. H.

Jamieson, D. B. Gannon, and R. J. Douglass, Eds. The MIT Press, 1987, ch. 16,

pp. 395- 436.

[43] KALLSTROM , M. , AND THAKKAR, S.S. Programming three parallel computers.

IEEE Software 5, 1 (Jan. 1988), 11-22.

[44] KARP , A. H. Programming for parallelism. IEEE Computer 20, 5 (May 1987),

43- 57.

[45] KARP, A. H. , AND BABB, R. G. A comparison of 12 parallel Fortran dialects.

IEEE Software (Sept. 1988), 52- 67.

BIBLIOGRAPHY 144

[46] KERNIGHAN, B., AND RITCHIE, D. The C Programming Language. Prentice­

Hall, Englewood Cliffs, NJ, 1978.

[47] KUCK , D. J. The Structure of Computers and Computations, vol. 1. John Wiley

and Sons, New York, 1978.

(48) KUCK , D. J., DAVIDSON, E . S., LAWRIE, D. H., AND SAMEH, A.H. Parallel

supercomputing today and the Cedar approach. Science 23! (Feb. 1986), 967-

231.

(49) KUCK , D. J. , KUHN , R., PADUA, D., LEASURE, B., AND WOLFE, M. De­

pendence graphs and compiler optimizations. In Conference Record of the 8th

Annual ACM Symposium on Principles of Programming Languages, Williams­

burg, VA (Jan. 1981), ACM, pp. 207-218.

[50) LAWRIE, D. Access and alignment of data in an array processor. IEEE Trans­

actions on Computers C-24, 12 (Dec. 1975), 1145-1155.

(51) LEE, R. On hot spot contention. ACM SIGARCH 13, 5 (Dec. 1985), 15-20.

[52] LEWIS , T. Issues in parallel programming:why aren't we having fun yet? Su­

percomputing Review (July 1990), 34-37.

[53] LOVEMAN, D. Program improvement by source-to-source translation. Journal

of the ACM 20, 1 (Jan. 1977) , 121-145.

(54] LUSK , E. 1. , AND OVERBEEK, R. A. A Minimalist approach to portable, paral­

lel programming. In The Characteristics of Parallel Algorithms, L. H. Jamieson,

D. B. Gannon, and R. J. Douglass, Eds. The MIT Press, 1987, ch. 14, pp. 351-

362.

(55) MAY, D. Occam. ACM SIGPLAN Notices 18, 4 (Apr. 1984), 69-79.

BIBLIOGRAPHY 145

[56] MEHROTRA, P., AND VAN ROSENDALE, J. The BLAZE language: A parallel

language for scientific programming. Tech. Rep. 85-29, ICASE, NASA Langley

Research Center, Hampton, VA, May 1985.

[57] PADUA, D. A., AND WOLFE, M. J. Advanced compiler optimizations for

supercomputers. Communications of the ACM 29, 12 (Dec. 1986), 1184-1201.

[58] PALMER, J. The NCUBE family of parallel supercomputers. In Multiprocessors

and Array Processors, Karplus, Ed. Simulation Councils, Inc., San Diego, CA,

Jan. 1987, pp. 177- 187.

[59] PFISTER, G. F., BRANTLEY, W., GEORGE, D., HARVEY, S., KLEINFELDER,

W., MCAULIFFE, K., MELTON, E., NORTON, V., AND WEISS, J. The IBM

research parallel processor prototype (RP3): Introduction and architecture. In

Proceedings of the 1985 International Conference on Parallel Processing, Uni­

versity Park, PA (Aug. 1985), IEEE, IEEE Computer Society, pp. 764-771.

[60] PFISTER, G. F., AND NORTON, V. A. Hot spot contention and combining in

multistage interconnection networks. IEEE Transactions on Computers C-34,

10 (Oct. 1985), 943- 948.

[61] POLYCHRONOPOULOS, C. D. Parallel programming trends: Specifying and

exploiting parallelism. csrd.

[62] POLYCHRONOPOULOS , C . D. On Program Restructuring, Scheduling, and Com­

munication for Parallel Processor Systems. PhD thesis, University of Illinois at

Urbana-Champaign, Aug. 1986.

[63] SMITH , A. J. Cache memories. Computing Surveys 14, 3 (Sept. 1982), 473- 530.

BIBLIOGRAPHY 146

(64] SMITH , B . Parallel computing forum. In Proceedings of the IFIP WG 2.5

Working Conference (Amsterdam, Netherlands, Aug. 1988), M. Wright, Ed.,

North-Holland, p. 235.

