
RTBA : A Generic Bit-Sliced Bus Architecture for

DataPath Synthesis�

Kamlesh Rath

Ignacio Celis

Robert M. Wehrmeister

Steven D. Johnson

Computer Science Department

Indiana University, Bloomington, IN 47405

Abstract

Register transfer level (RTL) equations are used to specify the register and ALU datapaths

of machine architectures. RTBA (Register Transfer Bus Architecture) is a target architecture

for automatic bit-sliced VLSI implementation of RTL equations. This article discusses the

automatic derivation process of a layout from a typical system of RTL equations using a series

of behavior preserving transformations. The test results of a chip fabricated using the derived

layout are also presented. Extensions to the RTBA transformations, allowing functions in the

RTL equations, are presented by deriving the min-max benchmark.

�This research was supported in part by the National Science Foundation under grants numbered MIP 8707067,

MIP 8921842, and DCR 8521497.

1

1 INTRODUCTION 2

1 Introduction

Synthesis can be characterized as the use of transformation steps to translate a speci�cation into an

implementation. The behavioral equivalence of source speci�cation and implementation is assured

by constraining the synthesis process to a set of behavior preserving transformations. Datapath

synthesis is comprised of three major steps, scheduling, allocation, and layout generation. Most

datapath synthesis systems (e.g. [16],[10],[11]) concentrate on scheduling and allocation and defer

layout considerations to logic synthesis tools. Current logic synthesis tools (e.g. PLA, Standard

Cell, Gate Matrix) allow completely automatic hardware generation from a system of boolean equa-

tions. Such tools generate e�cient layouts, but they lack in regularity of structure and testability.

RTBA (Register Transfer Bus Architecture) is an open ended architecture, well suited as a

target architecture for synthesizing processor datapaths, that can be partitioned into bit-slices. It

evolved from the classical single bus architecture ([9],[12]) which does not handle multiple data

transfers between circuit elements simultaneously. RTBA is designed to address the synthesis of

highly parallel datapaths. The multiple bus architecture distributes datapath multiplexers to a

single control decode unit and a set of switches[8].

A processor description can be decomposed into a control description and a datapath descrip-

tion. The datapath is described as a system of RTL equations. A sequence of behavior preserving

transformations maps the RTL equations to RTBA. Transformations on the input RTL equations

allocate buses, logical units, shift units, comparator units, arithmetic units, and registers. The

allocated units are tiled together and compiled for an area e�cient layout.

On the front-end, the RTBA transformation system is integrated with DDD [4], an experimental

transformation system that extracts control and datapath description from a high-level functional

speci�cation. On the back-end, it is integrated with the Berkeley tools [14] (mquilt, mpla, magic)

to generate circuit layouts.

2 OPERATION OF RTBA 3

Buses

C
l
o
c
k
s

B
i
t

S
l
i
c
e

Load & Enable
Register

Register SetShift
Units

Logical
Units

Arithmetic
 Units

Arithmetic
 Unit
 Enables

 Shift
 Unit
Enables

Logical
 Unit
Enables

Comparator
 Units

Comparator
 Unit
 Enables

 Boolean
Registers

Carry
In/Out

Shift
In/Out

Control Decode (PLA)Command

Figure 1: Block diagram for the RTBA

2 Operation of RTBA

Each bit-slice of the RTBA has an independent register transfer path. Figure 1 shows the block

diagram for a bit-slice of the RTBA layout. The register set and I/O ports are partitioned into

non-con
icting subsets using the allocation algorithm described in Section 4.1.2. Each such subset

is connected to an unidirectional input or output bus. The arithmetic, shift, comparator and logic

units on the value on the input bus(es) and write the result on to it's output bus. Each unique

function invocation is performed by a di�erent functional block.

The command of the machine with register transfer Xi ((Xj�Xk) is decoded into the control

signals load�Xi, enable�Xj, enable�Xk, and ��enable. The enable�Xj, enable�Xk signals connect

registers Xj , Xk to buses, which in turn connect to the inputs of the functional unit; ��enable

switches the value of (Xj �Xk) to the appropriate bus; and the load�Xi signal enables register Xi

to take it's value from the it's input bus.

The bit-sliced [9] functional units have transmission gates on their outputs to control writing

onto the buses. Buses connect the inputs and outputs of the registers to functional units. Left

and right shift units transfer bus values to corresponding shift units in neighboring bit-slices.

3 SPECIFICATION 4

The comparator units (>, <, =) update single-bit (boolean) registers. Logical (_, ^, :, identity

function) and arithmetic (+, �, inc, dec) functions are performed by their respective functional

units.

The register set consists of standard D-registers driven by a 4-phase clock. The registers have

serial-in and serial-out capabilities driven by a separate clock. All the registers in a bit-slice can be

threaded together a single I/O pin, to facilitate loading and testing of register values.

The control decode unit decodes the current status information from the control unit into ap-

propriate Load and Enable signals for each register and the output enable signals for the functional

units. It also generates the control inputs for arithmetic units.

3 Speci�cation

A behavioral description of a machine in DDD is an iterative [5] system of functional de�nitions.

Each function body is a tail-recursive conditional expression, which transfers control to the next

state and simultaneously updates the registers and I/O ports.

