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Abstract

We introduce a new implicit-function approach to shape modeling. The
method uses a generalized L, norm to construct convex, non-convex, and dis-
connected shapes whose asymptotic forms as p — oo are boolean and and or
combinations of shape primitives. Linear primitives produce shapes of the su-
perquadric family that approach polyhedral bounds as p — oc and ellipsoids
as p — 2. While the approach is distinct from Blinn’s blobby model method, it
has the following characteristics in common with blobby models: (1) solutions
of the implicit function equation must be computed numerically in all but a few
special cases; (2) there are no seams or artifacts where primitives are combined;
(3) once a given point on the surface is known, surface normals and curvatures
for shading and tesselation operations can be computed analytically at that
point.

*This research was supported in part by National Science Foundation Grant No. IST-8511751,
and in part by Defense Advanced Research Projects Agency Contract No. MDA903-86-C-0084.



1 Introduction

We introduce a new implicit-function approach to shape-modeling that uses a gener-
alized L, norm to construct boolean combinations of shape primitives. The resulting
models include nonconvex and disconnected shapes, and possess natural classes of
smooth deformations.

Linear functions are particularly useful shape primitives because they produce
shapes that smoothly approach arbitrary polyhedra as p — oco. Convex shapes of the
superquadric family [2,3,8,6] are a special case of such models that become ellipsoids
as p — 2. We suggest a new class of linear shape primitives whose asymptotes are
planar-bounded half-spaces.

Implicit-function shape models such as our L, norm model and Blinn’s blobby
model approach [4] share the following desirable features:

e A global equation with local parts. The entire model is described by
a single implicit equation that may nevertheless have localizable parts that
simplify some types of analysis. Solutions of the implicit-function equation
must be computed numerically in all but a few special cases. Since the equation
is interpretable as a density function whose level sets define the surface model,
explicit tesselations can be constructed using the weaving wall or marching cube
techniques [1,7].

e Analytic normals and curvatures. Once a given point on the surface is
known, surface normals and curvatures for ray-traced shading, faceted shading
and curvature-based tesselation operations can be computed analytically at that
point. There are no seams or artifacts in the surface normals where primitives
are combined.

The remainder of the paper is organized as follows: In Section 2, we define a gen-
eralized L, norm that combines primitive shapes with boolean and and or operations,
thus permitting the unified treatment of concave, convex, and disconnected shapes.
In Section 3, we examine some useful primitive functions, emphasizing those produc-
ing shapes that deform smoothly inward from exterior polyhedral bounds. Finally,
we give some examples of shapes modeled using these techniques.

2 Shape from Generalized L, Norms

The L, norm in 2, 3, or D dimensions is defined as
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Equation (1) can be understood as an interpolation function relating the following
classical metrics:!

e City Block. For p = 1, we have a “city block” or Manhattan metric that
gives the distance between two points as the sum of their cartesian coordinate
differences. The level sets of this metric are diamonds, octahedra, and so on.

e Euclidean. For p = 2, we have the standard Euclidean distance, which is the
square root of a quadratic form invariant under orthonormal spatial rotations.
The level sets are spheres.

e Chessboard. In the limit p — oo, the distance function is the maximum of the
values of the cartesian coordinates, so that the level sets of the metric correspond
in 2 dimensions to concentric squares like the pattern on a chessboard. In higher
dimensions, the level sets are cubes and hypercubes.

We now present our generalization of Eq. (1) that can be exploited to produce
implicit functions for arbitrary shape classes, followed by a discussion justifying the
form chosen.

2.1 The Fundamental Implicit Function Equation

We propose the following generalization of the L, norm as a fundamental implicit
function equation for modeling shapes that are built from boolean combinations of
differentiable elementary shape primitives {H;(Z)}:

1/p
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The variable w on the right-hand-side can be thought of as a distance from an origin
or as the radius of a generalized sphere; while we will usually set w to umity, it 1s
sometimes useful to observe the evolution of the shape equation as a function of w.
Depending upon the primitives being used, one may wish to impose the condition
p > 1, since corners, cusps and other singular nonconvex phenomena may occur for
p< 1.

We note that the and operation has the form of the addition law for series resis-
tors, while the or operation has the form of the addition law for parallel resistors,
making the entire equation similar in form to the description of an arbitrary net-
work of resistors. The shape can thus be represented as a graph isomorphic to the
corresponding network of resistors, as illustrated in Figure 1.

1The L, norm is also commonly known as a Minkowski metric (see, e.g., [9]), but should not
be confused with metrics that are locally invariant under Lorentz transformations on a negative
signature Minkowski space.
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Figure 1: An example of a graphical representation of a shape composed of the and of the
primitives Hy, Hs, Hg with the or of Hy, H3, Hy and the or of Hg, H7.