(65] SNIR, M. Communication complexity in parallel computations. Presentation at

Indiana University on October 6, 1989.

(66] THOMPSON , J. R. The Cray-1, the Cray X-MP, the Cray-2 and beyond: The

supercomputers of Cray research. In Supercomputers Class VI Systems, Hardware

and Software, S. Frenbach, Ed. North-Roland, 1986, pp. 69- 81.

(67] TUCKER, S . The IBM 3090 system: An overview. IBM Systems Journal 25, 1

(Jan. 1986) , 4- 19.

(68] WOLF , M. E. , AND LAM , M. S. An algorithm to generate sequential and par­

allel code with improved data locality. Computer Systems Laboratory, Stanford

University.

[69] WOLFE , M. Optimizing Supercompilers for Supercomputers. PhD thesis, Uni­

versity of Illinois at Urbana-Champaign, Urbana, Ill , Oct. 1982.

[70] WOLFE , M. Loop skewing: The wavefront method revisited. International

Journal of Parallel Programming 15, 4 (Aug. 1986), 279- 294.

[71] WOLFE , M . Iteration space tiling for memory hierarchies. In Proceedings of

the 3rd SIAM Conference on Parallel Processing for Scientific Programming,

Philadelphia, PA (Dec. 1987), G. Rodrigue, Ed. , Society for Industrial and Ap­

plied Mathematics, pp. 357- 361.

[72] WOLFE , M . More iteration space tiling. In Proceedings Supercomputing '89,

Reno, Nevada (Nov. 1989) , ACM, ACM Press, pp. 655-664.

BIBLIOGRAPHY 147

(73] WOLFE , M., AND BANERJEE, U. Data dependence and its application to

parallel processing. International Journal of Parallel Programming 16, 2 (Apr.

1987), 137- 178.

Appendix A

Butterfly Architecture

The GP1000, a BBN Butterfly parallel machine, is of the MIMD type. It composed

of up to 256 Processor Nodes {PN), which are tightly-coupled by an interconnection

network, the Butterfly Switch. Figure 42 illustrates the ha.sic architecture of the GP1000.

Switch Network

u u PN

•
• u •

u PN

•
• u •

u PN

•
•
•

Figure 42: BBN Butterfly Architecture

All PNs are identical in that they are connected with a switch network in the

same manner and that any set of PNs can run an application program with the same

result. Each PN has a processor and 4M bytes of memory. All memory modules of

148

Appendix A. Butterfly Architecture 149

the PNs form a shared memory of the machine. For a processor on a PN, its own

memory module is considered as local to itself, while all others are external. Any

processor can access data in local memory as well as external memory via the switch

network. The access time to local data is much faster than that to external data.

A.1 Processor Node (PN)

Each PN consists of an MC68020 microprocessor, an MC68881 floating-point co­

processor, 4M bytes of memory, an MC68851 memory management unit and an

AM2901 bitslice processor, which is a very important co-processor called the Processor

Node Controller (PNC).

The Butterfly machine adopts the paged virtual memory system whose page size

is 8K bytes. The virtual addresses are transparent to all application programs. The

MC68020 and MC68881, which handle instructions, use virtual addresses, and all

other components that handle data use physical addresses. The MC68881 receives

32-bit virtual addresses that are provided by the MC68020/MC68881 and translates

them into physical addresses, using a page table stored in its address translation

cache. A physical address consists of an 8-bit PN number and a 24-bit local address

of 4M bytes memory module of that PN. The PNC receives physical addresses from

the MC68851, compares the 8-bit PN number and its own PN number. If the two

numbers are identical, the physical address is viewed as a local address; otherwise, it

is viewed as an external address. In the former case, the PNC performs read or write

operation on its local memory. In the latter, it creates and sends a packet requesting

other PNs to perform read or write operation. If the requested operation is read,

the PNC waits for the reply. After the PNC gets the reply, it then passes the data

to the MC68020/MC68881. The access time to a byte, word, or long-word in local

memory is 0.53 µ sec for a read operation and 0.38 µsec for a write operation. The

Appendix A. Butterfly Architecture 150

access time for a byte, word, or long-word in remote memory is 7 µ sec for a read

operation and 4 µ sec for a write operation. The memory bandwidth capacity is

102M Bytes/sec.