3.1 High-level Speci�cation

The input speci�cation is of the form :

(machine = (

(F1 [X1 X2 ::: Xn]: E1)

:

(Fm [X1 X2 ::: Xn]: Em)

) E)

where X1; :::; Xn denote register and I/O ports, F1; :::; Fm are control states, and E1; :::; Em

are tail-recursive conditional expressions. E describes the initial state and register, port values of

machine.

4 EXAMPLE 1 : A SIMPLE MACHINE 5

3.2 RTL Equations

A series of correctness preserving transformations [6] in DDD converts the machine speci�cation

into a control speci�cation and a system of RTL equations which form the input for the RTBA.

((X1 ((select status g11 g12 ::: g1k))

(X2 ((select status g21 g22 ::: g2k))

:

(Xn ((select status gn1 gn2 ::: gnk)))

where gij is a function of X1; :::; Xn, and status is the controlling signal. The select function selects

a particular value of gij to load into the corresponding Xp, depending on status. The transposed

view of the system of RTL equations is called a register transfer table.

3.3 Type Information

RTBA requires the user to specify the type of each variable used in the input speci�cation. The

supported types are register, input port, output port, and boolean. The type information is used by

RTBA to allocate registers, buses and functional units.

Variable names with ? as the �rst character are input ports. Output ports have ! as the �rst

character of the variable name. Boolean variables are identi�ed by a ? as the last character in their

names. The rest of the variables are of type register.

4 Example 1 : A Simple Machine

A simple speci�cation was chosen to layout a chip using RTBA, and to simulate, fabricate, test

the chip. The example includes multiple register transfers and transfers from and to the same

register in the same datapath cycle. All register transfers are through identity function units. This

speci�cation does not have any predicates or arithmetic, logical, comparison functions.

The iterative speci�cation of the example is written in Scheme. The speci�cation has 5 registers,

and one input port. It was then transformed through DDD into a control speci�cation and a system

4 EXAMPLE 1 : A SIMPLE MACHINE 6

Type Registers

Status a b c d e

0 ?i b c d e

1 a ?i c d e

2 a b ?i d e

3 a b c ?i e

4 a b c d ?i

5 b b d d e

6 e a c d e

7 a b b a e

8 a b c c b

9 d b c d d

10 a e c d a

Table 1: Register Transfer Table

of RTL equations. The register transfer table corresponding to the system of RTL equations is given

in Table 1.

4.1 Allocating Registers, Buses and Functional Units

RTBA is an open ended architecture. There are no constraints on the number of registers, buses,

and functional units allocated to implement the given machine speci�cation. The synthesis process

generates a cost e�ective layout, without altering the behavior of register transfers. Derivations

illustrated in Sections 4.1.1 - 4.1.2 are used to allocate di�erent units in the layout. The script

used to allocate registers, buses, functional units, and to generate the layout of a bit-slice is given

in Appendix A.

4.1.1 Register Allocation

All variables of type register are allocated registers. This example is allocated 5 registers (a, b,

c, d, e). The layout of the registers is arranged in pairs for proper tiling in the
oor-plan.

4 EXAMPLE 1 : A SIMPLE MACHINE 7

4.1.2 Bus Allocation

All entries in the register transfer table of type register or input port whose values form inputs to

functional units (in italics font in Table 1) are called sources, and all entries of register or output

port types which get loaded with a value from a functional unit are called destinations. Sources

(Destinations) which are never used for the same status value can be allocated to the same bus.

The problem of allocating buses for a given number of sources or destinations can be reduced to

a graph vertex-coloring problem[3]. Consider a graph with nodes for each source (destination) and

an edge for each dependency. There exists a dependency between 2 sources (destinations), if both

are used for the same datapath state. The solution to the bus allocation problem is equivalent to

identifying the minimum number of colors (chromatic number) in the graph in which no two nodes

with the same color have an edge between them. Each color in the graph could then be assigned

to a source (destination) bus.

The graph vertex-coloring problem is a known NP-complete [3] problem. Our solution to the

problem, is based on heuristics and is not necessarily optimal. The source (destination) with the

maximal number of dependencies is �rst allocated to a bus. On each iteration of the algorithm,

the source (destination) with the next highest number of dependencies is checked for dependencies

with all the allocated buses in the order they were allocated. It is allocated to the �rst bus with

which it does not share a dependency. It is allocated an independent bus if it has dependencies

with all the allocated buses.

The sources in the example are (?i c b d e a), and the destinations are (a b c d e). The

sources and destinations in each datapath state are given in Table 2. The dependencies of the

source and destination registers are shown in the dependency table in Table 3. The designer can

also choose to allocate input/output ports as independent buses. In this example, the input port

?i is allocated a separate bus.

Processing the register dependencies using the Bus Allocation algorithm results in the 3 desti-

nation and 3 source buses (shown in Table 4).The Bus Transfer Table shown in Table 5 is generated

by substituting each register with it's allocated bus and merging together the columns with the

same names. If the buses are allocated properly, then the merging operation will not result in any

4 EXAMPLE 1 : A SIMPLE MACHINE 8

Status Destinations Sources

0 a ?i

1 b ?i

2 c ?i

3 d ?i

4 e ?i

5 a c b d

6 a b e a

7 c d b a

8 d e c b

9 a e d d

10 b e e a

Table 2: Sources and Destinations

Destinations Dependencies Sources Dependencies

a c b e a e b

b a e b d a c

c a d c b

d c e d b

e a b d e a

?i -

Table 3: Dependency Table

Destinations Sources

Bus Registers / Outputs Bus Registers / Inputs

d0 c e so ?i

d1 d a s1 e b

d2 b s2 c d a

Table 4: Bus Allocation Table

4 EXAMPLE 1 : A SIMPLE MACHINE 9

Status d0 d1 d2

0 ? s0 ?