If desired, the general form (2) may be easily generalized to include hyperbolic
spaces, terms with unequal exponents, and arbitrary dimensionality of Z.

Our use of the boolean terminology ( and and or) in Eq. (2) refers, strictly speak-
ing, to the asymptotic form of the equation in the limit p — oo. In this limit, the
equation can be written as

F(z) = 1nax (min (Hs(Z); Bo(Z)io)) > min (Hg,l(a':'),ﬂbz(i"),...)),...) — ]
{and’s} \{or’s} {or’s}
(3)

Using the algebraic maz operation combined with the min operation on sets of
primitives produces functions whose bounding level sets are all possible shapes that
can be generated from boolean and and or operations on those primitives.

Each primitive H;(Z) in turn dominates the asymptotic shape for the portion
of the surface (if any) where it is the solution of Eq. (3); in other words, the i-th
asymptotic portion of the surface obeys the equation

H(@)] = w, (4)
or, when H;(Z) can be both positive and negative, one of the pair of equations
Hi{Z) = L (5)
Planar asymptotes result either when H;(Z) is explicitly linear in Z, or when
Eq. (5) reduces after algebraic manipulation to one that is linear in Z.

2.2 Convex polygons from an L, norm with positive powers

If the or terms consist of single components, Eq. (2) reduces to a shape equation of
the hyperquadric form {6}, which includes superquadrics as a special case:

1/p

F@)=| > H@F| =w (6)
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We can view this case of the shape equation as a standard L, norm, Eq. (1). If we
take 7 to be a D-dimensional vector, set w =1, and let ¢ = 1,..., N, the asymptotic
outer limit of the shape defined by the implicit function F'(Z) = 1 is the logical and
of all the regions in D-space solving Eq. (5); the asymptotic form is simply a special
case of Eq. (3):

F(Z) = max (|H1(Z)|, |[H2(Z)],- .., [HN(Z)]) - (7)
When the primitives are taken to be the linear functions,
Hi(Z) = (- T+ di), (8)
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where the 7; are vectors in D dimensions and the d; are a set of N constants[6],
Eq. (5) then describes a family of strips whose logical and produces arbitrary convex
polytopes.

In Figure 2, we use the primitive H(Z) = n,z + nyy +d = %1 to construct
assorted 2-dimensional shapes with asymptotic polygonal bounds. As p varies in
the range co > p > 2, Figure 2(b) and (c) will deform smoothly inward from their
indicated convex polygonal bounds to ellipsoids.

(a) (b) ()

Figure 2: (a) A single isolated shape primitive: the strip bounded by |n,z + nyy +d| < 1.
(b) Taking the intersections of four such strips to form a convex polygon. (c¢) Constructing
a polygon whose faces do not have matching parallel faces by taking one side of each strip
to lie outside the body of the shape.

2.3 Nonconvex polygons from negative powers

Next, we show how the form chosen in Eq. (2) can be used to model nonconvex shapes
with controllable deformations.

The fundamental operation required to obtain nonconvex limits from convex prim-
itives is the logical or operation, as shown in Figure 3. This operation can equiva-
lently be performed by computing the logical complement of the intersection of the
complements of the shape primitives. Thus, all we need is a way to get the logical
complement of a shape primitive; we can achieve that in the framework of an L, norm
by using negative powers in the norm.

To give an intuitive feeling for this construction, we first observe that the algebraic
minimum function,

F(Z) = min (|H1(Z)], |[Hy(Z)] - - -, [HN(Z)]) = w, (9)
produces bounding level sets that or together all the primitive shapes, as we require.

Our goal is then to achieve an analytic form whose limit is the minimum function.
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Figure 3: The elementary forms needed for nonconvexr polygons can be made using the
logical or of geometric strips.

We begin by noting that the “inside” of a shape is transformed to its “outside”
by taking the inverse, i.e., |z|P — |z|™P. Figure 4 plots this function for several
positive and negative values of p to show how the “interior” of |z|? < 1 switches
domains as p passes through zero. Using this form of the logical complement by itself
is not completely satisfactory, since singularities can occur at the origin. However, if
we sum the desired terms to produce the intersection of the complements, possibly
singular at various places, we can remove the singularities by inverting again; this
inversion achieves the rest of the desired result by mapping the intersection of the
complemented primitives to its own complement, thereby yielding a net logical or
operation. We illustrate this process in Figure 5, and represent it in our framework
by expressions of the form

1 1/p
F(&) = (————p) =4 (10)

L |z

The bounding level sets of Eq. (10) as p — oo are given by Eq. (9), so this equation
explicitly realizes our objective. Numerical computations can handle the singularities
that may occur by using such techniques as rationalizing the fractions in Eq. (10)
or adding small positive constants to H;(Z); analytically, the implicit function is not
actually singular unless the chosen primitive functions are pathological.

