TECHNICAL REPORT NO. 322

Optimization of Nonmonotonic Relational Queries
by

Lawrence V. Saxton and Dirk Van Gucht

December 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Optimization of Nonmonotonic Relational Queries

Lawrence V. Saxton* and Dirk Van Gucht
Computer Science Department
Indiana University
Bloomington Indiana 47405
email: vgucht@iuvax.cs.indiana.edu

Abstract

In the relational database model, the nonmonotonic queries include the relational
algebra operators of difference, quotient, aggregation and complement, as well as cer-
tain relational calculus queries involving universal quantification and negation. It is
known that for nested algebra queries whose input and output are standard relational
databases, there is an equivalent relational algebra query. We show that the non-
monotonic queries can be handled naturally as such set queries expressed in the nested
algebra. We then show that these queries are efficiently implementable even in a stan-
dard relational database. This relies on efficient O(nlogn) ordering algorithms for
operations involving set constructions and comparisons.

1 Introduction

The popularity of the commercial relational database systems is in great part due to the
efficiency with which the basic monotonic operators, select, project and join, have been
implemented. However, as noted by Date, [7], the maturation of the use of these systems
commercially has led to the usage of decision support queries. These queries are more apt
to require nonmonotonic queries in their formulation, [2, 7].

The nonmonotonic queries have the property that if the database is increased in size
the application of the query may actually result in a smaller output. Consider a banking
application where there is to be a promotion for a new investment account. The bank wants

to mail a flyer to all customers who have both savings and checking accounts, but who

*On leave from the University of Regina

~have no personal loans. This decision support query is nonmonotonic since adding a tuple
to reflect the fact that a customer took a personal loan would cause that customer to be
removed from the output for the query.

Many researchers, [4, 6, 8, 9, 10, 12, 18, 19, 20, 21, 26, 27, 28, 30|, have shown that
these decision support queries are more readily expressible by using forms of intermediate
set construction and comparison. However, some of these studies limit their discussion to
specific nonmonotonic queries, [6, 8, 10, 27, 28]. Others, including [4, 9, 12, 13, 14, 18, 30], use
suboptimal iterative techniques to compute their results or translate them to the underlying
relational operators. The final group, [3, 19, 20, 21|, deal with an extended algebra which
allows for complex objects (generally simple sets or aggregations) to be used in the input
database. Unfortunately, the number of sets that can be so represented could be large
(exponentially so in terms of the number of elementary values), which in turn increases the
complexity of their results.

Although in decision support queries both the input and output conform to relational
databases, in general, they require the use of some temporary internal sets as part of their
computation, [19, 20]. Paredaens and Van Gucht, [22], recently have shown that queries
of this type can be expressed equivalently in either the standard relational formats or as
nested relational queries, called flat-flat queries. Hence, we know that at any level of set
construction internally, the computation time for a query as a whole is polynomially bounded
in terms of the number of elementary values of the input database.

The goal of this research is to provide an uniform approach for handling nonmonotonic
queries as nested flat-flat queries and to show the efficiency with which this can be achieved
with standard relational databases.

The paper is organized as follows. In Section 2, we provide the necessary basic definitions.
In Section 3, we introduce the nonmonotonic queries and show their relationship to queries
involving set operations. Next, these set operations and their related orderings are shown to

be efficiently implementable in Section 4. The conclusions and extensions are discussed in

the final section.

2 Basic Definitions

Since nested relations are more general than standard relations, we will state our definitions

in terms of nested relations. Our definitions are based on [2].

2.1 Nested Relations

Assume an infinitely enumerable set U of elementary attributes. Attributes are either el-
ementary or composite, where a composite attribute is a set of elementary or composite

attributes.

Definition 1 The set of all attributes U 1s the smallest set containing U such that every

finite subset X of U, in which no elementary attribute appears more than once, is in U.

Elements of U are called elementary; those of «f — U are called composite (or relation-
valued). We denote elementary attributes by A, B, C, ..., composite attributesby X, Y, Z,
Next we define simultaneously the notions of value, tuple and instance. Assume an

infinitely enumerable set V' of elementary values.