The PNC controls all resources in each PN, and performs operations to provide the

parallel processing capability that the MC68020 does not have. Those functions are to

control all memory references, which enables it to perform atomic arithmetic/logical

operations, to regulate all communication transactions, to maintain a 32-bit realtime

clock with 62.5 µ sec resolution, and so on.

The PNC is in charge of communication with other PNs. It has a switch output

port and input port, both of which are connected to the switch network. To prevent

deadlock, each port has two buffers: a request buffer and an acknowledgement buffer.

The request buffer of the input port accepts messages that require a PN to send

out a reply in any form, such as the incoming requests from other PNs to read the

data in the PN. Its acknowledgement buffer accepts reply messages from other PNs or

simple control messages, such as incoming requests from other PNs to write the data

into the memory of the PN. Similarly, the request buffer and the acknowledgement

buffer of the output port store outgoing messages that require a reply and do not

require a reply, respectively. These two ports perform their functions independently.

Even though one port may be full of messages that have not yet been processed, the

other port can still function. When a message comes in to a PNC and the input

port buffer that it is supposed to enter is full, then that message is rejected. The

bandwidth capacity of the PNC switch port is 32M bits/sec.

The size of a message may be fixed (as in byte, word, or long-word) or of variable

length in the case of a block transfer. The PNC creates a packet for every message

that is to be sent to other PNs. Every packet has an 80-bit message head describing

source and destination nodes, message type and message length, and so on.

Appendix A. Butterfly Architecture 151

Figure 43: Switch Card

A.2 Switch Network

The basic element of a switch network is a 4-input and 4-output crossbar style switch­

ing node. A switch card is a circuit board with 8 switching nodes in two columns, and

it functions as a 16-input and 16-output switch network. The connection between the

two columns is of a shuffle-exchange network type, and since it is fixed on the circuit

board, it cannot be customized. Thus, one switch card is the basic installation unit

of a switch network. As shown in Figure 43, there is one and only one path from

any input line to any output line. The system with 1 through 16 PNs uses only one

switch card.

For the system with 17 to 64 PNs, even though 3(=log4 64)-stage network is

theoretically sufficient , a 4-stage network is required, because the basic installation

unit is a 16-input and 16-output switch card. As an example of a 4-stage network,

Figure 44 shows the switch network configuration of the Butterfly presently installed

at Indiana University; this is the minimum configuration of a 4-stage network. As we

can see in the diagram, there are four paths for each pair of source and destination

PNs. These four paths are used as alternate paths when one path is not available

PN ID

00
40
80
cO

10
50
90
dO

20
60
aO
eO

30
70
bO
fD

04
44
84
c4

14
54
94
d4

24
64
a4
e4

34
74
b4
f4

Appendix A. Butterfly Architecture

Stage #1 Stage #2 Stage #3 Stage#4

Figure 44: Switch Network of System with 32 PNs

152

PN ID

()()

40
80
co
JO
50
90
dO

20
60
aO
eO

30
70
bO
fD

04
44
84
c4

14
54
94
d4

24
64
a4
e4

34
74
b4
f4

Appendix A. Butterfly Architecture 153

because it is occupied by a message. The number of available alternate paths can be

set at system boot time.

A larger system with more than 32 PNs extends the switch network by installing

two additional switch cards vertically for every additional 16 PNs: one for the left

two columns and the other for the right two columns. The second and the third stage

of the network are connected via shuffle-exchange. The number of alternate paths is

reduced as the number of PNs increases because the number of stages of the network

is fixed at four , while the number of PNs that use the paths increases. There are four

paths for 17 to 64 PNs, two paths for 65 to 128 PNs and one path for 129 to 256 PNs.

The bandwidth capacity of each path is 32M bits/sec, the bandwidth of the PNC

port. Every path can function at the same time. Thus, the system with 32 PNs has

a maximum switch bandwidth of 1024M bits/sec.

A message from one PN to another goes through the path set by the PNC of the

sender PN. As a message is t ransmitted, if it encounters a conflict at any switching

node on the path , it retreats to the PNC that sent the message; then the PNC sends it

again using an alternate path, thus improving the performance of the switch network.

Message conflict occurs when two messages arrive at the same switching node and

try to exit through the same output port.

A.3 Memory System

The memory system of the GPlOOO is a two level hierarchy with virtual memory and

real memory of 4M bytes per PN. An address space of virtual memory is 4G bytes with

the page size of 8K bytes. A real memory address consists of an 8-bit PN number and

a 24-bit local address of the 4M bytes memory module of that PN. Memory space is

initially allocated on the virtual memory and when a location is referenced, the page

containing the location is loaded into real memory, and the correspondences between

Appendix A B . · utterfly Architecture 154

Virtual add resses and real addresses are kept in the page table cache of the MC68851

memory
management unit.