1 ? ? s0

2 s0 ? ?

3 ? s0 ?

4 s0 ? ?

5 s2 s1 ?

6 ? s1 s2

7 s1 s2 ?

8 s1 s2 ?

9 s2 s2 ?

10 s2 ? s1

Table 5: Bus Transfer Table

position of table having more than one bus name. The Bus Transfer Table is used to generate the

enable signals for the functional units. Each non-don't-care term in the transfer table is assigned

an identity functional unit.

4.2 Generating Control Decode

The Load and Enable signals for the registers are generated for each command from the register

transfer table. For each command value, the registers being loaded with a di�erent value is given

a Load signal for the command, and each register whose value is used as an input to a functional

block is given an Enable signal.

The command information from the control unit is decoded by the decoder into enable signals for

the transmission gates at the output of functional blocks, and the control signals for the arithmetic

unit.

The register transfer table is transformed into register loads and enables. The bus transfer table

and the allocated functional units are used to generate the enable signals. There are 9 di�erent

functional units, each for a di�erent bus transfer (d0 s0, d0 s1, d0 s2, d1 s0, d1 s1,

d1 s2, d2 s0, d2 s1, d2 s2) . An enable signal is generated for each functional unit for

4 EXAMPLE 1 : A SIMPLE MACHINE 10

a b c d e d0 d0 d0 d1 d1 d1 d2 d2 d2

" " " " " " " " "

Status Ld En Ld En Ld En Ld En Ld En s0 s1 s2 s0 s1 s2 s0 s1 s2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

4 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

5 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0

6 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

7 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

8 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0

9 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0

10 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0

Table 6: Register Loads & Output Enables and Functional Unit Enables

the appropriate status value. The boolean equations for the control decode (shown in Table 6) are

used to automatically generate the layout of a PLA using mpla [14].

4.3 Layout, Simulation and Fabrication

The layout of the PLA to implement the control decode is shown in Appendix B. The layout for

each bit-slice is generated automatically using mquilt [14], as shown in Appendix C.

The layout was simulated using the logical simulator COSMOS [1], and was veri�ed to have

behavioral equivalence with the speci�ed RTL equations. The script of the COSMOS simulation

for the layout of Example 1 is included in Appendix D.

SPICE [13] was used to simulate the electrical characterstics of the layout of a single bit-slice.

The spice deck and the graph corresponding to the simulations of states 0 and 6 are shown in

Appendix E.

The pin diagram for the chip layout is given in Appendix F. The layout was fabricated at the

5 EXAMPLE 2 : THE MIN-MAX MACHINE 11

MOSIS fabrication facility (Fabrication ID number : N05F-BR1). The chip was tested using the

Logic Engine[17] (test programs given in Appendix G).

5 Example 2 : The Min-Max Machine

The min-max machine is a simple machine that computes and stores the running maximum and

minimum values on it's input port. It also computes the average of the current maximum and

minimum and displays it on it's output port. This speci�cation is a simpler version of the min-max

benchmark speci�cation used in IMEC '89 [15] conference. The control signals CLEAR, ENABLE

and RESET were eliminated to simplify the control unit and concentrate on the datapath.

The RTBA synthesis process comprises of four major steps, generating RTL equations by dat-

apath extraction (using DDD), allocating registers, buses, and functional units,
oor-planning and

layout generation, and generating control decoder.

5.1 Speci�cation

The behavioral description for the min-max machine :

(min-max = (

(START [min max last-in tmp !out lt? gt?].

(CHECKMIN min max ?in tmp (-> tmp) (< min ?in) (> max ?in)))

(CHECKMIN [min max last-in tmp !out lt? gt?].

(if (lt?)

(UPDATE last-in max last-in tmp (-> tmp) lt? gt?)

(CHECKMAX min max last-in tmp (-> tmp) lt? gt?)))

(CHECKMAX [min max last-in tmp !out lt? gt?].

(if (gt?)

(UPDATE min last-in last-in tmp (-> tmp) lt? gt?)

(UPDATE min max last-in tmp (-> tmp) lt? gt?)))

(UPDATE [min max last-in tmp !out lt? gt?].

(START min max last-in (+ min max) (-> tmp) lt? gt?))

) (START HI_VALUE 0 0 0 0 F F))

5 EXAMPLE 2 : THE MIN-MAX MACHINE 12

Type Registers Output port Boolean

Command min max last-in tmp !out lt? gt?

0 min max ?in tmp (-> tmp) (< min ?in) (> max ?in)

1 last-in max last-in tmp (-> tmp) lt? gt?

2 min max last-in tmp (-> tmp) lt? gt?

3 min last-in last-in tmp (-> tmp) lt? gt?

4 min max last-in tmp (-> tmp) lt? gt?

5 min max last-in (+ min max) (-> tmp) lt? gt?