Definition 2 The set V of all values, the set Ix of all instances over X € U —U, the set Tx

of all tuples over X € U — U, and the set T of all instances are the smallest sets satisfying:

V=VUZ;

I= Uxeu-U Ix,

Zx consists of all finite subsets of Tx;

Tx consists of all mappings t from X into V, called tuples, such that t(A) € V for all
AeXNU and t(Y) €Iy forallY €¢ X - U.

Definition 3 A (nested) relationis a pair (Q,w) where Q € U — U and w € Ig. Q is called
the scheme of the relation and w is called the instance of the relation. The set of all relations

with scheme Q will be denoted by Rq, and the set of all relations will be denoted by R.

Assume an infinitely enumerable set N of relation names. A (nested) database scheme
is a sequence A = [R; : Q,..., R, : Q,], where R; € N, and {; is a relation scheme. A
(nested) database instance over A is a sequence § = [R; : wy,..., R, : wy], where w; € Zq,.
The set of databases instances over A is denoted Zp. A (nested) database is a pair (A, §),
where § € Da. The set of all databases over A will be denoted by Da. The set of all
databases will be denoted by D.

The traditional (non-nested) relational model consists of the restriction of relation schemes
to sets of elementary attributes. In the sequel, we will call the traditional relational model
the standard relational model, and refer to the above defined concepts in its context with
the adjective standard.

As a matter of notational simplicity throughout the paper, we will denote composite
attributes as made up of their elementary attribute names using a superscript * to define

*

sets. For example, a composite attribute denoted (A*B)* could contain tuples of the form

[{a1, a2}b].

Example 1 Consider the standard relational database, R,, shown in Figure 1(a). Each of
the attributes, (A, B and C), are elementary. In Figure 1(b), a nested relational database
is shown. There are three attributes, B and C are elementary attributes, while A* is a
composite attribute which has simple set entries. In Figure 1(c), we show a more complex

nested relational database, with elementary attribute C and two composite attributes A*

and B*. O

2.2 Queries

The active domain of a tuple t (relation instance w, database instance §), denoted adom(t)

(adom(w), adom(8)), is the set of elementary values appearing in t (w, §).

A[B|C A B0 A | B
1T 2 AT |1 (75, 2) (91, 2F |1
R

112 |1 .52 |1

22 |1

HENE B4 8 (2] IEar [BF |2
432

(a)Ra(ABC) (b)Ry(A*BC) (c)R(A*B*C)

Figure 1: Example of (Nested) Relations

Definition 4 A guery from a database scheme A, to a database scheme A,,, denoted

g : Ain — Aow', s a (partial) mapping from Dy, to Da,,,, such that for some finite set

C C V the following holds:

e g is domain preserving w.r.t C: V6 € Ip,,, adom(q(8)) C adom(é) U C;

e q is C-generic: for each permutation o over V (eztended in the natural way to I and

V), such thatVe € C, o(c) =c¢,gqoo=0o04q.
In addition, we require the following definition of monotonicity adapted from [2].

Definition 5 A query q : Ain — Aout 15 said to be monotone if for all S,R € Tp,,, S C R,

then q(S) C g(R). Otherwise, a query is said to be nonmonotone.

2.3 Relational query languages

We will consider several relational query languages. In particular, for relational databases we
will consider the standard relational algebra, the standard relational calculus [5] and nested

SQL, [8]. For nested relational databases we will consider the nested algebra and the nested

calculus [24].

'In the case where A,,; consists of a single component [R,y¢ : Qoyt], we will also talk about a query from

a database scheme A;, to a relation scheme $2,y;.

2.4 Algebraic query languages

Algebraic query languages for (nested) relations are obtained by extending the standard rela-
tion algebra operators to deal with (nested) relations, and adding the restructuring operators

unnest and nest. Hence, the operators are:

