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Abstract

This report describes a sequence of linear-processor deterministic NC algorithms for finding
sublinear-size cyclic separators in planar graphs. The sequence culminates in the first NC
algorithm for finding an O(4/n)-size separator using only n processors. Previous algorithms
for finding such a small separator have produced larger separators or used more time or
processors, and some were randomized. Our results are based on a better understanding of
the cumulative effects of recursively applying separators to subdivide a planar graph into

equally-sized parts with small boundaries.
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1 Introduction

The problems of breadth-first-search (BFS) and single-source shortest paths are of fundamen-
tal importance in computational graph theory [1, 14, 18, 22]. For the important case of planar
graphs, algorithms for finding O(/n)-size separators have proven to be important tools in
solving these two problems [5, 14, 17], and are also of independent importance (6, 7,14, 15, 17].
(A vertex set S of an n-vertex graph G separates G if no connected component in G — § has
more than Z* vertices.)

Though these three problems have (near-)linear-time sequential algorithms [1, 13, 15, 18],
none has an NC (polylog time) parallel algorithm which uses a linear number of processors.
The NC algorithm for shortest paths in general digraphs still requires n*® processors [11].
Therefore, there is a great deal of progress yet to be made in finding fast parallel algorithms
with near-linear processor-time products for these well-studied problems.

We present here deterministic linear-processor NC algorithms for finding O(n*)-size cyclic
separators in n-vertex triangulated planar graphs where 1 < € < 1. To find an O(n%)-size
separator, ¢ = % e %a‘, our algorithm uses O(c* log® n) time and only n processors, for some
constants 0 < o < 1and ¢ > 1. In practice, a is about 0.8 or 0.9. When i is ©(log log n), then
& is O(y/n) and the time is polylog. Our algorithms are for the concurrent-read concurrent-
write parallel RAM (CRCW PRAM) model of computation. See [11] for more background
on the PRAM model.

In [20] we establish the basic techniques for iteratively producing algorithms for finding
successively smaller separators in planar graphs. Generally, these techniques imply linear-
processor DNC algorithms, though the time to find an O(y/n)-size separator was non-polylog.
The time is exponential in the number of iterations used to generate that algorithm. This time
explosion is due to the O(logn) applications of the previous algorithm. Since O(loglog n) it-

erations are necessary, the algorithm for finding O(+/n)-size separators uses O((log n)dloglogn)



time for some constant d > 0. Our approach in this report is to reduce the number of calls
to the previous algorithm from O(logn) to O(1). With this change, the time complexity for
the end algorithm falls to polylog, O(c#'°81°67) for some constant ¢ > 1.

The key insight is that a recursive decomposition of an (r, €)-division can be done with
Miller’s separator algorithm [15] in the same way that a recursive decomposition of a trian-
gulated graph is done in {20] and [5]. A new division from this approach does not have such
small boundaries as does one implied by the algorithms in [20], but it embodies enough of
an improvement in order for the general iterative amelioration scheme set up in [20] to work
correctly.

Previous algorithms use more processors, are randomized, have worse processor-time prod-
ucts, or produce larger separators. See [20] for a full report on the previous work. Qur algo-
rithm for finding O(4/n)-size cyclic separators in planar graphs is the first one to use polylog
time and n processors. In addition, it is deterministic.

We expect significant applications of our results in the design of efficient parallel algo-
rithms based based on the work of Alon, Seymour, and Thomas in [2]. Their work shows
that any class of graphs with a largest excluded minor of size O(h) has a separator of size
O(h3 /).

Given an algorithm for finding (r, €)-divisions, in the next section we show how to sub-
divide a planar graph into regions of size O(r = nl_llﬁ’) with fewer boundary vertices using
only two levels of calls to the (r,¢€)-division algorithm and a linear number of additional
processors. In Section 3, we show how to use the these same techniques to guarantee that
the boundaries of each region in the new division are smaller than those produced by the
(7, €)-division algorithm. With the algorithm from Section 2, this immediately implies an
algorithm which produces an (r,€”)-division where % < €' < e. In Section 4, we show that

repeated applications of the algorithm from Section 3 can be used to find an (r, %)-division



and an O(y/n)-size cyclic separator in a planar graph in polylog time using n processors. We
close with some comments in Section 5. Since this report is a continuation of [20], refer to

that report for most definitions and useful basic properties of planar graphs.