Table 7: Register Transfer Table

where -> is the right shift operator; min, max, last-in, tmp are registers, !out is an output port,

lt?, gt? are boolean (single-bit) registers, and ?in is an input port. START, CHECKMIN, CHECKMAX,

UPDATE are the control states. START is the initial state of the machine. The speci�cation contains

only simple arithmetic, shift and comparison functions, all of which can be directly implemented as

functional blocks. Also, predicates test only boolean registers which can interact with the control.

The
ow-chart corresponding to the DDD speci�cation for the min-max machine is shown in

Figure 2, where ellipses denote control states, diamonds denote predicates and rectangles denote

datapath states. The datapath states have been numbered 0-5.

DDD transformations are used to extract the datapath RTL equations from the min-max speci-

�cation. The register transfer table corresponding to the datapath RTL equations for the min-max

machine, is shown in Table 7. Datapath transfers (shown in italics in Table 7) correspond to

datapath states in the
ow-chart.

((min <== (select status min last-in min min min min))

(max <== (select status max max max last-in max max))

(last-in <== (select status ?in last-in last-in last-in last-in last-in))

(tmp <== (select status tmp tmp tmp tmp tmp (+ min max)))

(!out <== (select status (-> tmp)(-> tmp)(-> tmp)(-> tmp)(-> tmp)(-> tmp)))

(lt? <== (select status (< min ?in) lt? lt? lt? lt? lt?))

(gt? <== (select status (> max ?in) gt? gt? gt? gt? gt?)))

5 EXAMPLE 2 : THE MIN-MAX MACHINE 13

Start

last-in <= ?in
!out <= (-> tmp)
lt? <= (< min ?in)

0

Checkmin

lt?

gt? <= (> max ?in)

min <= last-in
!out <= (-> tmp)

!out <= (-> tmp)

T

F

1

2

!out <= (-> tmp)

Checkmax

gt?

T

F

4

max <= last-in
!out <= (-> tmp)

Update

3

tmp <= (+ min max)
!out <= (-> tmp)

5

Figure 2: Flow Chart of the Min-Max Machine

5 EXAMPLE 2 : THE MIN-MAX MACHINE 14

Sources Dependencies Destinations Dependencies

min ?in tmp max min !out

max ?in tmp min max !out

last-in tmp last-in !out

tmp min max ?in last-in tmp !out

?in tmp min max !out min max tmp last-in

Table 8: Dependency Table

Sources Destinations

Bus Registers / Inputs Bus Registers / Outputs

s0 tmp d0 !out

s1 min last-in d1 min max tmp last-in

s2 max

s3 ?in

Table 9: Bus Allocation Table

5.2 Allocating Registers, Buses and Functional Units

The entries in the register transfer table with type register are allocated registers in the layout,

e.g. min, max, last-in, tmp are registers in the min-max machine. Entries with type boolean are

connected to outputs of comparator units in the least signi�cant bit-slice and not allocated registers

in the bit-slice.

The dependencies in the min-max machine are shown in Table 8. Single-bit registers are not

used in the dependency transformations because they are not allocated buses in each bit-slice. The

bus allocation algorithm results in 4 source buses(s0 s1 s2 s3) and 2 destination buses(d0 d1) for

the min-max machine, as shown in Table 9. The bus transfer table shown in Table 10 is generated

by substituting each register and port with it's allocated bus and merging together the columns

with the same names in the register transfer table. The ? entries in tables denote don't-care terms.

Further serialization of the input speci�cation would result in fewer buses and more control states.

The RTBA transformation system allocates a functional unit for each function. This is a

tradeo� for a smaller and faster interconnect area[7]. The bus transfer table for min-max results in

5 EXAMPLE 2 : THE MIN-MAX MACHINE 15

Command d0 d1 lt? gt?

0 (-> s0) s3 (< s1 s3) (> s2 s3)

1 (-> s0) s1 ? ?

2 (-> s0) ? ? ?

3 (-> s0) s1 ? ?

4 (-> s0) ? ? ?

5 (-> s0) (+ s1 s2) ? ?

Table 10: Bus Transfer Table

the following set of function applications, each of which is assigned a functional unit :

f (d0 ((-> s0)), (d1 (s3), (d1 (s1), (d1 ((+ s1 s3)),

(lt? ((< s1 s3)), (gt? ((> s2 s3))g

The min-max machine is allocated 1 right-shift unit, 2 identity function units, 1 adder unit, 1

less-than comparator unit and 1 greater-than comparator unit. lt? and gt? are single-bit registers

connected to the corresponding comparator outputs of the least signi�cant bit-slice.

5.3 Floor-planning and Layout Generation

The layout for di�erent functional units, registers, and bus fragments are kept in a cell library. All

cell layouts have the same height for proper tiling. The
oor-plan for the VLSI layout of a bit-slice

of the min-max datapath is shown in Figure 3. Successive bit-slices are stacked together to connect

common data transfer paths and load/enable signals.

The automated
oor-planner of the RTBA transformation system generates a template map

for each bit-slice. The layout for a bit-slice is generated using mquilt[14], by substituting each

template on the map with it's corresponding cell layout. The layout for a min-max bit-slice is

shown in Appendix H.