Definition 6 e The classical relational operators of union (U), difference (—), division
(<), cartesian product (x), join (X), and projection (r). Cartesian product is applica-
ble only to relations whose schemes are built from disjoint sets of elementary attributes.
Required renaming of atiributes is performed by the rename operator. If (Q,w) is a re-
lation and T' an attribute in Q then the renaming of T by T' in (Q,w) is denoted

pT_,T:(Q, w)

e Selection of tuples from a relation (Q,w) is defined relative to a predicate ¥ on tuples as
ou(Q,w) = (Q,{t:t € wA ¥(t) = true}). We consider the following predicates: Ele-
mentary attribute comparison, AOB, for A, B € QNU; Elementary attribute-constant
comparison, A@a, for A € QNU and a € V, and O is either =, #,<,---; Compos-
ite attribute comparison, XOY, for compatible atiributes X, Y € Q — U; Composite

attribute-constant comparison, XOz, for X € Q — U and z € Ix, and O is either
= 7£r e
o Let X € 2 —U. The unnesting px(Q,w) equals (V',w’') where @' = (@ —{X}HUX

and w' = {t € Tos|3t' € w : t restricted to @ — {X} equals t' restricted to Q@ — {X} &t

restricted to X is an element of t'(X)}.

e Let X C Q. The nesting vx(Q,w) equals (¥,w') where @' = (2 — X)U {X} and
w' = {t € To|3t' € w : t restricted to @ — X = t' restricted to Q — X &t[X] = {t”

restricted to X|t” € w&t' restricted to) — X =17 restricted to 0 — X}}.

Example 2 Since the nest, v, and unnest, u, are the only different operators, we will

briefly explain their effect for the relations shown in Figure 1. Ry(A*BC) = va(R,) and

6

R.(A*B*C) = vg(Rs). Note that as defined, the unnest-operator is simply the inverse of the

nest. As well, it is important to note that two nest operators do not necessarily commute. O

The nested algebra N is defined by expressions built from typed relation variables and
constant relations using the operators above. The standard relational algebra is the subset
of N built with standard relation variables and standard relation constants not using nest.

An interesting approach is to allow the usage of the nest operator and the selection
operator with predicates involving composite attributes internally in a query but to demand
that only the standard relation variables and constants are used and that the result of the
query also be standard. Paredaens and Van Gucht, [22], call these nested algebra expressions
flat-flat, denoted ff-expressions. They also prove the following theorem which allows us to

consider ff-expressions in the standard relational algebra.

Theorem 1 For every ff-ezpression in the nested algebra, there is an equivalent ezpression

in the standard relational algebra.

2.5 A calculus for nested relations

The calculus uses typed variables ranging over tuples. The terms are constants, variables,
and expressions of the form z.Z, where z is a tuple variable and Z € U. The atomic formulas
are (well-typed) expressions of the form ¢, = ts, ¢ € t, or R(t;) where t;, ¢, are terms and
R is a typed relation name. Formulas are built using connectives and quantifiers in the usual
manner. A calculus query from a database schema A = [R; : Q4,..., R, : ,] to a relation
scheme () (see footnote 1) is an expression {y|®} where ® is built from the relation names
R;,..., R, in A, has only y as a free tuple variable, and y has the type (). |
Clearly, a calculus query defines a generic mapping with domain D. However, this
mapping need not be domain preserving. We therefore also consider the notion of domain
preserving calculus queries, and we will call the nested calculus the set of domain preserving
calculus queries. As such the nested calculus is far more expressive than the relational

algebra. We will therefore restrict our attention to the subset of the strictly safe queries

7

introduced in [1, 24].

2.6 Nested SQL queries

SQL is an easy to use language which has become a standard in many standard relational
database systems. The basic structure of an SQL query is of the form SELECT target list
FROM relation list WHERE predicate. In [4], nested SQL is defined having:

the nesting of several query blocks

the use of keywords such as : EXISTS, ALL, ANY, IN in the connection between query
blocks

the use of variables and of predicates connecting query blocks indirectly

e the use of predicates as defined for relational queries, including set comparison

the grouping of tuples of a relation into subsets and the evaluation of aggregate func-

tions on each subset.

In order to minimize the confusion which could arise from the use of the word ’nested’,

we will refer to nested SQL as simply SQL in the remainder of the paper.

3 Nonmonotonic Queries

In this section, we have two goals. First, we will illustrate how set construction and set
comparison operators are used in the formulation of nonmonotonic queries. Second, we will
show how the nested algebra can be used to exhibit this use explicitly. Remember that the
nonmonotonic queries have the property that when applied to a database instance which has
been increased by adding tuples they may return a smaller relation. Combining results from

(17, 2], the nonmonotonic queries have been identified in the following theorem.