2 Subdividing (r,€)-Divisions

In an earlier paper on finding (r, €)-divisions of planar graphs [20], we showed how Freder-
ickson’s techniques for recursively subdividing a maximal planar graph with small separators
produce interesting results even when the separator size is greater than O(v/n) (w(v/n)). In
the linear-processor algorithms for finding sublinear separators, we required that new (r,¢)-
divisions be found for a collection of triangular faces. We observed that this produced a great
deal of recomputation of the lower quality separators and divisions, but it was not clear how
to re-use division information. We can now show that the new division implied by one of the
two regions created from (r, €)-division-based separator is not necessarily a (r, €)-division of
the corresponding region.

Therefore, the question is, “Is all the effort used to find an (7, €)-division of any use after
it has been used to find one separator?” We answer yes by considering what happens in our
and Frederickson’s techniques when the restriction that each face is a triangle is removed.
We find that nothing really changes except that the number of boundary vertices is increased
by a factor equal to the maximum face size and the lower bound on the smallest region size
possible is obviously higher.

Of particular interest and importance is that the number of boundary vertices generated
in the new division is still an improvement by a constant factor in the exponent if the new
region size is sublinear in the size of the faces. More specifically, consider finding a separator
inan (r = nl“il?, €)-division D of an n-vertex triangulated planar graph. nM is the number

of processors needed to multiply two n X n matrices over the ring of integers in O(logn) time.



The value of M is bounded below by 2 and is currently bounded above by 2.376 [4]. However,
the algorithms in this report still generally work as claimed if M = 3 is used (straightforward
matrix multiplication).

The size of the separator using Miller’s algorithm [15] is O(n®') where € = 537 + (1 — )
[20, 15, 9, 8]. If we recursively subdivide D with Miller’s algorithm into new regions of size
s = n!~3, we find we generate O(72) boundary vertices where €’ = ¢ — § - 53725, The
best we could have hoped for (as in [20]) is to generate only O(;%7) boundary vertices.
However, since ¢ < ¢’ < eif € > %, we see that we’re on the right track! That is, ¢’ might
be good enough for our purposes. Therefore, while the reuse of D doesn’t give us the ¢’ we
might want, it does give us an exponent €” sufficiently less than e.

In the rest of this section and the next, we address the problem that though the total
number of boundary vertices is well constrained, many faces might be too large (more than
¢ boundary vertices on a face). Also, s is not small enough to generate an (r, €”)-division
and thereby enable us to iterate the process as in [20].

In our previous work [20] we focused on a general interpretation of Frederickson’s r-
division techniques. This time, however, we focus on a particular structure to make very
clear how to apply this section’s results in the following sections.

Let D be an (r = n! 5 ,€)-division of a set F' of n triangular faces from a planar graph.
Each region in D contains between r and € vertices and has a boundary of at most r¢ vertices.

1-35 for some z > 1. Use Miller’s algorithm on D to recursively decompose D

Let s=n
into regions of size s as in [20]. A new region’s size is determined by the number of original
faces from F that it contains. Use Miller’s algorithm [15] to find the separators. (The
processor complexity is always linear in n since there are at most ni faces in D.) The

above algorithm is called e-Divide. The lemma below characterizes the subdivision of F that

e-Divide produces.



Lemma 1 Given an (r = nl";ﬂ', €)-division D of a set F of n triangular faces from a planar

graph, the algorithm e-Divide divides F into ©(n/s) regions of size O(s = nl':_;;) with
3 +ze(M - 1)
1+z(M-1)"

O(2) boundary edges overall where =

Proof. Asin [20, 5], there are O(log n) levels of recursion and ©(n/s) regions containing
O(s) of F’s faces.

The difficulty in bounding the number of boundary vertices is that in an (r, €)-division
each region certainly has only O(r€) boundary vertices, but a constant factor of regions might
contain only 7¢ vertices instead of O(r). Therefore, as the recursion in e-Divide proceeds,
some branches many contain only regions from the original division which each contain O(r€)
vertices. Since the ratio of the regions’ boundaries to their sizes is equal, the regions effectively
do not have small boundaries! The question, then, is whether this affects the number of
boundary vertices in any significant way.