The d h a dress space is divided into two parts, the process private area and the

s ared are E b a. ach P N has its own process private area. The process private area can

e accessed l . . . on Y by the PN that owns it. It is further d1v1ded mto a text area, heap

area, and stack area. A program code is loaded into the text area of all PNs. When

Parallel . the execut10n is initiated, each PN participating in the parallel execution runs

Program . segment stored in its own memory. The heap area is used for the C

global va . 'I' nables and for the space allocated dynamically by malloc () or calloc ().

he stack . ~ area is used for the C local variables of procedures. The shared area is used

or the s P pace allocated by UsAllocO family procedures, and can be shared between

Ns by .
using Share () procedure.

The Procedure Share () takes the location of the variable declared as the C global

variable a . ' nd makes a copy of the value of the locat10n onto the locations with the

same variabl N th t' f tl · · · · e name as the argument of each P at e ime o ie m1t1at10n of the

Parallel ex ecut1on . If the value of the location used m the procedure Share() is not

an address th
' en the value is copied.

b . Dsing Figure 45 , which refers to Uniform System (US) library procedures, we will

nefiy ex 1 . P am the memory management scheme.

of nThe variables a, b, and n are allocated to the heap area of all PNs. The contents

l ' a, and b are 10, a pointer to a location in the shared area, and a pointer to a

ocation i . n the private area respectively. GenTaskforEachProc () is a procedure that

creates o ' ne process for each PN and the created processes execute the procedure

Wo:rker () · ' . in parallel. Before all PNs start the parallel execut10n, contents of all

Of the d eclared variables that are shared by Share() procedure are copied into the
corr esponct· k () · Ing locations of all PNs. The procedure Wor er is executed by all PNs

at the same t . . h une. No conceivable problem arises in accessmg t e variables n and a,

Appendix A. Butterfly Architecture

#include <us.h>
int *a, *b, n;

Worker(dum)
int dum;
{

}

a(l] = n;
b(2] = n;

main()

{

}

I nitializeU s();
n = 10; Share(&n);
a= (int*)UsAlloc(n * sizeof(int));Share(&a);
b = (inh)malloc(n * sizeof (int)); Share(&b);
GenTaskForEachProc(Worker, 0);

Figure 45: Uniform System C Program

155

because n of each PN has the value 10, and a points to a location in the shared area.

However, accessing b[2] by all PNs, except the one PN that has the memory to which

the array b is allocated, will cause an address error, because the array b is allocated

on the heap area, the private area that cannot be shared between PNs.

A.4 Block Transfer

The Butterfly machine supports a very efficient operation for transferring blocks of

data from one PN to another. The block transfer operation is implemented by the

PNC microcode. Once the path has been set up for block transfer, the path is held

for the block transfer until it finishes, and it is performed at the full 32M bits/sec

bandwidth of a path through the switch network. Because of the initial set-up time,

a long message is preferred to a short one.

Appendix A. Butterfly Architecture 156

While the PN is engaged in the block transfer operation as a source or destination,

75 % of total memory bandwidth is used for the block transfer, and 25 % is used for

local processes. Thus the performance of source and destination PNs is significantly

reduced.

The maximum data size for block transfer is 64K bytes. If the message is more

than 256 bytes, then it is split into blocks of 256 bytes and sent one by one.

The block transfer time is 72 µ sec for a 256-byte block, and 8 µ sec + ~ µ

sec /byte for a block of less than 256 bytes.

-

Curriculum Vitae

Mann-Ho Lee was born on September 4, 1952 in Chonju, Korea. He attended Seoul

National University in Korea, obtaining a Bachelor of Engineering degree in Applied

Mathematics in 1975. He received a Master of Science degree in Computer Science at

the Korea Advanced Institute of Science and Technology in Seoul in 1977. He worked

for a research institute for defense development from 1977 to 1980, and taught at

Chungnam National University at Tajon, Korea as a faculty member of the Computer

Science Department from 1980 to 1984. He entered Indiana University at Blooming­

ton in 1984 as a graduate student in the Computer Science Department. He worked

as an associate instructor and research assistant during his stay in Bloomington and

completed Doctor of Philosophy degree in 1991.

	00002857
	00002858
	00002859
	00002860
	00002861