Theorem 2 A query containing any of the follounng s nonmonotonic:

o the relational algebra operators nest, difference, division;

o certain of the relational calculus queries which contain the universal quantifier or nega-

tion;
e any SQL query making use of the equivalent terms to those above.

A number of approaches have been suggested to enable a database system to handle
nonmonotonic queries. We discuss these approaches in the following subsections by the

query language.
3.1 Relational Calculus

Pirotte, [23], and Ozsoyoglu and Wang, [21], describe how the universal quantifier and nega-
tion can be handled by extending relational calculus. In particular, in the second approach,
[21] gives an algorithm which translates a relational calculus query into one in which the
universal quantifiers are replaced by set comparisons and set manipulation operators and
any negation is immediately to the left of an atomic formula. The subsequent language,
denoted RC/C, is implemented without negation in the Statistical Database Management
System, described in [20]. We exhibit this result in the following example.

Example 3 This example is drawn from [21] directly. Consider a department store
database with the following relation schemes : DEPT(dname,manager,floor#), ITEM(iname,
color,price,itype) and SELL(dname,item).

If we wish to find the items sold by all departments on the second floor, the resultant

query would be

{tO(F)ITEM©G) A t[1] =4[1] A Sp C So)}

where Sp and Sg can be represented as
Sp = {d|DEPT(d) A d[4] =' 2'} and

So = {d|(SELL(s) N DEPT(d) A s[2] = 3[1] A d[1] = s[1])}

This query is nonmonotonic because if one adds a department on the second floor, the list
of items sold by all departments will be constrained by the items sold in the new department.
In this instance, set construction is exhibited by the definitions of the sets Sp and Sg. Notice

how Sg depends on the existential variable 7. Set comparison, in the form C, is between Sp

and SQ. |

3.2 SQL

SQL has been studied extensively in terms of the expressibility of nonmonotonic queries,
[4, 9, 12, 18, 30]. Ceri and Gottlob, [4], provide a complete translation algorithm for SQL.
We provide the following example to exhibit this.

Example 4 This example is adapted from Date, [7]. Consider a relational database with

the following schemes: SUPPLIER(s#,sname), SUPPLY (p#,s#), where we wish to find the

name of suppliers who do not supply product ’P2’. This query would be expressed as

SELECT sname
FROM SUPPLIER
WHERE °’P2’ NOT IN (SELECT p#
FROM SUPPLY
WHERE s# = SUPPLIER.s#)

This query is nonmonotonic because if a supplier suddenly begins supplying part 'P2’,
this supplier will be dropped from the prior list of suppliers not supplying part ’P2’. In this

case, set construction is exhibited by the complete nested SELECT and the set comparison

by the NOT IN predicate. O

3.3 Standard Relational Algebra

The standard relational algebra includes the nonmonotonic operators difference and division.

For completeness, we will exhibit the semantics of division in terms of set construction and

10

A|B B A

a; | b by a;

a; | by b, as

ay | by S(B) R+S
as bl

ay | by

asz | b

as | by

R(A, B)

Figure 2: Semantics of Division

set comparison. Consider the relations over R : (A, B), S : (B) and their division, R + S
shown in Figure 2. The value a; (@3) occurs in this division because the set constructed from
the B-values associated with a; (@3) contains the relation S. Codd, [5], and Maier, [17],
show that division can be used in the translation of the universal quantifier. Dadashzadeh,
[6], also describes the improved division operator which is perhaps a clearer example of set
construction and set comparison. The following example shows division’s use.