We contend that it does not. Consider the following simplified approach for an (r,¢€)-
division D with its f = n3 faces. Fach face has a boundary of b = O(n‘il“fl)) vertices.
With weight 1 on each region in D, use Miller’s algorithm to subdivide D into O(fl‘%) new
regions, each of weight ¢ = f ..

What has this new subdivision accomplished? Each new region may contain up to s =

1—-L

3 «nl~% = pl-I original faces but possibly only % %

1

=

t*n_ﬁ — fi *n_ﬁ — (nﬁ)
ne1=137) original faces. Nevertheless, there are O(n%;Tl) new regions in D and F since there
were originally only O(n%) regions in D. By Miller’s algorithm, the size of the boundary
produced at each level of recursion is equal to the size of the maximum face boundary (b =
n‘“‘ﬁ)) times the root of the number of faces (f = n;Tf), by/f. Overall, the recurrence below
characterizes the total number of boundary vertices necessary for the new subdivision.
B(f,3,6) = {0 iff<t

{6v/T + B(af,t,b)+ B((1— a)f,t,b) fori<a<i,if f>t



Rearranging the recurrence, we have the total number of boundary vertices equal to b- B(f, ).

B(f,1)

{0 ff<t

{VT+ B(af,t)+ B((1-a)f,t) fori<a<i}iff>t

A bound on this recurrence can be found in [5, 20] and is B(f,t) < \j/_e' Therefore, the total

number of boundary vertices is

bf n1- 3 )iz
o O 1
Vi nikr ()

Unfortunately, this not particularly useful since we really want to characterize the number of
boundary vertices with an expression like '1—'_“;7 for some €” < €. That is, €' characterizes the
average size the of the boundary of each new region in the subdivision. Therefore, we solve
the equation below for €”.
n(1- ﬁ)nﬁf n
i (W)

With simple algebra we see that €” is as stated in the lemma.

(2)

Note that the above method for finding a subdivision with respect to ¢ can generate only
more boundary vertices than e-Divide. This is because e-Divide proceeds exactly as above
except that its recursion might be as deep. It cannot recurse deeper since the resulting regions
would have fewer faces than ¢ from D. i

Given the above lemma, we can now subdivide n faces into @(nf?) regions, each of
size O(r = nl_#) with O(=27) boundary vertices given an algorithm for finding an (r =
nl‘fw,e)-division in a region F with n faces.

Consider the whole graph F as an initial new region. Iterate the following until there
is no new region with more than r faces. For each new region with R > r faces, find an
(R~fraclM o) division of the new region. Use the algorithm e-Divide to subdivide R into

. . —==l
new regions of size R~ =i,



If z = 2, then the above procedure has at most three iterations. After the first application
of e-Divide, each new region has at most O(n “ﬁ) vertices. After the next application to
the resulting regions, each region has at most O(n(l_z_lﬁ)z) vertices. Since (1 — 537)? >
1 — fraclM, there must be one more application of e-Divide to the new regions. After the
third application, then (1 - -..,—IM—)"’ < 1- fraclM, and the resulting new regions are then small
enough. However, they have become too small and therefore also have too many boundary
vertices for our purposes.

Rather than determine where to stop in the third iteration for z = 2, we will determine
the largest ¢ necessary in order for two and three iterations to be sufficient. In either case,

all we need to do is solve the equation below for ¢ = 2 and 7 = 3.

(-23) = -5 (3)

By numerical approximation, we see that the solutions are z > z; = % for i = 2 and

T> 23 = % for ¢ = 3 if M = 2.376. However, we can just as well use M = 3. In fact, though
we use M = 2.376 throughout this paper, all of the algorithms remain correct if M = 3.
Some parameters might have to be adjusted and the algorithms will generally run slower,
but the overall results in this paper will remain unchanged. Now we can prove the theorem

below: the first phase in generating an (7, €”)-division.