5.4 Generating Control Decode

The register transfer table is transformed into register loads and enables in Table 11. The bus

transfer table and the allocated functional units are used to generate the enable signals, as shown

5 EXAMPLE 2 : THE MIN-MAX MACHINE 16

< Unit > Unit -> Unit

i
d
e
n
t
i
t
y

i
d
e
n
t
i
t
y

min max last-in tmp

s0

s1

s2

s3

d0

d1

!out

?in

ld en ld en ld en ld enenenenenenen addCin

->inCout

->out

<in =in >in =in

<out =out >out =out

SinSout

+ Unit

Figure 3: Floor-plan of Min-Max layout

min max last-in tmp

Command Load Enable Load Enable Load Enable Load Enable

0 0 1 0 1 1 0 0 1

1 1 0 0 0 0 1 0 1

2 0 0 0 0 0 0 0 1

3 0 0 1 0 0 1 0 1

4 0 0 0 0 0 0 0 1

5 0 1 0 1 0 0 1 1

Table 11: Register Loads & Output Enables

6 OBSERVATIONS AND DIRECTIONS FOR FUTURE WORK 17

DataPath State -> unit d1 (s3 d1 (s1 + unit < unit > unit

0 1 1 0 0 1 1

1 1 0 1 0 0 0

2 1 0 0 0 0 0

3 1 0 1 0 0 0

4 1 0 0 0 0 0

5 1 0 0 1 0 0

Table 12: Functional Unit Enables & Control Code

in Table 12. Tables 11 and 12 are merged to generate boolean equations, which are processed

through mpla [14] to generate a PLA to implement the control decoder. The layout for the control

decode PLA is shown in Appendix I.

6 Observations and Directions for Future Work

The RTBA transformation system can be used to implement any system of RTL equations that

can be partitioned into bit-slices, if all the function applications correspond to some functional unit

in the library of functional units and all predicates can be implemented using boolean registers.

Complex functions need to be serialized into a sequence of implementable functions, or be factored

[4] from the RTL equations into a set of I/O ports and implemented by the user. Data transfers

across bit-slice partitions are also implemented as a set of I/O ports.

Future work on the RTBA will focus on automation of transformations, support for user de-

�ned functional units, and improved layout generation. Correctness proofs for the transformations

leading to the layout would give greater con�dence in VLSI implementations of machines through

the synthesis process.

References

[1] Randy Bryant, Compiled Simulator for MOS Circuits, Carnegie Mellon University.

REFERENCES 18

[2] R. Camposano, Behavior Preserving Transformations for High-Level Synthesis, Hardware Speci�cation,

Veri�cation and Synthesis: Mathematical Aspects, Springer-Verlag, July 1989.

[3] M. R. Garey and D. S. Johnson, Computers and Intractibility, W.H.Freeman and Company, San Fran-

cisco, 1979.

[4] Steven D. Johnson and Bhaskar Bose, A System for Mechanized Digital Design Derivation, to appear

at International Workshop on Formal Methods in VLSI Design, Miami, January 1991.

[5] Steven D. Johnson, Synthesis of Digital Designs from Recursion Equations, The MIT Press, Cambridge,

1984.

[6] Steven D. Johnson, Robert M. Wehrmeister and Bhaskar Bose, On the Interplay of Synthesis and Ver-

i�cation, Formal VLSI Speci�cation and Synthesis, Elsevier Science Publishers B.V. (North Holland),

IFIP, 1990.

[7] K. Kucukcakar and A.C. Parker,Data Path Tradeo�s using MABAL, 27th ACM/IEEE Design Automa-

tion Conference, June 1990.

[8] T.A. Ly, W.L. Elwood and E.F. Girczyc, A Generalized Interconnect Model for Data Path Synthesis,

27th ACM/IEEE Design Automation Conference, June 1990.

[9] M. Morris Mano, Digital Logic and Computer Design, Prentice Hall, Englewood Cli�s, New Jersey,

USA.

[10] A.C. Parker, J \T" Pizarro and M. Mlinar,MAHA: A Program for Datapath Synthesis, 23rd ACM/IEEE

Design Automation Conference, July 1986.

[11] P.G. Paulin, J.P. Knight and E.F. Girczyc, HAL: A Multi Paradigm Approach to Automatic Data Path

Synthesis, 23rd ACM/IEEE Design Automation Conference, July 1986.

[12] F.P. Prosser and D.E. Winkel, The Art of Digital Design, Prentice Hall, Englewood Cli�s, New Jersey,

USA.

[13] Thomas L. Quarles, SPICE 3C1 Users Guide, UCB/ERL M89/46, Electronics Research Laboratory,

College of Engineering, University of California, Berkeley.

REFERENCES 19

[14] Walter S. Scot, Robert N Mayo, Gordon Hamachi, and John K. Ousterhout, 1986 VLSI Tools, Report

No. UCB/CSD 86/272,(Computer Science Division-EECS, University of California at Berkeley, 1985).

California, Berkeley.

[15] Diederik Verkest, Luc Claesen, and Hugo De Man, Formal Design Benchmark Example, Formal VLSI

Speci�cation and Synthesis, Elsevier Science Publishers B.V. (North Holland), IFIP, 1990.

[16] R.S. Wei, S. Rothweiler and J.Y. Jon, BECOME: Behavior Level Synthesis Based On Structure Map-

ping, 25th ACM/IEEE Design Automation Conference, June 1988.

[17] David Winkel, Franklin Prosser, Robert Wehrmeister, William Hunt and Caleb Hess, A Student VLSI

Hardware Tester, Indiana University.