Example 5 The following is adapted from Graefe, [10]. Consider the following university
database with two schemes: COURSES(c#) and ENROL(stud#,c#), where we wish to find

the students who have taken all of the courses. This query can be simply expressed as
ENROL - COURSES

This query is nonmontone because if a course is added to the list of courses offered, not

all of the students qualifying before will have taken this new course. O

3.4 Nested Relational Algebra

The nested relational algebra directly provides both set construction and set comparison with
the nest and selection over composite attributes, in addition to the standard set operators.
Since SQL, standard relational algebra and relational calculus are all equivalent to the flat-
flat nested relational algebra (by Theorem 2), we know that queries of these languages can

be expressed directly using nested algebraic operators. We show the equivalent (flat-flat)

11

nested relational algebra queries for each of those in examples 3, 4 and 5 below.
Example 6 For example 3, we wanted to find the items sold by all departments on the

second floor of a store. The equivalent nested relational algebra query would be
SP = O'fgoa,-#:fgf(DEPT)

Himme(ITEM X USpgdnamg*(Vdmmg(ITEM)))

For example 4, we wish the name of suppliers who do not supply part ’P2’. In nested

relational algebra we would have
Hsname(SUPPLIER X 01pyigppe(Vp(SUPPLY)))

Finally, for example 5 where we wish to find the students who have taken all of the courses,

we would have

stuag (9covrsEs=EnrOL.c#*(VENROL.c(ENROL))) O

In each of the cases, the actual translation is straightforward. The nested algebra would
provide a mechanism for determining the optimization of nonmonotonic queries if the internal

sets so generated can be efficiently implemented.

In addition to the single set queries listed above, there are cases when double nesting or
set joins would be useful.

Example 7 Consider the store database defined in example 3. If we wish to find the
pairs of departments (d;,d,) such that d; sells all of the items sold by department d,. In

nested algebra, the query would be
Hdname.duamc’ (Vimme(S EL L) I)qi'.\'lcrme" *Ciname*
Viname! (piname—bimme‘ Pdname—sdname’ (SEL L))) O

4 Implementation of Set Operations

In order for a standard relational database to handle the internal sets identified in the

previous Section, several basic conditions must be met. First, the database must have a

12

technique for identifying sets. Next, there must be an algorithm for identifying a total order

on sets.

4.1 Relational Representation of Sets

Havez and Ozsoyoglu, [11], provide an overview of techniques that can be used to identify
sets, mostly in terms of the storage structures useful for nested relations and complex objects.
Kim et al., [13], and Lorie et al., [16], discuss directly the issue of implementing sets within
relational systems. In addition, Kuper and Vardi, [15], provide a technique for representing
sets using the concepts of a data space and address space, which is applicable.

Essentially, we will discuss two distinct, but related, techniques which can be used to
handle the identification of sets within standard relational databases. The first, which we
call the tag approach, assumes that the schema of a relation is increased by adding attributes,
which are used to identify the sets. The second approach, which we call the pointer approach,
is a variation of the Kuper-Vardi approach, [15]. Since the approaches are related, we will
show how they work on the following example.

Consider the relation R(A,B,C) in Figure 1(a), shown in Section 2. In Figure 1(b) and
1(c), we show the result of v4(R) and vpva(R). In the tag approach, we would create an
attribute, denoted 7T} in Figure 3 for the first nest and attribute T for the second. The values
of T} are determined by the corresponding elements (tuples) of v4(R), while the values of
T, are determined by the corresponding elements (tuples) of vgva(R). For example, tag i,
is attached to the two tuples that form the second element in v4(R), and tag ¢4 is attached
to the four tuples that form the first element in vpr4(R).

Obviously, to accomodata this technique, there must be a process outside of the rela-
tional query language which creates these tag values (or the pointers, required in the second
approach), because of the explicit semantics attached to such a value. Of course, such

techniques already are used in the internal processes of relational DBMS to perform say

GROUP-BY in SQL.

13

wx:.om:—‘wn—n:]}
WWMMHI—'CU
MMI—"I’—-‘I—IHQ

L

[x]

o~

-

Figure 3: Tag Approach

B B|¢C¢ PlA B | P PP |C
|l |1 7 |1 1 |pa p|ps |l
P |2 11 P |2 2 | ps P2 |pa |2
p2 |3 |2 P2 |3 3 | pa

p2 |4

Figure 4: Pointer Approach

The pointer approachis exhibited in Figure 4. In this approach, extra relations are created
to represent the set membership relationship for the newly created sets. Each such set is
given a distinct pointer. Note that the P; value p, indicates that 3 and 4 are in the same
set, and that the P, value p, indicates that 3 forms a singleton set. The pointer attributes
can be used to recreate (unnest) the original relation using joins.

