TECHNICAL REPORT NO. 324

Static Measures of Quadtree Representation of
the Harwell-Boeing Sparse Matrix Collection
by

Peter H. Beckman

January 1991

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Static Measures of Quadtree Representation of
the Harwell-Boeing Sparse Matrix Collection

by
Peter H. Beckman

Computer Science Department
Indiana University
Bloomington, IN 47405

Abstract

The quadtree is an efficient data structure for uniform representation of both dense and sparse
matrices. A quadtree matrix is either homogeneously zero, represented by the NIL pointer,
or a Ix1 non-zero scalar, or a tree containing four subtrees, each recursively representing a
quadrant of the matrix. This paper reports the results from experiments done on tools written
in C to convert matrices from the Harwell-Boeing Sparse Matrix Collection to quadtree
form. Results show that a preorder sequential traversal of a quadtree matrix provides efficient
secondary storage and generally faster average access time to matrices in primary memory
than row and column linked lists.

Section 1. Packed vectors and linked lists

Sparse matrices occur in a variety of scientific and engineering applications and
special algorithms and data structures are used to reduce both the work and
storage required to manipulate them. A suitable data structure reduces storage by
compactly representing zeros and also provides a convenient way to avoid
unnecessary computation on zeros. Two common representations for sparse
matrices are packed vectors and linked lists [6]. Packed vectors store the non-zero
entries as compressed vectors with corresponding indexes in another vector.
Linked lists use records with a pointer field to a node containing the next non-zero
element in the vector. Both methods reduce storage by compressing either the
row or the column vectors of the matrix. For instance, a vector with 100 values,
80% of which are zero, could be represented by a compressed vector of 20

Research reported herein was supported by a DARPA/NASA Assistantship in
Parallel Processing, number 26947K

2

floating point values, and 20 integer indexes. Such compression incurs a

handicap; a packed vectors matrix cannot be easily traversed in the other

orientation.

1 0O 0 0 0 0 0

4 0 0 0 0 0 o

0 9 3 6 0 0 0 0

018 3 0 0 0 0 O

00 0 9 510 0 0

0 0 0 6 015 9 0

060 11 0 0 -5 8 6

8 82 52 8 16 10 2 1

el _|

Figure 1: An 8x8 Matrix
Array Subscript: 1 2 3 4 5 6 7 8 9
Row_Length: 2 2 3 2
Row_Start Index: 1 3 5 §
Column_Index: 2 1 1 2 3 4 23 2
Matrix_Value: 2 1 4 7 3 6 9 3 18

Figure 2: Rows 1-4 stored as packed vectors

Figure 1 is a simple 8x8 sparse matrix that is almost lower triangular. It will be
used to illustrate these sparse matrix storage techniques. Figure 2 demonstrates
the arrays storing its first four rows in packed form. It is common to leave the
matrix values within a row unordered, since many algorithms expand the packed
vector into a full vector before use. Algorithms using these structures are
designed for entire row operations. To increase the speed with which these
vectors are expanded and subsequently compressed, machines like the CRAY X-
MP and the FACOM VP/400 have added special hardware and instructions to
GATHER and SCATTER sparse vectors. [2, 4].

3

Figure 3 shows the logical representation of a linked list. In older versions of
FORTRAN, integer arrays were used to link the lists. Modern FORTRANS
provide pointer types. Figure 4 shows how FORTRAN arrays often implement
a linked list.

e 603 11 6 -5 8|8 6 -

Value Column Index

Figure 3: Logical representation of row 7 as a linked list

Array Subscript: 1 2 3 4 5 6 7 8 9 10 11
Row_Start Link: 5 4 7 2

Col_Index: 3 2 1 1 2 2 2 4 3
Forward_Link: 01 8 6 9 0 11 0 0 10
Matrix Value: 3 18 4 1 7 9 2 6 -3

Figure 4: Physical storage of rows 1-4 using FORTRAN arrays
to form a linked list

For both packed vectors and linked lists, it can be difficult it can to traverse the
data by columns when they are compressed by row. Two solutions are commonly
used to provide faster access to the data by columns. One is to store two copies
of the matrix, one copy using row compression, and the other, column
compression. A more efficient use of space is to include links or indexes
necessary for column traversal without duplicating the floating point matrix values

[5].