Theorem 1 Let DIV(r,€) be an algorithm for finding (r,€)-divisions in planar graphs us-

ing Tp(n) time and Pp(n) processors. Given a set F of n triangular faces from a pla-

nar graph, two and three applications of the algorithm e-Divide, with z = z, = «;- and

z = z3 = 3 respectively, divides F into ©(n/s) regions with O(Z) boundary edges

3 +ze(M—1)
1+2(M-1)"
max(n, Pp(n)) processors.

where €' = These iterations of e-Divide use O(log®n + Tp(n)) time and

Proof. By Lemma 1 and the discussions above, only two or three applications of e-



Divide are necessary in order to correctly produce an (n!~79*M ") division of F. See also
the algorithm Well-Formed_Separator and its proof of correctness in [20].

The time complexity depends on the number of times Miller’s algorithm is applied, its
complexity, and the time for bookkeeping between calls to Miller’s algorithm. As in [20]
and [5], there are O(logn) levels of recursion in each call to e-Divide. At each level, Miller’s
algorithm uses O(log®n) time [15, 10]. The bookkeeping for each recursive level is generally
O(log n) time, and at most O(log? ) time. This includes routines for treefix computations,
arbitrary spanning trees, and parallel prefix [16, 21, 12, 3]. With O(logn) iterations, O(log® n)
time used is overall. Since each application of Miller’s algorithm is on a (sub)graph of z
vertices with at most O(zfr<'M) faces, each application uses only O(z) processors [15, 8].
Therefore, the simultaneous applications of Miller’s algorithm never require more than O(n)
processors. Since all of the other subalgorithms use at most O(n) processors, only n processors
are needed overall. [ |

The above theorem is significant because in the corresponding theorem by Shannon and
Wan [20], the time complexity is O(log? n * Tp(n)). Therefore, in their iterative approach
to improving the separator’s size, the time complexity grows exponentially with logn as the
base. In the above theorem, the two time terms are added instead of multiplied together.
Therefore, the time complexity grows exponentially with only a constant as the base. With
O(loglogn) necessary for convergence to a O(4/n) size separator, this new theorem implies
a polylog time complexity. In the next section, we show to adjust the boundary sizes (as in

(20] and [5]) in order to produce an (r,€”)-division from an (r, €)-division.

3 Subdivisions with Sublinear Region Boundaries

In Theorem 1 from the previous section, we showed how to subdivide a collection of n faces

from a planar graph into @(n/r) with a total of O(2x) boundary vertices (for r = nl=w),



The challenge in this section is to guarantee that each region in the subdivision has a boundary
of size O(r<") by subdividing regions with large boundaries as necessary. Once we have the
boundaries bounded as above, then we have created an (7, €”)-division.

As in the previous section, this second phase of finding an (r,€”)-division will rely on
a constant number (one) of (r,é€)-divisions of each region with more than cr®’ boundary
vertices for a constant ¢ > 1. Let R be a region of size r = nl~™ with B > cr” boundary

1";_4, ¢) division Dg of R implies subregions of size O(n(l‘ 31?)2). Dpgis

vertices. An (s =r
computed independent of which faces are adjacent to R’s boundary vertices. Now proceed
using Miller’s algorithm to find separators which subdivide Dg into new regions with at most
O(r¢") boundary vertices. The weight of each region in Dp is initially equal to the number of
R’s adjacent boundary vertices. As in [20] and [5], when each separator is found, the weights
of the regions adjacent to it are appropriately increased. The algorithm for this second phase

is called Boundary-¢-Divide.

Theorem 2 Let DIV(r,¢€) be an algorithm for finding (r,€)-divisions in planar graphs with
n faces using Tp(n) time and Pp(n) processors. Given a set F of n triangular faces from a
planar graph that have been subdivided into O(n/r) regions of size r = nl=% with O(=27)

boundary vertices, the algorithm Boundary-e-Divide finds an (r, ")-division of F where €' =
3 +ze(M - 1)
1+z(M-1)"

The algorithm uses O(log®n + Tp(n)) time and max(n, Tp(n)) processors.
Proof. The main questions are how large the separators can be, what is maximum
number of times a region R is subdivided, and what is the total number of new boundary
vertices produced.
For region R, |R|is O(r = nl‘%). The (s = rl”:Tr,e)-division Rp of R has regions with
boundaries of size O((s!~3)¢). There are O(s'ﬁ) regions or superfaces in Rp. Therefore,

applying Miller’s algorithm to Rp produces a separator of size O(r¢ ) where ¢ = str+e(1—3)-

As Boundary-¢-Divide subdivides R, all of the separators generated contain O(r°P') vertices

10



since the number of faces and boundary vertices that Miller’s algorithm considers never
increases.