It should be noted that either the tag approach or the pointer approach can be used for
the storage of any set valued relations, whether created through an explicit » or through

other set constructors (union, difference, etc).

4.2 Complexity

Having shown how the temporary nested relations could be implemented in a relational
DBMS, we now turn our attention to the problem of how to implement the set algebra
operations. It should be clear, as noted in [8, 10, 26], that the first nest operation could be
implemented as a simple sort on the attributes not mentioned in the operation. However, a

second and later nests require us to partition the data based on equality over set as well as

14

-elementary attributes. This same observation applies to all of the other (extended) algebra
expressions. For example, duplicate elimination in a projection requires the comparison of
set-valued attributes. In order to achieve this, we require a definition of ordering of sets that
extends easily to tuples containing sets as values. Many such orderings exist, but we have
selected a total ordering which preserves set containment.

We assume that there is a total order, <, on the values of the elementary attributes.
Clearly this order can be naturally extended to tuples consisting of elementary values. We
that when X is a composite attribute made up of elementary attributes, and S; and S,
€ Ix, 81 < 52,1 |51] < |S2], or |S1]| = |S2| and for the least element different in S; and S,,

(SESl,t652),3<t.

Example 8 For the simple sets over the domain {0, 1,2}, we have § < {0} < {1} < {2} <
{0,1} < {0,2} < {1,2} < {0,1,2}.
For the simple sets over two attributes from domain {0,1,2}, we have § < {[00]} <

{[01]} < {[o2]} < {[10]} < --- < {[22]} < {[00], [01]} < {[00], [02]} < --- < {[20], [21], [22]}.
O

We can now show that this ordering can be reasonably efficiently computed. We will
show the result for the tag approach of representing sets, even though the pointer approach
will be more efficient on average. In the worst case, the complexity of both approaches will

be the same.

Lemma 1 A bag® of sets of tuples of elementary attribute values, C = {51, Sa,...,5:} can
be ordered according to < in time proportional to O(n log n), where n is the number of tuples

necessary to represent the bag in the tag approach.

Proof: We first note that a set S of tuples of elementary attributes can be sorted using
an O(|S|log |S|) algorithm, say a merge-sort. This of course assumes that the number of

elementary attributes is fixed. Secondly, we note that the number of tuples, n, necessary

2A bag is a set in which certain elements may be repeated.

15

to represent the bag C is Y%, |S;|, since each S; will contribute |S;| tuples to the tag
representation of C. The first step in our algorithm to order C is to sort each set on the
elementary attributes. As part of this step, we also record the number of tuples in each set,
which can be done in one extra pass through the tuples. In total, this step would require
O(ZE, |Sillog|Si]) < O(XE, |Si|logn) < O(nlogn), since n = ¢, |S;|. Since the sets,
S;, are now in tuple order, a merge-sort can be defined for < as follows. For each pair of
sets, (S;,5;), in a merge-sort pass, compare the number of elements in S; and S; first. If
one set contains more elements than another, that set is larger according to <. If not, then
because S; and S; have been previously sorted, each set can be compared tuple by tuple (first
tuple in S; against the first tuple in the S, etc). Since each tuple in a set will contribute
exactly one tuple to the tag representation, to compare two sets would require comparing at
most the number of tuples representing the sets in the tag approach. Thus, one pass of the
merge-sort would require at most the number tuples necessary to represent the whole bag,
O(n). Since at most log k passes are required in a merge-sort and k < n, we can order the

bag in O(n logn) steps. O

It is interesting to note that computing the number of tuples in each set is required in
this algorithm and will be available for aggregate functions immediately.

The order < can now be extended recursively to tuples whose domains can be elementary
attributes, or composite attributes at any depth of nesting naturally. We will assume for

ease of discussion that the attributes are ordered from elementary to most complex.

Example 9 Consider a collection of tuples defined over a schema R(A(BC*)*), where A, B
and C are over domain {0,1}. Then we would have the following order : [] < [00] < [0{00}] <

[0{0{0}}] < [0{0{1}}] < [0{0{0,1}}] < [0{10}] <--- < [10] < --- < [1{1{0,1}}].O0

This ordering as well can be efficiently achieved as shown below.

