TECHNICAL REPORT NO. 317

An Algebraic Framework for Data Abstraction in
Hardware Description

by

Zheng Zhu and Steven D. Johnson

November 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

An Algebraic Framework for Data Abstraction in

Hardware Description'

Zheng Zhu, Steven D. Johnson
Computer Science Department
Indiana University
Bloomington, Indiana USA

Abstract

The aim of this work is to extend a standard treatment of data types to a foundation for
hardware synthesis. Hardware synthesis exposes several problems not typically considered
in software oriented theories. These include architectural constraints in the use ol type
instances, parallelism in the use of multiple instances, and consolidation of distinct types
in a common process. Since we are concerned with the question of incorporating (more)
concrete implementations of (more) abstract types found in higher levels of specification, our
foundation must address these aspects of description. The paper begins with a condensed
example of a stack based processor operating on a standard memory. This specification is
compared to a target description in which both the stack and the memory are implemented
by a single memory process. The remainder of the paper formalizes issues raised in the
example.

1 Introduction

If one tries to apply standard treatments of data abstraction to hardware design, a number
of formal problems are exposed. Tor example, there is a need to describe architecture in a
type formalization. There is a need to reformulate notions of implementation in the context
of parallel control. There is a need to reflect a process oriented view of behavior. While these
issues are obviously present in software, one can go a good distance without confronting
them directly. However, they are the essence of many hardware design problems.

Our approach to formalizing design is based on function algebra. An abstract behavioral
description is transformed to an architecture description by the function algebra [8, 9]. An
implementation of this algebra has been used successfully to derived several working designs
[2, 11]. However, this algebra manipulates descriptions at a fixed level of data abstraction.
Consequently, specifications must be given in more detail than we would like.

We now turn to the question of translating specifications expressed over a higher level
of data representation to implementations expressed at a lower level. Qur goal is to lay
a foundation for a general treatment of data abstraction in hardware description. We
develop extensions to the algebraic characterization of data types which permit us to specily

'Paper to appear in the Proceedings of Workshop of Designing Correct Clircuils, September, 1990, Pub-
lished by Verlag-Springer

I INTRODUCTION 2

architectures. We give a corresponding characterization of control as recursive functions
on the resulting structures. In this framework, we consider the question of implementing
relatively abstract architectures by relatively concrete ones.

The algebra of translating specifications expressed over a higher level of data abst raction
to implementations expressed at a lower level has much in common with process formalisms,
such as those of Milne [16], and Gopalkrishnan [6]. A difference in emphasis is that this
work is directed toward derivation (i.c. synthesis in an algebraic framework) rather than
verification. In addition, we focus on the complex interaction between functional and
physical decomposition under the thesis that a logical hierarchy does not always dictate the
physical modularity of a design.

In high-level synthesis, methods exist to explore the balance of architecture and control
the problems of scheduling, allocation, module matching, and control synthesis [14]. How-
ever, these methods are typically restricted to some fixed ground type, and they are often
tied to specific architecture classes. Our motive is to develop a treatment for these kinds of
problems at arbitrary levels of data abstraction. Although the most urgent practical needs
remain at lowest levels of representation, such a foundation is required if synthesis is to
address system designs.

Mahmood, Mavaddat, Elmasry and Cheng propose using a DTOL language model to
specify hardware architectures [13]. The data paths of an architecture are defined by a set
of homomorphic functions and the control of hardware is defined by a sequence of applica-
tions of those functions. An algorithm for synthesizing control (microcodes) is presented.
Although our framework is similar to theirs, there exist two basic differences between the
two: First, our framework is designed for derivation of architecture as well as synthesis
of hardware control. It addresses issues such as the incorporation of correct data repre-
sentation. Second, the foundation described takes into account the underlying algebraic
properties of the abstract data type structures involved. However, this degree of generality
also leads to undecidability of problems.

In Section 2, we present a condensed example to motivate the formal development. The
example illustrates issues that we have been forced to deal with in previous design exercises.
These issues are neither “solved” by the formal development nor currently handled by
our mechanized subset of it. However, we believe that they can be characterized in the
framework developed here. Sections 3 reviews fundamentals of the theory of abstract data
types. In Sections 4 and 5, we extend the standard definitions to account for hardware
architecture. In Section 6, we consider the central question of implementing one extended
abstract type by another. Section 7 discusses the issue of modeling hardware control and
incorporating architecture implementation into hardware control.

We develop three results in this paper. Theorem 1 (Section 3) states a condition un-
der which one equational theory is said to implement another. This theorem characterizes
implementation in terms ol equational rewriting which implies that the validity of imple-
mentation can be established with the help of a computer. Theorem 2 (Section 5.1) states
conditions under which the extended notion of data type preserves the implementation re-
lationship. Finally, Theorem 3 (Section 7) incorporates the functional representation of
control into the implementation relationship.

2 MOTIVATION 3

2 Motivation

Consider the simple machine specification shown in Figure 1 using a PureLisp-like notation.
The machine has arithmetic instructions, such as add and sub, a load-constant instruction
lde, and a branch instruction goto. The machine state has an instruction memory (M-7)
and an operand stack (9). Each arithmetic operation takes two operands from the stack
and returns its result to the stack. The lde operation copies a constant from the instruction
memory to the stack; and goto sets the memory address register (a-i) to the content of the
next instruction cell. The standard abstract memory is used, with wr (write), rd (read) op-
erations. The der, ine operations respectively decrement and increment memory addresses.
A standard abstract stack is used with push, pop, and lop operations.

One task in implementing this specification is to develop data paths and a finite-state
control for it. The intermediate description in Figure 2 associates a hardware control-
state with each function definition. Details of algebra to obtain this description from that
in Figure | are omitted [2]. In this description, each state is constrained to operate at
most once on the memory and at most once on the stack; binary arithmetic operations
are encapsulated by an arithmetic unit (arith); and three registers, opl, op2 and [, are
introduced to hold intermediate results.