Following the discussion in [20] and [5], assume R initially has ¢ boundary vertices. The
recurrence below for R(i) characterizes how many new regions can be generated in guaran-

teeing that R is subdivided into regions with at most O(r<") vertices.
R() = 0, i < 9er®”

R(i) = 1+ R(af+cr¥)+ R((1-a)f +cr®), otherwise, = < a <

Wl
N

A straightfoward proof by induction shows that R(%) is bounded above by %’;—t — 1 since
€ &

Now we can characterize the number of new boundary vertices generated by Boundary-e-
Divide. Let t; be the number of regions in the initial subdivision of F with ¢ boundary vertices.
By Theorem 1, these initial subdivisions have X;(it;) < O(r—:-_z'?) boundary vertices. Since 3
boundary vertices can induce O(ir") new regions with O(r<") size boundaries each, the total
number of new regions is X; (0(%)1;) < O(n/r) and the total number of new boundary
vertices is O(n/r)*r¢" = O(:2). Therefore, Boundary-¢-Divide generates an (r, €”)-division
of F from the initial subdivision.

The time complexity is the same as in Theorem 1. O(logn) levels of recursion for applying
Miller’s O(log? n) time algorithm implies that Boundary-¢-Divide uses at least O(log®n) time.
Since there are at most 7 superfaces induced by the (r, €)-division of R, Miller’s algorithm
uses only O(r) processors for each initial region. Each level of recursion uses at most O(logn)
time and n processors for bookkeeping as discussed in the proof of Theorem 1. 4

The theorem above shows that the impact of reducing the sizes of the region boundaries
produced by two or three applications of e-Divide is only an additive term of O(log®*n+Tp(n))
in the time complexity. This gives us the corollary below for finding an (r, €”)-division of n

triangular faces.

11



Corollary 1 Let DIV(r,€) be an algorithm for finding (r,€)-divisions in planar graphs with

1

n faces using Tp(n) time and Pp(n) processors for v = n*~%. Given a set F of n triangular

faces from a planar graph, the algorithms e-Divide and Boundary-e-Divide generate an (7, €")-

1 s
division of F where €' = ﬁ%{% These two algorithms use O(log® n + Tp(n)) time

and max(n, Tp(n)) processors.

In the next section we demonstrate how these new techniques imply an NC algorithm for

finding O(4/n) cyclic separators in planar graphs.

4 NC Algorithms for Small Separators

In this section we show how to derive O(+/n)-size separators using only polylog time and
n processors. We first review how a sequence of algorithms for finding smaller and smaller
separator is implied by Corollary 1 in the previous section. As in [20], this converges to an
algorithm for finding an O(/n)-size separator. We then show how this final algorithm uses
only polylog time — in [20] the final algorithm uses O((log n)°(°81°8m)) time.

-3, 3)-division of a set F of n faces, then with

We first observe that if we have an (r = n
one application of Miller’s algorithm we have an O(y/n) size cyclic separator of F (b = /7,
f = n/r, separator has size by/f = /n). It uses O(log?n) time and only n processors.
Therefore, we need now only to derive an algorithm for building (r, %)-divisions.

Corollary 1 gives us the mechanism to develop divisions of a region F of faces that suc-
cessively smaller boundaries. Unfortunately, the constant factors on the number of boundary
vertices are not the same for the (r, €)-division and the (r, €”)-division in that corollary. (See
[20] for more discussion on the problem with the constants.) For now, we will assume the
constants are equal; below we will fix this problem.

Now we are ready to generate a sequence of algorithms with produce successively better

(r, €)-divisions. The basis case is ¢ = ¢(0) = 1. By the discussions in [20], [23], and indirectly

12



from [19], we can partition a collection of n faces into niz regions, each of size O(r). This
gives us an algorithm for finding (rl'%, 1)-divisions using n processors and O(log?n) time.