3 Primitives

We may choose the primitive functions H;(Z) that make up the terms in the shape
functions to have properties appropriate to particular modeling tasks. Any differen-
tiable function can in principle be used, but some have more interesting consequences
than others.



(a) (b)

Figure 4: The primitive function |z|[P = w; the horizontal axis is z and the vertical
axis w. (a) Positive powers (1.0, 2.0, 4.0 and 16.0), showing the approach to a square
well for large powers. the “interior,” |z|P =< 1, is the interval —1 < z < +1. (b)
Negative powers (-1.0, -2.0, -4.0 and -16.0), showing the approach to a square pillar
for large negative powers. The “interior” excludes —1 < z < +1.

Double-Faced Primitives. We have already seen in Figures 2 and 3 examples of
strictly linear primitives of the form:
|Hi(Z)| = | - Z4+di|l =w — fi-T=-ditw=qd. (11)

where 7i; is any vector. The solutions produce pairs of parallel planar asymptotes.

Whatever vector is chosen, the parallel pair of surfaces corresponding to both sides
of Eq. (11) will occur as delimiters. Suppose we now want to describe a shape that is
not symmetric, and thus has a limiting face with no corresponding parallel face. One
way to accomplish this is to choose d; and 7; so that the second face is outside the
limits of the figure determined by other primitives, as was done in Figure 2(c).

This double-sidedness of linear primitives may be understood by considering them
as limiting cases of elliptical primitives of the form

o= {(3+ ()=

where z can of course be replaced by (7 - ¥ 4 d) in general.

The existence of hidden partners for double-sided primitives is not a serious prob-
lem, since the hidden faces can always be placed far enough away that their effect on
the shape deformation is negligible. However, this phenomenon is aesthetically dis-
pleasing, and introduces superfluous behavior into the description. We next describe
some alternative primitives without hidden parallel partners.

x

a

; (12)




() (d)

Figure 5: Performing an or operation algebraically. (a) One of a pair of circles. (b)
The complement of the circle found by inverting its equation. (c) The intersection of the
complements of two slightly displaced circles. (d) The final result obtained by inverting the
intersection of the complements.



Single-Faced Planar Primitives. If we want to describe shapes with planar-faced
limits in the most elegant possible manner, we require primitives that, rather than
being less than unity within a band or slab, are less then one for an entire half-
space. One may consider such primitives to be related to the linear primitives by a
transformation that takes the elliptical approximation (12) and maps a point on the
hidden-partner face to oo, resulting in straight line from some finite point through
oo. We now examine some useful classes of such primitives.
The boundary of a half-space in any dimension is the equation of a plane,
n-Z

h(Z) = (13)

C
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Here 7 is the normal to the plane and c is the distance from the origin to the plane.

A general form of the equation for a single-faced planar primitive is constructed
from the primitive equation h(Z) = w by performing two transformations: First, we
apply a function f(p) to the primitive equation,

f(R(Z)) = f(w), (15)

and then we add another arbitrary analytic function g(&) to both sides of the equation,
dividing by the right hand side to achieve

F(b(@) + (@) _ |
fw) +9(@)

The particular choice of transformation functions f and g depends upon the modeling
goals. Examples include

(16)
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Such a ratio is interpretable as the result of using a conformal transformation,?

z — g3
1—2¢- %+ |q?E?

=

(20)

to map the equation of a circle to the straight line Eq. (14). The function Eq. (19)
has one isolated zero and one isolated pole, which are interchanged when we use
the inverse of the primitive function in an or term of the shape equation. These
singularities are easily sidestepped by standard techniques such as moving the pole
off into the complex plane by adding a small constant term to both numerator and
denominator, e.g., (z)?> — (x% + €*) where € is a small number. In Figure 6, we plot
this nonsingular modification of Eq. (19) as a function of w.

Figure 6: Equation (19), a ratio of two circles that reduces to a linear function, represented
in w-space as a function on an (z,y) grid. (a) The bare function; (b) the function truncated
above w = 1 to show the straight line; (c) truncated below w = 1. This function has one
isolated zero and one isolated pole that are displaced from the real plane by adding a small
constant to both numerator and denominator.

Nonlinear Primitives: Instead of using primitives that reduce to the linear equa-
tion (14) to describe the asymptotic bounds in shape space, we could also use any
equation whatever; for examgle, if we replaced equations of planes with equations
of spheres, we would produce shapes whose limiting boundaries for large exponents

2Equation (19) is the analog in D Euclidean dimensions of the complex linear fractional trans-
formation

Z=z/(1+ az),

which reduces to Eq. (19) with Re(a) = ¢1,Im(e) = —g3 for D = 2, and is well known to transform
circles conformally into lines and vice-versa.