The target description in Figure 3 further constrains the design in two ways. The stack
abstraction S is implemented by a pair consisting of a memory and an address register,
(M-s,a-s); and two memory objects, M-i and M-s, are merged into a single memory object
M. The resulting architecture operates at most once on M in any control state.

Ultimately, it is this merging of distinct functional entities “stack” and “memory™ into
a single object that interests us. However, in order to reach this problem, we must also
address the following issues:

1. What constitutes a correct implementation of hardware components? In the example,
we need to know that how the memory can be used to implement the stack.

2. How are correcl implementations correctly incorporated in hardware descriptions.
The transformations that do this must satisfy not only the functional properties of the
implementation, but also the architecture constraints surrounding its use.

We regard (1) as an issue for verification and (2) as an issue for synthesis. Although the
correctness of implementations is not the immediate subject of this research, it is necessary
to adopt a criterion of correctness before accounting for architectures. Thus, the immediate
concern of this paper is a characterization of what one does with a correct implementation;
that is, how specifications are transformed to incorporate them.

3 Term Algebra and Equational Specification

In this section, we briefly review the concepts of equational specification and implementation
in universal algebra. There are mainly two schools in the algebraic semantics of abstract
data types, i.c. inilial semantics (e.g. [5], [1], [15]) and final semantics (e.g [19], [12]). (See
also [1] for a comparative introduction to both approaches.) In our presentation, we attempt
1o avoid an association with any particular approach to semantics by keeping the framework
on syntactic level as much as possible although this preliminary work is influenced by the
ADJ group’s results [5, 15]. We start with the concepts of Y-algebra and its special form,
Y term algebra, then the concept of equational specification. At the end, we introduce a
definition of implementation for equational specifications and a characterization theorem

TERM ALGEBRA AND EQUATIONAL SPECIFICATION

(define machine (M-s a-s §)
(case (rd M-s a-s)

(*add’ (machine M-s (dcr a-s) (push (+ (top $) (top (pop $))) (pop (pop $)))))
(’sub’ (machine M-s (dcr a-s) (push (- (top $) (top (pop $))) (pop (pop $)))))
(mul’ (machine H-s (dcr a-s) (push (* (top S) (top (pop S))) (pop (pop $)))))
(’div’ (machine M-s (dcr a-s) (push (/ (top S) (top (pop S))) (pop (pop 8)))))
(’eq?’ (machine M-s (dcr a-s) (push (= (top S) (top (pop $))) (pop (pop $)))))
(’le?’ (machine M-s (dcr a-s) (push (< (top S) (top (pop $))) (pop (pop $)))))
(’goto’ (machine H-s (rd (M-s (dcr a-s))) 5))

(’1dc’ (machine M-s (der (dcr a-s)) (push (rd M-s (dcr a-s)) 8)))

Figure 1: Specification of the Machine

(define machine (M-s a-s S opl op2 I)

(case I
(’goto’ (goto M-s (rd M-s a-s) § opl op2 I))
(?1dc? (ldel M-s (dcr a-s) S (rd M-s a-s) op2 1)}

(else (arithmetici HM-s a-s (pop S) (top S) op2 I))))

(define goto (M-s a-s S opl op2 I}
(machine M-s (dcr a-s) S opl op2 (rd M-s a-s)))

(define 1dcl (M-s a-s § opl op2 I)
(machine M-s (dcr a-s) (push S opl) opl op2 (rd M-s a-s)))

(define arithmeticl (M-s a-s § opl op2 I)
(arithmetic2 M-s a-s (pop 8) opl (top S) I)))

(define arithmetic2 (M-s a-s 3 opl op2 I)
(machine M-s (dcr a-s) (push S (arith I opl op2)) opl op2 (rd H-s a-s)))

Figure 2: Modified Specification of the Machine

(define machine (H a-s a-i opl op2 I)
(case 1
(’goto’ (goto M (rd M a-s) a-i opl op2 I))
(’1dc’ (1ldel M (dcr2 a-s) a-i (rd M a-s) op2 I))
(else (arithmetici M a-s (dcr2 a-i) (rd H-s a-i) op2 I))))

(define goto (M a-s a-i opl op2 I)
(machine M (dcr2 a-s) a-i opl op2 (rd M a-s)))

{define ldcl (M a-s a-i opl op2 I)
(1dec2 (wr M (inc2 a-i) opl) a-s (inc2 a-i) opl op2 I}

(define 1dc2 (M a-s a-i opl op2 I)
(machine M (dcr2 a-s) a-i opl op2 (rd M a-s)))

(define arithmeticl (M a-s a-i opl op2 I)
(arithmetic2 M a-s (dcr2 a-i) opl (rd M a-i) I))

(define arithmetic2 (M a-s a-i opl op2 I)
(arithmetic3 (wr M a-i (arith I opl op2)) a-s (inc2 a-i) opl op2 I})

(define arithmetic2 (M a-s a-i opl op2 I)
(machine M (dcr2 a_s) a_i opl op2 (rd M a-s)))

Iigure 3: Implementation of Machine With One Memory

3 TERM ALGEBRA AND EQUATIONAL SPECIFICATION H

for implementation.

Let S be a set of sorts. An S-sorted signature ¥ is a set Uy cs+ ses Yw,s- Every element
o of set ¥, ¢ is a function symbol of arity w and of sort s. The arity of a function symbol
expresses what sorts of data it expects to take as its inputs and in what order. The sort of
a function symbol expresses the sort of data it returns. Constant symbols are considered
as function symbols of empty arity. An S-sorted set of variables is X = [J,es Xs. Each
element of the set X, is called a variable of sort s. Given X, the set of terms generated from
Y and X, denoted by Tv(X) is inductively defined as:

1. If 2, € X, for some s € § then z, € Ty, (X).

2. If ¢ € ¥\ 5 for some s € 5 then ¢ € Tv (X).
3. If f € ¥y, where w = 5183...8, and ; €y, (X) 1< i < n,then f(t1,t2,...,8,) €
Ty (X).