1 4z.e(0)-(M—
Corollary 1 shows that we can therefore find an (r, €)-division where € = ¢(1) = 3%?;}%3

forz = % orz = $ depending on whether e-Divide was applied two or three times, respectively.
Let 8 = z(M —1). In general, the ith algorithm implied by Corollary 1 generates an (r, e(%))-

division where

g0y = 1

3te(d)-8

e(i+1) 511

Solving the recurrence, we have

© = 13-

Now we can compensate for fact that the new division algorithm in Corollary 1 does not
have the same constants in the bound on the number of vertices in each boundary. If we
slightly increase the exponent in the new division’s boundary bound, then the increase in the
constant is canceled as long as the problem is large enough and the exponent ¢ is far enough
away from %. (That is, if the exponent is increased by an additive term of v, then n” > C
must hold where C is the bothersome constant factor that we are trying to cancel out.)

To effect this increase in the exponent in an orderly manner, we assume that the ith
algorithm has an exponent on each region’s bound size of f(z) for the constant factor o > 1.

0 - (32"
However, for how large of an ¢ will this work? Consider algorithm ¢+ 1 based on an algorithm
for finding (r, f(¢))-divisions. Since the true, unadjusted exponent for algorithm is

3+ f(3)-8
g+1 "’

13



the difference with f(i + 1) leaves a term of

L G ()

f+1) -

to compensate for a constant factor C.
By setting n raised to the above compensation term to be greater than C and solving for
t = I, we know for I algorithms C can be effectively canceled with our trick.
RS- EEEN
5 loglogn — 1 - log (E%.—lﬁ) — loglogC
B log (5 )

The bound on I represents the limit of our approach’s usefulness. The key question then

is: “How close /7 is to nf(D)?” Since the ratio of nf(!) and /7 as n increases is

(1)

nf() is O(y/m). If @ = 1.1, the implied additional constant factor is O(C*) when z > 3.
Therefore, the Ith algorithm produces an (r, ;)-division.

Now we need to characterize the time complexity. Let T;(n) be the time complexity of
the ith algorithm. Based on Corollary 1 and the discussion above, we see that for constants

c1, €2, and c3,

To(n) < cilog®n

Tit1 = calog®n+ c3Ti(n).

Bounding this recurrence with constant ¢ = max(e;, €3, ¢3), we have

(ﬁ cf) log®n

j=1

T;

IA

T: < e log3n

14



For the Ith algorithm, I + 2 is O(loglog n). Therefore, for constant d > 1,

Ty < cd}nglognlog3n

Tr < (logn)ieclog® n

The above equation shows that the I'th algorithm uses only polylog time. With the comments
at the beginning of this section, this immediately implies a linear-processor DNC algorithm
for finding O(+/n)-size cyclic separators in planar graphs. This result and the algorithms

leading up to the Ith one are characterized in the theorem and corollary below.

Theorem 3 Given a set F of n triangular faces from a planar graph, the algorithm implied
by the ith application of Corollary 1, produces an (r = nl"Ilﬂ', f(2))-division of F and uses

O(c* log® n) time, for a constant ¢ > 1, and n processors if i is O(loglogn).

Corollary 2 Given a set F of n triangular faces from a planar graph, the algorithm implied
by the I'th application of Corollary 1 (where I is defined above), produces an (r = nl“-:?, Vn)-

d+3

division of F and uses O(log®*> n) time, for a constant d > 1, and n processors if I =

cloglogn for some constant c > 0.

5 Conclusion

We have presented linear-processor DNC algorithms for finding sublinear-size cyclic sepa-
rators in planar graphs. Improved divisions are found more efficiently by carefully using
old divisions of the graph. This avoids the exponential computations used by Shannon and
Wan in [20] and culminates in the first linear-processor DNC algorithm for O(+y/n)-size cyclic
separators.

There are two drawbacks to the final algorithm (the Ith algorithm at the end of Section
4). One is that the constant on the separator’s size is not trivial. However, it should be less

than 100 and can likely forced much lower by improved analysis and slight adjustments to

15



the algorithms. The other drawback is that the time complexity is only known to be polylog.

The exponent on the time could easily be 10 or even 15. Again, we suspect that a much

more reasonable time complexity is possible with careful analysis and slight adjustments to

the algorithms.
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