Lemma 2 Ordering a bag of tuples C = {S$1,55,...,5m} can be achieved in time propor-

16

-tional to O(nlogn), where n is the number of tuples required to represent C in the tag

approach.

Proof Consider the tuples having the attributes as X, X,,..., Xj, where the attributes
are ordered from elementary to most complex composite attribute. Each X, is considered
separately. If X; is a composite attribute, denote as p;; the number of tuples to represent
S;[Xi] in the tag approach. Then, from the tag approach we know that 37, p;; < n. Since
‘the iterative application of the sort-merge would require sorts on each of the size p;; sets, we
arrive at 37, pijlogpi; < 37, pijlogn < nlogn. Since each of the attributes is considered
only if all of the previous attribute values are equal, at most ! applications of the ordering

are required. Thus, the whole ordering can be done in O(nlogn) time. O

The following theorems follows immediately.

Theorem 3 An instance of a nested relation can be ordered according to < in time propor-
tional to O(nlogn), where n is the number of tuples required to represent the instance in the

tag approach.

Theorem 4 Any of the set constructor and set comparison operators can be achieved in
time proportional to O(nlogn), where n is the number of tuples required to represent the

data in the tag approach.

Proof Since the ordering < determines set containment directly, only one pass through
the ordered tables is required to determine it. For v, we need only to pass through the
table creating a new value for a created attribute when the adjacent sets are not equal.
Comparisons between attributes can be done in the same way. The basic set operators
union and difference by ordering the two relation instances in the same order and making a

single pass through each table, which at worst doubles the size of n. O

The only seemingly difficult operations are cross-product and join. However, the problem

with these operators is that the size of the output after applying them can grow as a product

17

of the sizes of the input databases. Since the ordering algorithm given above will order each
of the input databases in O(n log n) steps, for n the size of the larger, to compute them will
be bound by the size of their output in the tag representation. The final theorem follows

immediately.

Theorem 5 For any ff-query on a relational database, the total time required to compute a
query is bound by a polynomial whose power is determined by the number of cross products

required in the query evaluation.
This theorem, in combination with Theorem 1, yields the following fact.

Fact 1 The explicit usage of set construction and set comparison operators is

e ¢ safe and often succinct tool for the formulation of nonmonotonic queries, and

e can be efficiently supported in existing relational DBMS, 1.e., the efficiency is no worse
than the efficiency associated with the implementation of query languages without ez-

plicit set construction and set comparison.

In order to show the efficiency of the approach, consider the following example.

Example 10 Consider a relation R(A, B, C) and the query nc(0a+cp+(vBvaR)) applied to
the values in Figure 1. The query would return 1 and not 2. By Theorem 4, each of vp
and v4 can be calculated in O(nlogn) steps, where n = |R|, even though one nest is at
the internal level. The o operator will require at most O(n) steps, since the elements are
already in order. Similarly, the m¢ will require only O(n) steps. In total, only O(n logn) are

required. O

5 Conclusion

We have shown that the nonmonotonic queries can be considered consistently as set con-

struction and set comparison operators and that the nested relational algebra provides a

18

natural language in which to implement these set operators. Finally, we showed that the
operators can be efficiently implemented within a standard relational management system
internally without adding to the power of the system. Thus, the nested algebra can be used
in an optimization routine for any standard relational database management system for the

nonmonotonic queries.

Several outstanding research problems are evident. For the relational storage of sets, we
need to determine the most space and time efficient method for specific commercial systems.
As well, given that most commercial systems provide indexing schemes, for example B-trees,
and hashing, the most efficient way of actually ordering sets is open, Kim et al., [13], and
Graefe, [10], provide guidelines to this study. This leads as well to further investigations as

to the complete implementation of a nested database as a base for an object-oriented system,

13, 25, 29].

References

[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex
objects. Technical report, INRIA, 1988.

[2] C. Beeri and Y. Kornatzky. The many faces of query monotonicity. In Proc. of Advances
in Database Technology-EDBT ’90, pages 120-135, 1990.

[3] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Sets and negation in logic database
language (LDL), rev. 1. Technical Report DB-375-86, MCC, 1987.

[4] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization, se-

mantics, and equivalence of SQL queries. IEEE Trans. on Software Engineering, SE-
11(4):324-345, April 1985.