4. Tu(X) = Uses Tu (X).

Traditionally, T is used to denote Tx(¢). Let ¥ be an S-sorted set of variables which
is disjoint from X. A Y-equation of Tu(X') is a tuple (I,7) where lL,reTy(XUY) We
usually write ([,7) as “l = r”. The set Y is called a set of meta-specification variables.
Let I be a set of Y-equations of Ty(X), then E induces an equivalence relation on the set
Ty(X); hence we can define 7;(X)/ £ as the set of equivalence classes of Ty (X) under k.

Let X be an S-sorted signature. A X-algebra A consists of a family of carriers <A, | s €
5> together with a set of functions ! = {f, | 0 € ¥} such that fo: Ag X Ay, X . Ag, — A
for every ¢ € ¥, s where w = 8152...85.

A special type of Y-algebra, which is also our major interest, is LY X e (T X3 50
called the term algebra generated from Y. If I is a set Y-equations of Ty(X), then E s
a congruence relation on T(X, X). We use T(X, X,) to denote T'(¥, X) modulo F. It
is important 1o realize that though X and Y are sets of variables, they are different in a
sense that X is a set of program variables and Y is a set of assertion variables. A detailed
discussion of the difference can be found in [18].

An equational specification is (X, X, /). It has been shown (e.g. [4, 5]) that equational
specifications can be used to specify abstract data types and the algebra 7'(¥, X,) can be
used as the meaning of the specification. We also show later how an extension of equational
specification defines an abstract hardware architecture syntactically.

The following two definitions define the notion of implementing one equational speci-
fication by another. These definitions are slight variations of those in [5]. The difference
is that they are not based on the initial algebra semantics. The motive for this treatment
becomes clear in section 5 where we define architectural implementation independently of
semantics.

In the definitions, TE(.X) designates, informally, a set of term-vectors of linite length,
and AT designates the set of combinators (i.e. closed lambda expressions) involving terms

in T.

Definition 1. Let X and Q be §)-sorted and Sy-sorted operator domains respectively. A
derivor d: Y — Q is a pair of functions (£, k) where £ : §; — S and v : ¥ — MTE(X2)), such
that for every o € ¥, ,, k() is a §(s)-sorted function symbol of arity £(w). The d-derived
algebra from T(¥, Xy, Fy), dT(£2, Xy, Ea), is a Y-algebra defined as (To(X2)/F2, d(X)).

4 EQUATIONAL SPECIFICATION OF HARDWARE ARCHITECTURE 6

Definition 2. Let P = (X, Iy) be a specification. An implementation of P is a triple
<B.,d, E>, where B=(, ;) is another equational specification, d is derivor from ¥ to Q,
and I is a congruence relation of T(Q, Ey), such that T(X,) is a subalgebra of (dB)/ L.

Definition 3. Let /., I and Fy be definite sets of equations.

1. Iy F Fy means that for every (I,7) € E,, there exist (Li,71)y -5 (Iny 1) € Ey such
that &y =1, r, = v and forevery i = 1,...,n—1, 7 = Lyy;

2. Ey/E; b E3 means that for every (I,r) € Es, there exists t such that £, F ({,1) and
FEy b (t,r);

3. Let d be a derivor ¥ — © and £ be a set of equations on Ty. Define d(F) =

{ (), d(r) | (Lr) € E).

Theorem 1. Let (X, F|) and (£, Iy) be two equational specifications. Let d : X — Q be
a 1-1 derivor and FE be a set of equations of Tq. If Ey/E F d(E) then (Tq,d, E) is an
implementation of Ty; that is, (T'(X, Ey), V) is a subalgebra of (T'(€2, k), d(X))/E.

One thing to notice is that d(#;) b E; and d(Ey) b Eif £ can be written as a finite
set of equations. The significance of the theorem is that it characterizes implementation in
terms of an equational rewriting mechanism.

We simplify the prool by considering the case when £:.5; — S5. In that case, & becomes
Y — AMTa(X2)). The proof for TH(X,) is a straightforward generalization.

Proof. d is obviously a mapping Ty, — Tq such that d(a(ly, sy g Y=l Yd(21 Js 000580)
Since E is a congruence relation on Tg g, , we can assume h is the homomorphism

h: T(Q, E;)/ E — T4, Es)
We prove that hod is a 1-1 homomorphism T'(%, Fy) — T(Q,E)/E, i.e. T(X,E)isa

subalgebra of T'(€2, I2,)/ F.

1. For every by, 1y € T(X), {1 =g, t2 implies that d(ty) =g d(12), which in turn implies
that d(t)) =g,k d(12) because E,/E + d(Ey). That h is a homomorphism defines
E, therefore t, =g, t; implies h o d(t)) =g, h o d(t2) which means that b od is a well
defined.

2. By the delinition of d, d(o(ty,...,t,)) = d(o)(d(t1), .oy d(ty,)). Since h is an homomor-
phism, h o d(a(ly,....,t,)) = hod(a)(hod(ly),....,hod(l,)).

3. Let {y,1l3 € Tq and assume that hod(t)=g, hod(tz). Then hod(ty)=g, pho d(ty)
which implies d(ty) =y,)d(l2). Since dis 1-1, ty =g, ls.

Therefore, the image of h o d is a subalgebra of T(£2, £y)/F which is equivalent to saying
that 7°(2, I71) is a subalgebra of (dT(£2, Ey))/ L. m]
4 Equational Specification of Hardware Architecture

In this section, we use an extended form of equational specification to characterize register
transfer level (RTL) hardware architecture. A register transfer level hardware description

4 EQUATIONAL SPECIFICATION OF HARDWARE ARCHITECTURE 7

subl(ra) add(ry r3)

subl add

G -0 G

I A

2|

Figure 4: An Architecture

consists of at least 3 parts: an underlying abstract data description; a set of registers; and a
set of data paths characterizing interconnections among registers and functional units. Our
goal is to extend the definition of underlying abstract data description to include those of
registers and data paths. The first observation is the that registers play the role of program
variables [18] in a hardware description. Thus, they are treated as an instantiation of the
set X mentioned in equational specification.