A SCRIPT FOR ALLOCATION AND LAYOUT 20

A Script for Allocation and Layout

; ---- Script for deriving RTL Equations ----

(load "/u/bose/ddd/ddd.ss")

(define x1 (readfile "x0"))

(define x2 (iterativesystem->singleloop x1))

(define x3 (singleloop->streqns x2))

(define xsel (singleloop->control x2))

(writefile x3 "x3")

(writefile xsel "xsel")

(define state (list (extractstreqn 'state x3)))

(define registers (removestreqn 'state x3))

(writefile registers "registers.con")

(makepaltable registers "registers.rtt" "registers.tab")

; ---- Script to allocate units and plot -----------------

(load "/u/bose/ddd/ddd.ss") ; --- used DDD v0.2

(load "/u5/install/ddd/generic/buses.ss")

(load "/u5/install/ddd/generic/bitslice.ss")

(load "/u5/install/ddd/generic/dcare.ss")

(load "/u5/install/ddd/generic/gen.ss")

(load "predinfo")

(define registers (readfile "registers.con"))

(define rtt (streqn->paltable registers))

(define en.rtt (enables rtt))

(define ld.rtt (loads rtt))

(define enld.str (make-enld.str en.rtt ld.rtt))

(writefile enld.str "enld.str")

(define srcs (sources rtt))

(define dests (destinations rtt))

(define ldest-bus (alloc-dest-buses rtt dests #t))

(define lsource-bus (alloc-source-buses rtt srcs #t))

(writefile ldest-bus "ldb.nam")

(writefile lsource-bus "lsb.nam")

(define lbus (mk-source-buses 'l. lsource-bus (mk-dest-buses 'd. ldest-bus rtt)))

(writefile lbus "bus.rtt")

A SCRIPT FOR ALLOCATION AND LAYOUT 21

(define d-list (dest-list lbus))

(define s-list (source-list lbus))

(define xfer.str (rtt->sw_enable lbus))

(define inverted_xfer.str (invert_sw xfer.str))

(writefile inverted_xfer.str "xfer.str")

(define sh_enld.str (shuffle_ld_en enld.str))

(define pla (append inverted_xfer.str sh_enld.str))

(define plaout (map car pla))

(writefile plaout "pla.out")

(writefile pla "pla")

(streqns->mpla pla 'static "pla.mpla")

(bitslice-layout lbus rtt lsource-bus ldest-bus "slice.in")

; ------------- Source specification "x0" ------------------

(define test

(letrec(

(state0 (lambda(a b c d e) (state1 ?i b c d e)))

(state1 (lambda(a b c d e) (state2 a ?i c d e)))

(state2 (lambda(a b c d e) (state3 a b ?i d e)))

(state3 (lambda(a b c d e) (state4 a b c ?i e)))

(state4 (lambda(a b c d e) (state5 a b c d ?i)))

(state5 (lambda(a b c d e) (state6 b b d d e)))

(state6 (lambda(a b c d e) (state7 e a c d e)))

(state7 (lambda(a b c d e) (state8 a b b a e)))

(state8 (lambda(a b c d e) (state9 a b c c b)))

(state9 (lambda(a b c d e) (state10 d b c d d)))

(state10 (lambda(a b c d e) (state0 a e c d a))))

(lambda()(state1 1 2 3 4 5))))

B STATUS DECODER PLA PLOT 22

B Status Decoder PLA Plot

Vdd! GND!
GND! GND!

Vdd!
input_1 input_2 input_3 input_4

Vdd!

output_1output_2output_3output_4output_5output_6output_7output_8output_9output_10output_11output_12output_13output_14output_15output_16output_17output_18output_19