If a linked list is expanded in this way, each non-zero element will be represented
by a node with five fields: Matrix-value, Row-pointer, Column-pointer, Row-
index, and Column-index. Figure 5 shows the logical representation of rows 1-4

linked by both rows and columns.

Figure 5: Rows 1-4 as a row and column linked list

Section 2. Quadtree representation

Using quadtrees is like using linked lists, but instead of packing the values by row
and column, the data is packed by blocks (quadrants). However, row and column
indexes are not stored in each node, since an element’s position in the tree is
sufficient to determine its coordinates. More formally, a quadtree matrix is
represented in one of three ways. Either it is entirely zero and represented by the
null pointer; or it is a non-zero scalar (a 1 X 1 matrix) represented by that scalar;
or it can be cleaved into four equally-sized submatrices and is represented by a
non-terminal node of four quadtrees [7]. When 7 is not a power of two, an nxn
matrix is efficiently embedded in a 2"™ x 2" "l representation by padding
with NIL to the southeast (lower right).

Northwest Quadrant (I)

1247 - 951836 3=

Figure 6: Northwest quadrant of Figure 1 in quadtree form

Recursive decomposition of the matrix in Figure 1 yields its quadtree
decomposition. Its entire northeast quadrant is represented as a null pointer (NIL).
Figure 6 shows how its northwest quadrant is represented in quadtree form.
Physically, each interior node has four pointer fields, and a leaf node holds a

matrix value, usually a floating point.

Section 3. The Harwell-Boeing sparse matrix collection

To provide researchers access to realistic examples of sparse matrices from a wide
assortment of scientific fields, I. S. Duff et al. compiled the Harwell-Boeing
Sparse Matrix Collection, a set of test problems [3]. The May 30, 1989, version

contains 293 matrices represented by over 110 megabytes of ASCII data.

The Harwell-Boeing collection uses two methods to store sparse matrices. The
specific details of the storage, which is based on FORTRAN input routines and

an 80 column card-image format, are not needed for the experiments described

6

here. The two storage strategies represent two very different types of matrices:
standard and elemental. Standard matrices are the most common, with 283 of the
293 matrices stored in this form. They result from a wide variety of applications.
Elemental matrices, on the other hand, usually arise from finite-element
applications, where numerous small elemental matrices are assembled to construct
the final matrix. A specialized primary memory data structure for these matrices
called clique storage is generally used [2]. Because specialized algorithms are
used to handle these very special representations, they are not included in the

experiments described later in this paper.

The conventional sparse matrix format uses a very simple storage scheme closely
related to the packed vector data structure. The matrices are stored by columns,
and defined by three lists: column pointers, row indexes, and values. For an mxn
matrix, there are n+/ column pointers. The column pointers indicate the row
indexes associated with each column. For every non-zero element there is one
matrix value and one row index. The column pointers and row indexes define the
sparsity pattern of the matrix. Some of the matrixes in the test set are given only
as patterns to conserve space. A small header for each matrix provides other
important information such as the number of rows and columns, title, properties,
etc. One important property is whether the matrix is symmetric. If it is, only half
of the matrix need be stored on disk. The set also provides for solution vectors
and the right hand sides needed to solve linear systems, which were ignored in

these experiments.
Section 4. Standard Sparse Matrix Format
The disk space necessary to store a sparse matrix in the Harwell-Boeing standard

format is calculated quite easily. Letting NNZ be the number of non-zeros in the

matrix and »n be the number of columns,

size=(n+1)(sizeof COLPTR))+ (NNZ)(sizeofROWIND) + sizeofitVALUE))

predicts the raw storage required. The matrices in the Harwell-Boeing collection
are stored in ASCII or EBCDIC to ensure the highest degree of cross-
manufacturer compatibility. The term ’raw’ in computer jargon refers to
unprocessed binary data, and in this case, is used to denote that the matrix is
being held a in binary, machine dependant form. The sizeof function computes
how many bytes are needed to represent a data type. For all the matrices in the
Harwell-Boeing collection, a standard two byte unsigned integer can be used to

hold a row index or a column pointer.