Let n > 0 and R = {ry,rs,...,7,} be a set of registers of some hardware architecture.
Each r; is associated with some sort s;. Intuitively, the action of the circuit is to update
each register by a value from the data path of the circuit. Therefore, it is natural to view
data paths of the circuit as vectors of n-function (or n-value) where each function (or value)
represents a new content for the designate register. In other words, a data path of a circuit
with register set R is a function h: R — Ty(R). The interpretation of h has two parts:

I. h specifics n operations which can happen in one cycle;
2. For every r € R, h(r) is the value sent to the register r.

Thus, a set of data paths of a circuit architecture H specifies a set of possible basic operations
the circuit can have. Call an element of H an R-datapath. For example, let R = {z,y}
and ¢ € H be the function ¢(z) = add(z,y) and ¢(y) = y. This ¢ “connects” the output of
an adder to the register . Data transfers not explicitly mentioned in H are prohibited. As
shown in the next section, H also characterizes all the possible computations in one cycle.
It plays the role of X in equational specifications.

Let us consider an example (Lligure 1) of specifying a hardware architecture over natural
numbers, a system in which the basic data type is natural-number, possibly augmented with
metatypes such as boolean. Assume R consists of three registers 1y, 12, 73 of type natural
number, an add and a subl which perform addition and decrement, respectively. Suppose
the architecture can either add or decrement in one cycle, but not both. These requirements
can be specified by a set of three functions {hy, ha, hy} C H where

hy = {(71,71), (ray subl(r2)), (ra,73)}
hy = {(r1,71), (r2,72), (3, add(ry,75))}
hs = {(r1,71)s (12, 72), (13, 73)} }

the meaning of ks is “nothing happens in one cycle.”

5 ALGEBRAS FOR HARDWARE ARCHITECTURE SPECIFICATIONS 8

Given a set I, we would like to mimic the definition of Tx:(R) to define all the compu-
tations generated from II. Let Fy i be the set of all functions B — Tu(R). The following
two definitions classify two sets of possible computations derived from H.

Definition 4.

l. Let f,g € Fep. h = fogisan element of Fy g such that for every 1 : 1 <1 < n,
h(r;) = f(ri)rj — g(r;) : 1 < j < n] € Te(R) where f(ri)[r; — g(rj):1<j < n)
denotes substituting every occurrence of r; in f(r;) with g(r;) forall j: 1 < j < n.

Define By be the transitive closure of H under 0.

The set of compulalion sequences derived from H, denoted by Dy, is the transitive
closure of H under concatenation. Concatenation of h and g is denoted by h g.

Each member of Dy, is a sequence of computations allowed by the architecture while each
element of By is a outcome of a computation sequence of the architecture. This suggests
that every member of Dy designates an element of By as the result or inlerpretation of the
computation sequence and every element of By is designated by an clement of Dy. This
observation is defined by a function I:

Definition 5. Define function Z: Dy — Fy g as
1. Z(f)y= fif f€ H,and
2. I(f g)=fogil f,g€ Feg.

Since o is associative, 7 is well defined. It is easy to show that By = Z(Dy). As a
matter of fact, By and Dy define different meanings of an architecture specification.

In equational specification, F is used to define corresponding properties of the function
symbols in Y. We would also like to have a set of equations to define properties of elements
in 7. Since elementis of I are merely vectors of elements of ¥, the properties defined
by F can be extended to relations on By and Dy, denoted by Fp and Fp and called
R-extensions of kK, respectively. Let f,g € By and uy ... up g € Dy, vy ... v3 01 € Diyr.
(f,9) € Ep if and only if (f(r;).¢(r;)) € E forall 1 <i<nand (s,v)€ Ep if and only if
p=qand (u;,v;) € I for every 1 < i < p. For simplicity, we usually drop the subscripts B
and D when they are fixed by the context.

Furthermore, properties of /I may need more equations than those extended from the
equations of the underlying abstract data types as above. For example, in an implementation
of stack by memory-address pair, [my,0] = [my,0] is an equation but it can not be obtained
from the extension of the equations concerning memory and address data types. However,
the set of equations defining properties of H should contain the R-extension of F.

Definition 6. A specification of architecture is a quadruple (4, I, I, H) where A = (¥ S,)
is an equational specification. called the underlying abstract dala type specification. Eis
a set of equations ou By (D) which contains the K-extension of . H C Fy g, which
contains the identity function id:r — r for every r € R.

5 Algebras for Hardware Architecture Specifications

In the last section, we defined hardware architecture as an extended form of equational
specification. In this section, we define an [l-algebra for the architecture specification
(A, R, I, H). This H-algebra serves as the meaning of the specification.

5 ALGEBRAS FOR HARDWARE ARCHITECTURE SPECIFICATIONS 9

Architecture Algebra

Let (A, R, E, I} be a specification of some architecture. The following leminas state prop-
erties of Dy and By. The proofs are simple.

Lemma 1. Let b€ By, d e Dy and f € H. If we define f(b) = foband f(d) = f d then
both (By, H) and (Dy, 1) are H-algebras.

Lemma 2. Eg and £ are equivalence relations on By and Dy respectively.

Lemma 3. I'g and Py are congruence relations on (B, H) and (By, H) respectively.
Therefore, (By, H)/Ep and (Dy, I1)/ I}y are H-algebras.

We use B(H, Eg) and D(H, Ip) to denote (By, H)/Ep and (Dy, H)/Ep respectively.
Both B(H, Eg) and D(H, Ep) are important in observing the hehavior of a hardware
architecture P = (A, R, E, l). The elements of B(1l,) represent all the possible results
which can be computed by P; this is P’s behavioral aspect. The elements of D(H,I)
represent not only what results the architecture can obtain (through the interpretation 7),
but also describe how those computations are performed. Therefore, D(H, Ep) characterizes
the operational aspect as well as behavioral aspect of P. It is a matter of emphasis to decide
which aspect of P is used to characterize it.