Figure 4: Magic plot status decode PLA

C BIT-SLICE PLOT 23

C Bit-slice Plot

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

Vdd

GND

Vdd

GND

Vdd
out

in

en.l

oe2q2out2din2load2

sinsout

c3

c3.l

c1.l

c1

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

c3

c3.l

c1.l

c1

GND q dinloadoe out

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

oe2q2out2din2load2

sinsout

c3

c3.l

c1.l

c1

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

c3

c3.l

c1.l

c1

GND q dinloadoe out

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

oe2q2out2din2load2

sinsout

c3

c3.l

c1.l

c1

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

c3

c3.l

c1.l

c1

GND q dinloadoe out

c2

c2.l

c1

c1.l
c3

c3.l
c2

c2.l

c1c1.lc3c3.lc2c2.l

Figure 5: Magic plot of a bit-slice

D COSMOS SCRIPT 24

D COSMOS Script

>vector state in1 in2 in3 in4

>vector rega qa1 qa4

>vector regb qb1 qb4

>vector regc qc1 qc4

>vector regd qd1 qd4

>vector rege qe1 qe4

>vector Ibus I1 I2 I3 I4

>

>clock c1.l:1011 c2.l:1110 c3:0000

>

>initialize 1

>

>watch %4 rega regb regc regd rege

>

>set %h state:0

>set %h Ibus:0

>cycle

1.4| rega:00 regb:XX regc:XX regd:XX rege:XX

>

>set %h state:1

>set %h Ibus:f

>cycle

2.4| rega:00 regb:11 regc:XX regd:XX rege:XX

>

>set %h state:2

>set %h Ibus:f

>cycle

3.4| rega:00 regb:11 regc:11 regd:XX rege:XX

>

>set %h state:3

>set %h Ibus:f

>cycle

4.4| rega:00 regb:11 regc:11 regd:11 rege:XX

D COSMOS SCRIPT 25

>

>set %h state:4

>set %h Ibus:0

>cycle

5.4| rega:00 regb:11 regc:11 regd:11 rege:00

>

>set %h state:5

>cycle

6.4| rega:11 regb:11 regc:11 regd:11 rege:00

>

>set %h state:1

>set %h Ibus:0

>cycle

7.4| rega:11 regb:00 regc:11 regd:11 rege:00

>

>set %h state:6

>cycle

8.4| rega:00 regb:11 regc:11 regd:11 rege:00

>

>set %h state:1

>set %h Ibus:0

>cycle

9.4| rega:00 regb:00 regc:11 regd:11 rege:00

>

>set %h state:7

>cycle

10.4| rega:00 regb:00 regc:00 regd:00 rege:00

>

>set %h state:2

>set %h Ibus:f

>cycle

11.4| rega:00 regb:00 regc:11 regd:00 rege:00

>

>set %h state:1

>set %h Ibus:f

D COSMOS SCRIPT 26

>cycle

12.4| rega:00 regb:11 regc:11 regd:00 rege:00

>

>set %h state:8

>cycle

13.4| rega:00 regb:11 regc:11 regd:11 rege:11

>

>set %h state:4

>set %h Ibus:0

>cycle

14.4| rega:00 regb:11 regc:11 regd:11 rege:00

>

>set %h state:9

>cycle

15.4| rega:11 regb:11 regc:11 regd:11 rege:11

>

>set %h state:4

>set %h Ibus:0

>cycle

16.4| rega:11 regb:11 regc:11 regd:11 rege:00

>

>set %h state:a

>cycle

17.4| rega:11 regb:00 regc:11 regd:11 rege:11

E SPICE SIMULATION 27

E SPICE Simulation

.

.

* GND 0

Vdd 1 0 DC 5V

VCMOSN 7 0 DC 0V

VCMOSP 5 0 DC 5V

Vc1 80 0 PULSE(0 5 10NS 0NS 0NS 10NS 40NS)

Vc1.l 81 0 PULSE(5 0 10NS 0NS 0NS 10NS 40NS)

Vc2 85 0 PULSE(0 5 30NS 0NS 0NS 10NS 40NS)

Vc2.l 86 0 PULSE(5 0 30NS 0NS 0NS 10NS 40NS)

Vc3 82 0 DC 0V

Vc3.l 83 0 DC 5V

Vin1 43 0 DC 0V

Vin2 47 0 PULSE(0 5 80NS 0NS 0NS 40NS)

Vin3 48 0 PULSE(0 5 80NS 0NS 0NS 80NS)

Vin4 49 0 DC 0V

Vregle2_0/sin 92 0 DC 0V

Vregle2_0/din2 99 0 DC 0V

Vregle2_0/oe2 71 0 DC 5V

Vregle2_0/load2 96 0 DC 5V

VI 148 0 PULSE(0 5 40NS 0NS 0NS 80NS)

* s0 72

* s1 102

* d0 98

* d1 119

* d2 138

.TRAN .5NS 120NS 40NS

.

.

.

E SPICE SIMULATION 28

Figure 6: SPICE plot for buses s1(102) and d2(138)

F PIN CONFIGURATION 29

F Pin Con�guration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

RTBA Chip

 N05F-BR1

Figure 7: Pin Con�guration for the RTBA chip

Pin # Description Pin # Description Pin # Description Pin # Description

1 Slice1/qe 11 Slice4/qd 21 PLA/input3 31 Slice1/s1

2 Slice2/sin 12 Slice4/qc 22 PLA/input2 32 Slice1/I

3 Slice2/I 13 Slice4/qb 23 PLA/input1 33 Slice1/d0

4 Slice3/sin 14 Slice4/qa 24 Clock/c2.low 34 Slice1/d1

5 Vdd 15 Vdd 25 GND 35 GND

6 Slice3/I 16 Slice4/sout 26 Clock/c3 36 Slice1/d2

7 Slice4/sin 17 Slice3/sout 27 Clock/c1.low 37 Slice1/qa

8 Slice4/I 18 Slice2/sout 28 Slice1/sin 38 Slice1/qb

9 Slice4/qe 19 Slice1/sout 29 Slice1/s0 39 Slice1/qc

10 GND 20 PLA/input4 30 Vdd 40 Slice1/qd

G LOGIC ENGINE PROGRAMS 30

G Logic Engine Programs

/******* generic.c **********/

#include <stdio.h>

#include "\le\include\lelib.h"

#include <time.h>

#define ALUAND 0x10

#define ALUOR 0x20

#define ALUADD 0x42

#define ALUSUB 0x43

#define ALUXOR 0x40

#define ALUSHR 0x08

#define ALUSHL 0x04

#define A 0

#define B 1

#define C 2

#define D 3

#define E 4

#define F 5

void main(void);

void dotest(void);

void put_random(void);

void sh_Clock(int n);

void Clock(int n);

int rand(void);

void read_reg(void);

void print_reg(void);

void move_arr(short source[4][6],short destination[4][6]);

void Failure(int n);

short regs[4][6],temp[4][6],new_val[4][6];

int new_i;

int comm;

void main()

{

if(declare("generic.dec")!=0){

fprintf(stderr,"Error in declaration file\n");

exit(-1);