ASCII: 25.4%
RAW: 23.7%

Table I: Average pattern portion of matrix in Harwell-
Boeing standard sparse format

Since all representations must contain the matrix values, potential savings in space
come from the pattern definition. The first experiment was run to determine how
much disk storage was devoted to the pattern structure (column pointers and row
indexes) of a matrix compared with the total space. In ASCII card-image format,
an average of 25.4% of a matrix’s total space was devoted to column and row
data. Of course only the 221 non-pattern matrices from the collection could be
used for this comparison. Unfortunately that figure is somewhat misleading;
FORTRAN formatting permits a wide range of efficiency, with plenty of "white
space” usually included. The storage needed for ASCII representation of an
integer is usually six to eight bytes, compared to a two-byte raw representation.
On the other hand, an ASCII FORTRAN floating point value, with a decimal and

exponent, can use 16-26 bytes compared to a raw eight byte IEEE double

8

precision floating point representation. It is clear that a lot of variance can occur.
If the ratio of pattern structure to total storage is calculated using raw storage,
with column pointers and row indexes two bytes each and matrix values eight

bytes, an average of 23.7% of a matrix’s raw storage is the pattern structure.

Section 5. Preorder sequential storage

A matrix held in quadtree form in main memory, can be threaded a number of
different ways to produce an ordering that can be written sequentially to disk.
One convenient method is a preorder sequential traversal [5]. The tree is
descended recursively, in order, from quadrant T to quadrant IV. The Appendix
shows two extremely simple, recursive, C programs that can be used to read and
write quadtrees to disk. Only four bits of information are needed at each interior
(non-leaf) node, to describe it; each bit corresponds to whether a quadrant is
completely zero. When the bottom of the tree is reached, the value in the leaf
node can be written to disk. For ease of use, the four bits of pattern information
are byte justified, with the high order four bits remaining unused. Symmetric
matrices, like matrices in standard sparse format, only need to store half of the

matrix.

This is an extremely compact way to represent the sparsity pattern of a matrix.
As mentioned earlier, the actual number of matrix values written to disk in both
the Harwell-Boeing standard sparse format and preorder sequential traversal of a
quadtree are the same. Any savings is incorporated in an improved pattern
coding. Figure 7 illustrates a preorder traversal on the northwest quadrant of the
Figure 1 matrix. Figure 8 compares several different storage methods. The
pattern information used two-byte unsigned integers for the column pointers and
row indexes. Unix COMPRESS was applied to each file to show how much

storage would be used in a real programming environments.

Northwest Quadrant (I)
/

[1011]

[1110]

[1111] 0101]

1247 = 95718-36 3=
[1OT1[I 1111 I[21[41[71[010 1]1[9] [18] [1 11 0] [-3] [6] [3]

Figure 7: A Preorder Sequential Traversal

Section 6. Accessing matrix elements in primary storage

Each data structure used to store sparse matrices in primary memory has its own
advantages and disadvantages. It is beyond the scope of this paper
comprehensively to compare and to contrast them. Readers interested in learning
more about quadtree matrix storage and algorithms are referred to papers
published on that subject by Wise [7, 8]. This paper considers two very simple
measures of efficiency: memory consumption and average element access time.
The quadtree storage of the Harwell-Boeing matrices will be compared to a row
and column-linked list. The reason for this comparison, rather than comparing
quadtrees to packed vectors, or quadtrees to row linked lists, is that the properties
of quadtrees most closely resemble that of row and column linked lists. Both use
memory nodes linked together with pointer fields, and both are traversable by

column or row with the same ease.