Definition 7. Given an architecture specification P = (A, R, 2, H). The behavior of P is
defined as B(H, Eg) and the computation of P is defined as D(I, Ep).

Evaluation of Terms

We now discuss the evaluation of elements of Ty(R). As mentioned previously, functions
of Dy and By represent possible computations by the architecture. However, we did not
mention the values ol those computations.

Let S be a set of sorts and A be a S-sorted L-algebra. Let u be a special undefined (or
unknown) value present in every carrier. For every sort s, we extend A, of some M-algebra
to contain the value g A,,.,pdé[.fis U{p}. An interpretation V of a specification (A, R, I2, H)
is a triple V = (A, i, O) where

‘H: Use_gl:A_,g - A.

O: interprets an s;...sg-sorted function symbol of ¥ as a function of Ay, , X .. X Agy y —
A, For every o € £, O(0) is a function: if any one of the arguments of O(c) is p,
then O(o) returns g.

Given t € Ty, V(t) is defined as follows:

L. V(t)=H(t)if t € Xy 5 for some s € 5.

2. V(t)=pilt=r€R.

3. V(i) =1

i, V=000 000 Vita)s o V) = it Bagenastn):

This definition of ¥ implies that all computations start with an undefined state, that
is, all registers initially contain p. However, it is also convenient. to use the concept of

6 IMPLEMENTATION OF ARCHITECTURES 10

evaluation in an environmend. An environment e for an architecture (A, R, E, H) is an
clement of By. Let t € Ty, the evaluation of ¢ in the environment ¢, denoted as V.(t), is
defined as: V.(t) = V(l(¢)) where {(e) is obtained by substituting every occurrence of r in
t by e(r) for all r € K.

6 Implementation of Architectures

This section discusses the issue of implementation. The basic idea is to extend implemen-
tation of equational specifications to that of architecture specifications. It also explores the
relationship between implementation of an architecture and its underlying abstract data
type.

Implementation of Architectures

Definition 8 states a notion of architecture implementation. It merely reiterates the intuition
stated in Definition 2 in a context of architecture specification.

Definition 8. Let Ky = (Ay, Ry, By, lIy) and Ko = (Aq, Ro, Eq, Hgq) be two architecture
specifications. K is said to be an implementation (architecture) of Ky if there exists a
derivor d: Hy, — Bp,, and an congruence relation E on B(llg, Fq) such that B(Hy, FEy) C
(BH,-;/ Fo,d(”L))/ E.

Let Ay be an architecture specification, let Ay be Ky’s underlying type specification,
and let (Ag,d, I) be an implementation of Ay. We are interested in the derivation of an
implementation architecture of Ay, from d and F. Our approach is to extend d to a derivor
function Hy — Hq such that the extension is a derivor of the architecture implementation.
We also discuss the condition under which we can “naturally extend” the implementation
of the underlying type specification to derive an implementation of the corresponding ar-
chitecture.

Let d = (£, %) be a derivor from X to Q. A first attempt at extending d to d = (€,7,h)
is to let:

1. £: 8y — S§ be that of d;

2. v : Ry — [Rq] where [Rq] is a partition of Rg which satisfies the condition that for
every s € Sy, there exists a [r] € [Rg] and there exists an vectorization for [r] such
that the resulting vector is &(s) sorted;

Our goal for h is to extend & to h: Hy, — Ilg according to 7. Since 7y is a function from
Ry to [Rq], a partition of Rg, i should be a function from Hy to [Rg] — T§g. Fortunately,
this does not cause any serious problem since we can always “flatien” elements ol [Ra] — T4
to simulate functions of Rg — Tq. Therefore, we ignore the difference between functions
[Rq] — Tg and functions Rg — Ta.

A natural way to achieve h from & is that for every ¢ € Hy, h(c)is a function [Rg] — T3
defined as: for every r € Ry,

hie)(5(r) = e(r)[Vo € ¥. 0 — d(0)]

That is, the result of substituting every occurrence of o € ¥ in ¢(r) by d(o).

6 IMPLEMENTATION OF ARCHITECTURES 11

Unfortunately, this definition does have a problem when 5 is not bijection. First, h{c)
is total only if v is onto. Second, if y is not I-1, that is, there are ry,r; € Ry such that
ry # 1y but y(r1) = 7(r2), then h defined above is not well defined.

To solve the first problem, we add an assumption that v is onto. It is important to
realize that this assumption does not trivialize the result we are about to develop. As a
matter of fact, we can define h(c) as: For every ¢ € Hy, h(c) € Bg such that for every
r € Ry, h(c)(v(r)) = d(e(r)). Although there are more than one such elements in By, it
can bhe hli{)W[] LluLL the choice among those does not affect our result. To prove this requires
additional notation which is largely irrelevant to our major purpose. Thus, we choose to
impose the assumption that 5 is onto.

We solve the second problem by introducing a conflict-free condition on the elements
of Hy. It is intended to assure for every data transfer h € H, at most one register from
ecach partition of Ry by 7 is updated. Assume that R, = { ' € Ry [y(r/) =7 } for every
r € Rg. Then

Definition 9. Let r € R,

I. K, is the set of all terms in Ty(R) which have r as one of their subterms;

2. B,={br)|be By };

3. L= K. U B:

4. ¥, ={ o | o appears in an element of T’ }.
Lemma 4. If » € R, T,,%, as defined, then (T,,%,) is an algebra. (T, %,) is called the
subalgebra of (Ty,,Y) associaled with r.

If r1 # ry but y(r1) = y(r), it is necessary to have d(T,,) distinct from E[T,.]). This
consideration motives the following definition.