[5] E.F. Codd. A relational model for large shared data banks. Comm. of the ACM,
13:377-387, 1970.

(6] M. Dadashzadeh. An improved division operator for relational algebra. Information
Systems, 14(5):431-437, 1989.

(7] C.J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley, Reading,
MA, 5th edition, 1990.

19

8]

9]
[10]
[11]
12)
13
14
[15]

[16]

[17]

18]

[19]

[20]

U. Dayal. Of nests and trees: A unified approach to processing queries that contain
nested subqueries, aggregates, and quantifiers. In Proc. of 18th VLDB Conf., pages
197-208, 1987.

R. Ganski and H. Wong. Optimization of nested SQL queries revisited. In Proc. 1987
ACM SIGMOD Int’l Conf. on Management of Data, pages 23-33, 1987.

G. Graefe. Relational division: Four algorithms and their performance. In Proc. 1989
IEEE Conf. on Data Engineering, pages 94-102, 1989.

A. Hafez and G. Ozsoyoglu. Storage structures for nested relations. JEEE Data Engi-
neering, pages 31-28, 1988.

W. Kim. On optimizing an SQL-like nested query. ACM Trans. on Database Systems,
7(3):443-469, 1982.

W. Kim, H.-T. Chou, and J. Banerjee. Operations and implementation of complex
objects. IEEE Trans. on Software Engineering, 14(7):985-996, 1988.

A. Klug. Equivalence of relational algebra and relational calculus query languages having

aggregate functions. JACM, 29(3):699-717, 1982.

G.M. Kuper and M.Y. Vardi. A new approach to database logic. In Proc. 1984 ACM
SIGACT-SIGMOD PODS Conf., pages 86-96, 1984.

R. Lorie, W. Kim, D. McNabb, W. Plouffe, and A. Meier. Supporting complex objects
in a relational system for engineering databases. In W. Kim, D. Reiner, and D. Batory,
editors, Query Processing in Database Systems. Springer-Verlag, 1985.

D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, MD,
1983.

M. Muralikrishna. Optimization and dataflow algorithms for nested tree queries. In
Proc. of 15th VLDB Conf,, pages 77-85, 1989.

G. Ozsoyoglu and V. Matos. On optimizing summary-table-by-example queries. In

Proc. 1985 ACM SIGACT-SIGMOD PODS Conf., pages 38-49, 1985.

G. Ozsoyoglu, V. Matos, and Z.M. Ozsoyoglu. Query processing techniques in the
summary-table-by-example database query language. ACM Trans. on Database Sys-
tems, 14(4):526-573, 1989.

G. Ozsoyoglu and H. Wong. A relational calculus with set operators, its safety, and
equivalent graphical languages. IEEE Trans. on Software Engineering, 15(9):1038-1052,
1989.

J. Paredaens and D. Van Gucht. Converting nested algebra into flat relational structures.
to appear ACM Trans. on Database Systems.

A. Pirotte. High level data base query languages. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 409-436. Plenum Press, New York, NY, 1978.

20

[24] M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and calculus for nested
relational databases. ACM Trans. on Database Systems, 13(4):389-417, 1988.

[25] L.A. Rowe and M. Stonebraker. The POSTGRES data model. In Proc. 13th VLDB,
pages 83-96, 1987.

[26] G. Saake, V. Linnemann, P. Pistor, and L. Wegner. Sorting, grouping and duplicate
elimination in the advanced information management prototype. In Proc. of 15th VLDB
Conf., pages 307-316, 1989.

[27] M.H. Scholl. Theoretical foundation of algebraic optimization utilizing unnormalized
relations. In Proc. Int’l Conf. on Database Theory, pages 380-396, 1986.

[28] M.H. Scholl, H.-B. Paul, and H.-J. Schek. Supporting flat relations by a nested relational
kernel. In Proc. 18th VLDB Conf., pages 137-146, 1987.

[29] M. Stonebraker. The case for partial indexes. ACM SIGMOD Record, 18(4):4-11, 1989.

[30] G. von Bultzingsloewen. Translating and optimizing SQL queries having aggregates. In
Proc. of 13th VLDB Conf., pages 235-243, 1987.

21