}

G LOGIC ENGINE PROGRAMS 31

while(initboard()<0){

printf("LE board is not connected\n<enter>");

getchar();

}

dotest();

restoreboard();

}

void Failure(int n)

{

printf("Fail %d\n",n);

printf("<enter>");getchar();

exit(1);

}

void sh_Clock(int n)

{

int i;

for(i=0;i<n;i++)

{

mask("C2.L=1, C3=0");

mask("C2.L=1, C3=1");

mask("C2.L=1, C3=0");

mask("C2.L=0, C3=0");

}

}

void Clock(int n)

{

int i;

for(i=0;i<n;i++)

{

mask("C1.L=1, C2.L=1");

mask("C1.L=0, C2.L=1");

mask("C1.L=1, C2.L=1");

mask("C1.L=1, C2.L=0");

}

}

void read_reg(void)

G LOGIC ENGINE PROGRAMS 32

{

int i;

for (i=0; i<6; i++)

{

regs[0][i] = readval("SOUT1");

regs[1][i] = readval("SOUT2");

regs[2][i] = readval("SOUT3");

regs[3][i] = readval("SOUT4");

command("SIN1=%d,SIN2=%d,SIN3=%d,SIN4=%d",

regs[0][i],regs[1][i],regs[2][i],regs[3][i]);

sh_Clock(1);

}

}

void put_random(void)

{

int i;

for(i=0;i<6;i++)

{

command("SIN1=%d,SIN2=%d,SIN3=%d,SIN4=%d",

1 & rand(),1 & rand(),1 & rand(),1 & rand());

sh_Clock(1);

}

}

void print_reg(void)

{

int i,j;

printf("\nslice A B C D E F\n");

for(i=3;i>=0;i--)

{

printf(" %d ",i+1);

for(j=0;j<6;j++)

printf("%d ",regs[i][j]);

printf("\n");

}

}

void move_arr(short source[4][6],short destination[4][6])

{

G LOGIC ENGINE PROGRAMS 33

int i,j;

for (i=0;i<4;i++)

for(j=0;j<6;j++)

destination[i][j] = source[i][j];

}

void move_to(int source, int dest)

{

int i;

for (i=0;i<4;i++)

temp[i][dest] = new_val[i][source];

}

void compare(void)

{

int i,j,k,l;

for (i=0;i<4;i++)

for(j=0;j<5;j++)

if (temp[i][j] != regs[i][j])

{

printf("*************** FAILURE **************\n");

printf("command = %d I = %d\n",comm,new_i);

printf("Real Values\n");

print_reg();

printf("Expected Values\n");

move_arr(temp,regs);

print_reg();

printf("Original Values\n");

move_arr(new_val,regs);

print_reg();

Failure(i*4+j);

}

}

void put_i(int new_i,int n_reg)

{

int i;

for (i=0;i<4;i++)

temp[i][n_reg] = (0 != (new_i & (1 << (3-i))));

}

G LOGIC ENGINE PROGRAMS 34

void do_command(int comm)

{

new_i = rand() % 15;

command("IN=%d,I=%d",comm,new_i);

Clock(1);

switch (comm)

{

case 0:

put_i(new_i,A); break;

case 1:

put_i(new_i,B); break;

case 2:

put_i(new_i,C); break;

case 3:

put_i(new_i,D); break;

case 4:

put_i(new_i,E); break;

case 5:

move_to(B,A); move_to(D,C); break;

case 6:

move_to(E,A); move_to(A,B); break;

case 7:

move_to(B,C); move_to(A,D); break;

case 8:

move_to(C,D); move_to(B,E); break;

case 9:

move_to(D,A); move_to(D,E); break;

case 10:

move_to(E,B); move_to(A,E); break;

default:

printf("Unkown command %d\n",comm); Failure(0);

}

}

void begin_comm(void)

{

move_arr(new_val,temp);

}

G LOGIC ENGINE PROGRAMS 35

void end_comm(void)

{

move_arr(temp,new_val);

}

void dotest(void)

{

int i;

long j;

time(&j);

srand((unsigned) j);

printf("Board Initialized\n");

for (j=0;j<40000;j++)

{

printf("New Test = %ld\n",j);

put_random();

read_reg();

move_arr(regs,new_val);

for (i=0;i<35;i++)

{

comm = rand() % 10;

begin_comm();

do_command(comm);

end_comm();

read_reg();

compare();

}

}

fprintf(stderr,"The test completed with no errors\n");

}

/****** generic.dec ********/

C1.L SW(31), D=%1

C2.L SW(30), D=%1

C3 SW(29), D=%0

SIN1 SW(28), D=%0

SIN2 SW(27), D=%0

SIN3 SW(26), D=%0

SIN4 SW(25), D=%0

G LOGIC ENGINE PROGRAMS 36

I SW(20:23), D=%0000

IN SW(16:19), D=%0000

SOUT1 LT(47)

SOUT2 LT(46)

SOUT3 LT(45)

SOUT4 LT(44)

H MIN-MAX BIT-SLICE PLOT 37

H Min-Max Bit-Slice Plot

Figure 8: Min-Max bit-slice plot

I MIN-MAX CONTROL DECODE PLA PLOT 38

I Min-Max Control Decode PLA Plot

Figure 9: Min-Max Control Decode PLA plot