Definition 10. Let (A, R, F H) be a specification of architecture and d = (£,7,h). For
re R et [rl,={q€ R|y(q)=7(r)}. His said conflict-free with respect to d if

1. For every f € H and every r € R, there is at most one ¢ € [r]y such that f(q) # ¢;

2. Forevery r € Rq, all ' € [r],, d(T,)s are distinct from each other and are subalgebras
of T(Q, Eq).

Now we can give a definition of the extension of d to d: Hy — Hgq as follows:

Definition 11. Let d = (£,&) be a derivor © — €, the extension of d to Hy — Hgq is
d={£,7,h):

. £: 8% — Sq is € of d;
2. v : Ry — [Rq] is onto where [Rg] is a partition of Rg defined by 7;

3. his a 1-1 function defined as: for every ¢ € Hy, h(c) is a function y(Ry) — TH(Ra)
such that for ¢ € [Rql, A(f)(¢) = d(f(r)) such that 7 € Ry and f(r) #r.

6 IMPLEMENTATION OF ARCHITECTURES 12

d is said to be well defined if £,7, and h are all functions.
The conflict-free condition is a sufficient condition under which the extension of d to d
in Definition 11 preserves the implementation relationship:

Theorem 2. Let Ky, = (Ay, Ry, By, Hy) be an architecture specification, As, = (A, By),
Aq = (Q, Eq), and (Aq, d, E) be an implementation of Ay. Let d = (€,7, h) be as defined by
Definition 11. If Hy, is conflict-free with respect to d then (A . d, E) is an implementation
of Ky, where Kg = (2,7(Ry), Eq, h(Hy)) is called d-generated architecture.

Proof. The only thing we need to prove is that there exists a 1-1 homomorphism h which
maps B(Hy;, Ex) to B(h(Hy:), Eg))/ E.

Let h be the [-1 homomor {)hlbm which maps 7'(¥, Fy) to some subalgebra of (dAg)/F.
We extend h to h: B(Hy, Ex) — B(h(1g), Fq) /T in the following way: for every ¢ € Hy;,
[=h(c)is a fun(Lmn such that for (wtv r € 7(Ry), f(r) = hic(r")) whor(r" € R, and

c(r') # ' or f(r) = r il every ¢(r') = r'. Since Lhew is only one such ' € R, by the
non-conflict (:()ndition and R, # ¢ for every r, f(r)is well defined thus so is f = Rhie).
Claim: % is a 1-1 homomorphism. We justify the claim by:

Let b].,b'g € -}))ng'l
by =g, by

is equivalent to

Vre H)_] b[(‘f'] =Ex t‘)z(?‘)

implies

Vr€ Ry. h(bi)y(7)) Sqpy) Mb2)¥(7))

implies
W € Ry. h(b1)y(7)) =g i h(b2)y(1))

is equivalent to B
h(by) =g, 5 h(b2)

Therefore, h is well defined;

2. Let by,by € By, We consider the image of h(biby). byby = by[Vri € y(Rx). ri —
ba(7;)], therefore, for every r € y(Ry;)

R(byby)(7) = R(by[Vr; € v(Rx). ri — ba(ri)])(r)

= h(bi(+")[Vr; € Ry. 1; — ba(1})]) The definition of h and ' € R,

(by(»")[Vr; € Ry. 7, — h(ba(r;))]) h is homomorphism
= h(by("))h(b2) The definition of h
= R(b1)h(by)(r)

Therefore, t(biby) = h(by)h(by) thus h is a homomorphism.

6 IMPLEMENTATION OF ARCHITECTURES 13

3. Let by,by € By, and assume that

h(b1) =g, /5 h(b2)

which is equivalent to
Vr € 7(Ry). (h(b1))(r) =gq e (R(b2))(r)

By the conflict-free condition of the theorem and the definition of h, the above equa-
tion is equivalent to

Vr € y(Ry). V' € Re. h(bi(1") =g, 5 h(bo(r"))
which is equivalent to
Vr € Ry. h(bi(r)) =g,k hba(r))
And since h is a 1-1 homomorphism thus
Vr € Ry. bi(r) =gy, ba(r)

and thus

by =gy, b2
which proves that A is 1-1.

This justifies the claim and concludes the proof. i

Serialization

In the previous discussion, the conflict-free condition of data paths is imposed as a necessary
condition of implementation. The part of the problem to make a given set of data paths
conflict-free with respect 1o 5, without changing the meaning of architecture, is called
serialization. Tt is analogous to allocation and scheduling in high level synthesis (e.g. [3]),
register allocation and code generation in program compilation, and miecrocode generation
(e.g. [13]). What follows is a brief review of the material presented in [20].

Definition 12. Let(X, R, E, H) be a specification and (i C I be set of conflict-free data
paths with respect to some 7. A serialization problemn is: given a h € H— G, find
CnsCna1s-:€1 € G (n > 2) such that b =g ¢p0¢p10...0¢6;. Such an h is said to
be serializable by (.

If all elements of H are serializable by G, H can be replaced by G and (A, R, E,G)is
an implementation of (A4, R, E, H). Unfortunately, it is readily proved that the serializa-
tion problem is undecidable, in general [20]. Nevertheless, heuristic algorithms have been
found to cope with similar problems (such as register allocation or microcode generation).
[13] presents an algorithm to cope with microprogram generation which we believe can be

employed to solve serialization problems where E is empty.

7 RECURSIVE FUNCTIONS AS HARDWARE CONTROLS 14

Research Direction

We discussed the implementation issue of architecture specification. We presented a deriva-
tional approach to construct an implementation of architecture from an implementation of
an underlying type specification and an architecture specification. Although the method
provides an insight to the relationship between implementation of architecture and its un-
derlying type specification, it has the following limitations:

I. We are not able to find an effective decision procedure to test the conflict-free condition
of the theorem and we suspect that it is not recursively decidable. This severely limits
our chance of applying this theorem to any automated derivation system, which is one
of the major goals of our research. Thus, a stronger characterization of implementation
may be needed.