10

Standard vs Quadtree

storage of pattern data

Standard Raw |

Compressed Raw

Preorder

Compressed Preorder

0 10 15

Megabytes

Figure 8: Data required to store the pattern portions of the 283 standard
sparse matrices from the Harwell-Boeing collection.

As described earlier, each linked list node has five fields. At any given moment

during the computation, the total storage for an mx»n matrix is

space=(n+m)(sizeof(pointer))+
NNZ(sizeof(value)) + 2xsizeof{index) + 2xsizeof(pointer))

The column and row indexes can comfortably be two-byte unsigned integers, and
in most modern programming environments, pointer fields are at least 32 bits
wide. This means that each linked list node will have 12 bytes of pointer and
index data, plus whatever bytes are necessary to store the matrix value. Two
pointer arrays will also be needed to store the first link for each row and each
column. This structure is fairly compact for very sparse matrices, but the storage

grows linearly with the number of non-zero values.

An interior node is comprised of four pointer fields, one to each quadrant. A leaf

node only has a value field. For all but the most sparse matrices, the quadtree

11

data structure uses less space than the linked list representations. Adding non-zero
values to a linked list will always require the same amount of overhead; four
fields per node. Adding a non-zero to a quadtree, in the worst case, generates
log(n) interior nodes of overhead. But as more and more non-zero values are
added to a quadtree, less and less overhead is added because interior nodes are
shared. In the best case, no overhead is created, because all interior nodes are
already in place. This is a very important feature; solving systems of equations
and other matrix operations cause many of the zeros to fill-in [2]. While quadtrees
add less overhead as the matrix fills in, linked lists keep adding a constant
amount. Yet, averaging across all 283 standard but very sparse Harwell-Boeing

matrices, quadtree storage used only about eight percent more than linked lists.

The contrast between trees and lists is also apparent when determining the number
of memory reads necessary to find an element. For an nxn quadtree, it takes at

most
llog,nl+1
reads to locate a matrix value [8]. This contrasts to the reads required to find a
2n+2

matrix element in a linked list under the worst case.

Analogous with space, this overhead can only worsen as the matrix fills in, as
linked list chains become longer. To compare the number of reads necessary to
find a random (i) element for each of the 283 matrices, an average was

calculated for each matrix.

For most matrices, the number of reads for each format was very close to the
other. However, matrices that are not very dense, create long linked lists.

Figure 9 illustrates one such matrix. These matrices do quite poorly; Figure 10

12

demonstrates how the data is skewed by the relatively few dense matrices included

in the Harwell-Boeing test set.

Figure 9: 496x496 Matrix
H-B Key: MBEACXC

Bt Expected Path
Histogram -

[] Linked List

70
60
50
40 Quadtree
30
20

Figure 10: Average memory reads to find random (i) element in
matrix

13

Section 7. Conclusions

Storing static matrices as quadtrees is efficient for both primary and secondary
storage. The space savings achieved with preorder storage occurs only from that
portion of the data describing the sparsity pattern of the matrix. In all storage
schemes, the number of matrix values stored remains constant. A matrix can also
be decomposed into randomly accessed blocks, each of which written to disk in
preorder form. The compression permits disk pages to hold more data than

conventional methods.

Another advantage is the relative simplicity of the C code needed to read or write
a matrix (Appendix). Only the depth of the tree (size of the matrix) is needed; the
preorder threading is managed by the C control stack, and does not burden the

programmer.

Moreover, the quadtree data structure grows gracefully in size, both for disk and
memory storage. This grace makes it more flexible than linearly linked structures,

capable of supporting algorithms and data that generate different degrees of
sparsity [1].