10



were intersections and unions of collections of spheres, rather than intersections of
planar-bounded spaces. If we had a particular application in which the deformations
required more complex limits, we could recursively insert any shape model we wish in
place of the elementary primitives.

As an example of a more complex primitive, we show in Figure 7 a two-dimensional
ring,

(3)2 _I_yZ _ T‘2)2 _ R2 = w

as a function of w. Variants of such equations in three dimensions produce tori and
hollow spheres, but are of course impossible to plot in terms of the fourth dimension
w.

L e
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Figure 7: The primitive (22 +y? — r?)? — R? = w plotted as a function of w and truncated
at w = 10. Slicing through the primitive at w = 1 gives the equation of a 2-dimensional
ring.

Comparison to Blobby Models: Blinn’s “blobby” models [4] are an alternative
approach to achieving many of the results we have sought in this paper. In reference
[6], we in fact used the blobby approach to combine the strictly-convex primitives
of our original hyperquadric approach to achieve nonconvexity. However, given the
methods introduced above, this hybrid approach is no longer necessary. The com-
putational methods of our generalized L, norm approach treat nonconvexity in a
more consistent way and are closer to the standard polynomial constructions used
in classical analytic geometry. Since any shape constructed by our methods can be
substituted into the exponential forms of the usual blobby approach, we may consider

these as new primitives that are elegant extensions to the forms originally considered
by Blinn.

4 Examples

Our theory allows us to write down single equations for deformable shapes bounded
by logical and’s and or’s of arbitrary shape primitives. Bounds corresponding to
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completely arbitrary polygons, polyhedra, and D-dimensional polytopes, both con-
nected and disconnected, can be achieved starting from shape primitives of the form of
Eq. (16) containing the equations of the lines, planes, and hyperplanes of the bound-
ing faces. The normals used for reflectance and shading calculations are computed
by taking the normalized gradient of the equation at any known surface point Z [5]:
OF (%)
oz -
For computer graphics purposes, such shapes can be rendered directly, by tracing
a line from the camera through each pixel to the numerically-determined nearest
point of the surface and computing the normal analytically to determine the pixel
intensity. (Typically, one speeds up the process by using a “safe” variant of the
Néwton-Raphson method such as that in [10].) If the direct ray-tracing approach
is unsatisfactory, a locally-faceted surface representation can be constructed using
the volumetric methods of [1,7]. Or, the surface can be dynamically tesselated, with
added detail in areas of high curvature. The curvature needed for this purpose can
be computed analytically for any known point on the surface [5,6]. We conclude with
a few simple illustrations of the method; the theoretical tools we have presented here
should provide readers with ample information to devise arbitrarily complex shapes
of their own.

n =

(21)

Two Dimensions. In Figure 8, we show the deformation of an asymptotic triangle,
the simplest convex shape, in four steps from a smooth blob toward its limiting
boundary. Figure 9 shows the corresponding deformation of the simplest non-convex
figure, an indented quadrilateral. This figure was constructed from the and of two
half-planes intersecting at an angle with the or of two others, slightly displaced and
meeting at a different angle.

Three Dimensions. In Figure 10, we show the deformations of a convex pentagonal
wedge. Figure 11 introduces a non-convex, conical indentation made from the or of
four half-spaces meeting at small angles, and shows several deformations.

All three-dimensional images were produced using a simple implicit function ren-
dering algorithm we implemented on the Connection Machine® that assigns a proces-
sor to each pixel and passes a line through the pixel to find its nearest intersection
with the surface. The two-dimensional shapes were produced in a single step by
having each processor compute its local value of the implicit function in parallel.

5 Conclusion

We have proposed a generalized L, norm in Eq. (2) as an analytic model for arbi-
trary shapes whose asymptotic forms as p — oo are logical and’s and or’s of shape

3The Connection Machine is a registered trademark of Thinking Machines Corporation.
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primitives. Shape primitives derived from linear expressions were examined in detail,
since they produce asymptotic forms corresponding to arbitrary polygons and polyhe-
dra. For special modeling purposes, any expressions whatsoever can be introduced as
primitives, including recursive generalized L, norms. Examples of shapes constructed
using our approach were presented to illustrate the flexibility of the method.

Figure 8: An asymptotic triangle constructed from the single-sided primitives and deformed
towards its outer limit through exponents 0.75, 1.0, 2.0 and 10.0.
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Figure 9: The simplest possible non-convex two-dimensional figure, an indented quadri-
lateral, constructed using the single-sided primitives. We deform it towards its asymptotic
bound using exponents 0.5, 1, 2, and 10.
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(d) (f)

Figure 10: A convex pentagonal slab and its family of deformations.
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(d) - (e) (f)

Figure 11: Deformations of a pentagonal slab combined with a nonconvex cone constructed
from the or of four planes meeting at small angles.
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