2. Theorem 2 only discusses behavioral implementation but does not consider timing
issues. We would like to consider implementations which take multiple cycles where
the more abstract type is intuitively combinational. That is, we would like to extend
h to a function Hy, — Dgg, 1, -

3. The theorem only addresses derivations whose 5 function is onto, i.c. the derived
architectures have register sets y(Ry) although it is not necessary by the definition.
When a derived architecture’s register set R is strictly contained in y(Ry), the reg-
isters in R — v(Ry) can be used as temporary registers. Because using temporary
registers usually results in introducing new states of control, the framework has to
have capability to address sequential properties of circuits.

7 TRecursive Functions as Hardware Controls

The standard definition of recursive functions over the natural numbers can be generalized
as that of recursive functions on abstract data types [7, 9, 18]. Tucker and Zucker present
a theoretical treatment of recursive function over abstract data types [18]. Johnson shows
that a recursive function of an abstract data type in certain form can be systematically
transformed to a sequential circuit representation which segregates the control of circuit
from its abstract basis [9], and examples of modeling digital circuits by recursive functions
on abstract bases are shown in [7, 9]. We take a similar approach to hardware control
here. As we have already shown that a hardware architecture can be modeled by extended
abstract data types, we view a hardware system as a pair, consisting of an extended abstract
data type and a recursive function on the extended abstract data type; the latter serves to
control the circuit. This section also gives the meaning of such a circuit specification and
discusses the concept of implementation of circuit specifications.

The set of recursive functions defined below directly corresponds to the primitive (course-
of-value) recursive functions in the conventional theory of recursive functions, e.g. [I7]. It
is called control functions for circuit.

Definition 13. Let A = (X, R, I, I} be a specification of an architecture, e be a variable
ranging over By g, called an environment variable, and V be the evaluation function defined
in Section 4. The set of control functions over A, I'(A), is defined as follows:

1. (Primitive Operators). If for every f € I, h(e) = foe, then he l'(A);

7 RECURSIVE FUNCTIONS AS HARDWARE CONTROLS 15

2. (Function Composition). If f,g € F(A), then Comy, = f-g(¢) € F(A) where - is the
standard function composition;

3. (Definition by Cases). An n-case definition is IFy ,, where n > 0 is a natural number,
h:(h; e F(A)|0<i<n)and p:(p; € Te |0 < i< n).

IF pnle) = hi(e) i Ve(pi) =1for0<i<n—1
hipn) =93 Otherwise

IFipn € F(A).
4. (Primitive Recursion). If hy, ha, hy € I(A), p € Ty and PRy, h,.hap is defined as:

hy(e) if Ve(p) =10
PRy gl B = hs - PRy, by hap - R2(€) iV (p)>1
[t Otherwise

where Vj,()(p) < Ve(p) then PRy, by hap € F(A)-

Now, we can define a circuit specification as the combination of an architecture specifi-
cation and a recursive [unction.

Definition 14. A specification of a circuit is a tuple (A, f) where A is a specification of
an architecture and f € F(A).

In hardware designs, two hardware systems are said to be equivalent if these two systems
produce the same outputs for the same inputs and the same initial states [3]. However, other
criteria can be added. For example, a more restrictive condition is that two systems not only
produce the same results but also take the same time (measured by cycles, for example) to
produce the same results. We consider two hardware systems to be equivalent in the former
sense. In our framework, input to a hardware system is included in those functions f € M
such as f(r) = ¢ for some r € R and ¢ € £,%. In real designs, equivalent values does not
necessarily mean identical values but values which are equal with respect lo some equivalence
relation or equal with respect to some mapping. For example, in a (natural number) modulo
27 system, an element k may be thought of being equal to an n-bit binary string bp_i1--.b1bg
if k = hp(bu_y...b1bo) where h,(by—y...b1bo) = Bo<i<n—1 2% % b;. Combining the discussion
above with our definition of implementation of architecture, we have the following definition.

Definition 15. Let (Bg,d,) be an implementation of an architecture specification By =
(A, R, Ex, Hy) and f € F(By). d([) is recursively defined as:

1. If f=ce€ Hy then d(f) = h(e);
2. 1f f= (..'omfl o then d(f) = (,'o:rnd(m,d{m;
3. B = I, then

L) odthd(e)) i Vo) (d(p)) =g 1 foro<i<n-—1
d(f)e) = { 1 Otherwise

2We may extend this by allowing ¢ be cither some clement of Xx or some function which represents
(part) of the environment in which the circuit is operating. Although this requires some minor changes in
our definition of the constraint set #, it does not complicate the problem.

8 SUMMARY 16

fl‘\ Y f\‘ > ;{L
o 4
h Bt
Y
h(fy)
!\’Q 2 » !\’Q

Figure 5: fy, = h=' h(fg) h

4. 1f f = PRy, pypy,p then

: d(hy)(d(e)) if Vy)(d(p)) = 0
d(PRy, pyhap)(e) = PR if Va(ey(d(p)) > 1
L Otherwise

where PR’ = d(h3) - PRyh,) d(hy),(h) d(p) - d0h2)(d(€))-

Let Pg = (Ky, fx) and Py = (Kq, fa) are specifications of hardware systems.

Definition 16. If there exists a function h : Ky — Kgq, a family of functions h~! = (h;! :
Kq — T)reny (for the definition of T, see Definition 10) and an equivalence relation F of
K such that for every a € Ky and r € Ry, h7'(fa(h(a))) = f(a)(r), then (Pq,h, E) is
called an implementation of Ps.

The following theorem associates the implementation of systems to that of the architec-
ture. It is analogous to the corollary of Theorem 2.

Theorem 3. If Py, = (K'g, [v) is a circuit specification and (A, d, E) is an implementation
of Ky then (Pq, h,) is an implementation of Py where Py = (Kq, d(fs)) and h : Ky, — Kq
is defined as:
L dibi(r) ifre y(Rs)
BbMr) = { r if r € Ro — 7(Rx)

for every be BR:,_;,H_,;,E); <

Since (Kq,d, E) is an implementation of Ay, h=1 is actually implicitly defined by d.
Figure 5 is a pictorial illustration of Theorem 3.