The most important feature of quadtree storage is how easily divide-and-conquer
algorithms can be applied. Block algorithms permit easy decomposition of
complex tasks for scheduling onto parallel processors. This paper presents only
static performance measures for quadtrees; future work [1] will examine the
dynamic properties of quadtree representation during LU decomposition on an
MIMD computer. Also of interest is the underlying operating system that supports

heap based multiprocessing.

14

APPENDIX

C procedures for reading and writing matrices in preorder form

#define NWbit
#define NEbit
#define SWbit
#define SEbit

/* AhhkAkihkhhix

N s

Read in preorder matrix ***kkxkxkkxx x/

mem node *read preorder (depth)

int depth;

{

unsigned char path; /* one byte, pattern portion of data */
mem_node *rp; /* return pointer to memory node */

rp = getnode () ; /* Get an empty memory node */

if (depth == 0) /* At bottom, time to read value */

{ fread (& (xp -> value), sizeof (double), I, inputstream) ;

return(rp); }

else
{

fread(&path,sizeof(unsigned char),1,inputstream) ;

if ((path & Nwbit) > 0) /* NON-NULL NorthWest Quadrant */
rp —-> NorthWest = read preorder (depth-1);

else rp -> NorthWest = 0;

if ((path & NEbit) > 0) /* NON-NULL NorthEast Quadrant */
rp —> NorthEast = read preorder (depth-1);

else rp -> NorthEast = 0;
if ((path & SWbit) > 0) /* NON-NULL SouthWest Quadrant */
rp -> SouthWest = read preorder (depth-1);

else rp -> SouthWest = 0;
if ((path & 1) > SEbit) /* NON-NULL SouthEast Quadrant */
rp -> SouthEast = read preorder (depth-1);

else rp -> SouthEast = 0;

return (rp) ;

}

[* *kxkkkkkkk Write preorder matrix **kkkkkkkx %/
void write preorder (x,depth)

mem node *x;

int depth;

{

unsigned char i;

if (depth != 0) /* currently visiting interior node */
i=20;
if (x -> NorthWest != 0) i = i | NWbit;
if (x -> NorthEast != 0) i i | NEbit;
if (x -> SouthWest != 0) i = i | SWbit:
if (x -> SouthEast !=0) i = i | SEbit;

fwrite (&i, sizeof (unsigned char), 1, outputstream) ;

if (x -> NorthWest != 0)

write preorder (x -> NorthWest, depth-1) ;
if (x -> NorthEast != 0)

write preorder (x -> NorthEast, depth-1) ;
if (x -> SouthWest != ()

write preorder (x -> SouthWest, depth-1);
if (x —=> SouthEast != 0)

write preorder (x -> SouthEast, depth-1);
}

else /* at leaf node */

fwrite (& (x -> value),sizeof(double),l,outputstream);

Bibliography

[1]

[2]

[3]

[4]

(5]

[6]

[71

[8]

Beckman, P. H. Ph.D. Dissertation (in progress). Computer Science
Department, Indiana University

Duff, I. S., Erisman, A. M., and Reid, J. K. Direct Methods for Sparse
Matrices. Oxford University Press, New York, 1989

Duff, 1. S., Grimes, R. G., and Lewis, J. G. Sparse matrix test problems.
ACM Trans. Math. Softw., 15 (March 1989), 1-14

Hwang, K., and Briggs, F. A. Computer Arcitecture and Parallel
Processing. McGraw-Hill, New York, 1984.

Knuth, D. E. The Art of Computer Programming, Volume I: Fundemental
Algorithms. Addison Wesley, Reading Mass. 1975, Section 2.2.6 and 2.3.3

Osterby, O., and Zlatev, Z. Direct Methods for Sparse Matrices. Springer-
Verlag, New York, 1983.

Wise, D. S. Representing Matrices as Quadtrees for Parallel Processors
(extended abstract). ACM SIGSAM Bulletin 18, 3 (Aug 1984), 24-25.

Wise, D. S., Franco J. Costs of Quadtree Representation of Non Dense

Matrices. Journal of Parallel and Distributed Computing, 9 (1990), 282-
296.

16