This theorem gives a derivational method of finding an implementation of a circuit
specification through an implementation of its architecture. According to Theorem 2, we
can go further to find an implementation through that of the underlying type specification.

8 Summary

This paper gives a formal approach to the description of hardware architecture systems
based on the underlying abstract data types’ specification. The semantics of architecture is
given as universal algebras. We show that the implementation of a hardware system can be
obtained from the implementation of the underlying abstract data types. The correctness of
such an implementation is thus directly related to the correctness of the underlying abstract
data type implementation.

REFERENCES 17

This was done by extending the specification of an abstract data type to include a
description of architecture, in the form of a set of permitted data transfers. A criterion
for correct implementation of an underlying abstract data type was then adapted to the
extension. Finally, a functional characterization of control was added and the notion of
implementation was again extended to include control.

Theorem 1 states that the correctness of implementation, as defined in Definition 2,
is equivalent to the provability of the implemented type’s equations. Theorem 2 states
that this form of correctness can be extended to conflict-free specifications of architectures.
Theorem 3 states that control of the implementing architecture is derivable from that of
the implemented architecture.

Acknowledgment

We are grateful to J. V. Tucker for his thoughtful comments on an early draft of this
paper.

We are also grateful to National Science Foundation for its support, in part, of this
research under the grants numbered MIP87-07067, DCR85-21947, and MIP89-21842.

References

[1] J. A. Bergstra and J. V. Tucker. Initial and final algebra semantics for data type
specification: Two characterization theorems. SIAM Journal of C'omputing, Vol 12(No.
2):366 387, May 1983,

[2] €. David Boyer and Steven D). Johnson. Using the digital design derivation system:
Case study of a VLSI garbage collector. In J. Darringer and I'. Ramming, editors,
Proceedings of the IFIP WG 10.2 Ninth International Symposium on Computer Hard-
ware Description Languages (CHDIL), Amsterdam, 1989. Elsevier. Also published as
Technical Report 274, Computer Science Department, Indiana University, April 1989.

[3] Raul Camposano. Behavior-preserving transformations for high-level synthesis. In
M. Leeser and G. Brown, editors, VLSI Specification, Verification and Synthesis: Math-
ematical Aspects, New York, July 1989. Proceedings of Mathematical Sciences Institute
Workshop, Cornell University, Springer-Verlag. Lecture Notes in Computer Science
Vol-408.

[1] H. Ehrig and B. Mahr. [Fundamentals of Algebraic Specification 1; Equations and
Initial Semantics, volume 6 of KATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.

[5] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Mecthodology, chapter 5, pages 80 149. Prentice-Hall,
inglewood Cliffs, N.J. 07632, 1978.

[6] G. Gopalkrishnan, R. M. Fujimoto, V. Akella, N. S. Mani, and K. N. Smith.
Specification-driven design of custom architecture in IIOP. In P.A. Subrahmanyam
and G. Birtwistle, editors, Current Trends in Hardware Verification and Automaled
Theorem Proving, pages 128 170. Springer Verlag, 1989.

REFERENCES 18

[7]

[14]

[15]

[16]
(17]
[18]
[19]

(20]

K. M. Hobley, B. ¢ Thompson, and J. V. Tucker. Specification and verification of
synchronous concurrent algorithms: A case study of a convolution algorithm. In G. J.
Milne, editor, The Fusion of Hardware Design and Verificalion, pages 347 374. Elsevier
Science Publishers B.V., 1988.

Steven D. Johnson. Applicative programming and digital design. In Proceedings
Eleventh Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 218 227, 1984.

Steven D). Johnson. Synthesis of Digital Designs from Recursion Fquations. The MIT
Press, Cambridge, 1984.

Steven D. Johnson. Manipulating logical organization with system factorizations. In
G. Brown M. Leeser, editor, Hardware Specification, Verification and Synthesis: Math-
ematical Aspects, Mathematical Sciences Institute Workshop, pages 260 281. Cornell
University, Ithaca, NY, USA, Springer Verlag, July, 1989. Lecture Notes in Computer
Science Vol 408.

Steven D. Johnson, Bhaskar Bose, and C. David Boyer. A tactical framework for
digital design. In G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 349-383. Kluwer Academic Publishers, Boston, 1938.

S. Kamin. Final data types and their specification. ACM Transaction of Programming
Languages and Systems, 5(1):97 123, January 1983.

M. Mahmood, F. Mavaddat, M. I. Elmasry, and M. H. M. Cheng. A formal language
model of local microcode synthesis. In Luc Claesen, editor, Proceedings of The Inter-
national Workshop on The Applied Formal Method for Correct VLSI Designs, Leuven,
Belgium, 1989. Elsevier Science Publishers B.V.

M. (. McFarland, A. C. Parker, and R. Camposano. Tutorial on high-level synthesis.
In Proceedings of the 25th ACM/IEEE Design Automation Conference, pages 330 336,
Anaheim, CA, 1988. ACM /SIGDA.

J. Meseguer and J.A. Goguen. Initiality, induction, and computability. In Maurice
Nivat and John C. Reynolds, editors, Algebraic Methods in Semantics, pages 159 541.
Cambridge University Press, 1985.

G. J. Milne. CIRCAL and the representation of communication concurrency and time.
ACM Transactions on Programming Languages and Systems, 7(2), 1985.

Hartley Rogers. Theory of Recursive Funclions and Effective Compulation. McGraw-
Hill Book Company, 1967.

J. V. Tucker and J. L. Zucker. Program Correciness over Abstract Data Types, with
Urror-State Semantics. North-Holland, 1988.

M. Wand. Final algebra semantics and data type extensions. Journal of Compuling
System Science, 19:27 44, 1979.

Zheng Zhu and S. D. Johnson. An algebraic characterization of structural synthesis
for hardware. In Luc Claesen, editor, Proceedings of The international Workshop on
The Applied Formal Mcthods for Correct VLSI Designs. North Iolland, 1989.

