TECHNICAL REPORT NO. 315

Connectionist Logic Programming

by
Jonathan W. Mills

October 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Connectionist Logic Programming”

Jonathan Wayne Mills
Computer Science Department
Indiana University
Bloomington, Indiana 47405

Abstract

Logic programming has seen little application to connectionist research in Al. However,
Kowalski's description of a logic program, algorithm = logic + control, can be extended into the
connectionist domain by using hybrid digital-analog array processors that evaluate sentence
schemata for multiple-valued propositional logics.

In connectionist logic programming, the "logic" part of Kowalski's description corresponds to a
forest of sentence schemata. each recognizing a set of objects after training. A sentence schema
contains one set of logic variables for the patiern, and another set of logic variables for the weights.
Instantiating the schema and evaluating the resulting sentence returns a truth value which is
interpreted as the degree of membership of the pattern in the trained set. The "control" part of
Kowalski's description corresponds to the mechanism that presents the training patterns and
adjusts the values of the weights. using logic variables from the appropriate sets.

Connectionist logic programming (CnxLP) is a restricted version of logic programming (LP),
although its control component is more complex. Comparing the two:

. CnxLP programs are schemata for multiple-valued propositional logics; LP programs
are Horn clauses in predicate logic,

« CnxLP uses satisfiability as its basic computation mechanism; LP uses resolution,

¥ CnxLP instantiates single logic variables: LP unifies pairs of logic variables, and

. CnxLP search heuristics are complex (i.c.. gradient descent, genetic algorithms, back-
propagation); LP uses a depth-first left-to-right scarch and backtracking.

During 1989 research at Indiana University produced a functioning analog CMOS VLSI
processing element for Lukasiewicz' logic, and integrated it into a multiple-valued logic array
processor suitable for connectionist logic programming. This processor, called a Eukasiewicz
logic array (ELA), is a massively parallel analog computer organized as a binary tree of identical
processing elements. Each processing clement is an 11-transistor cell that performs £ukasiewicz
implication (A).

Lukasiewicz logic arrays have a dual algebraic and logical operational semantics, thus £ELAs can
implement architectures for fuzzy logic, expert systems and resolution approximation as well as

This is an abstract of the invited talk presented at the 1990 NSF/ICOT Joint Workshop on Parallel Logic
Programming and Knowledge Representation, 'lokyo, Japan, September 18-21.

* "This work was supported in part by the National Science Foundation under the following grants:
DCR 85-21497 and MIP 90-10878.

CnxLP processors. The prototype 32-cell LLA implementations (versions LL9 and LL10) have
been programmed to act as fuzzy function recognizers, the first step in the design of a CnxLP
architecture.

Current research includes:

. Designing hybrid digital-analog architectures for CnxLP based on £LAs. A digitally
programmable "envelop" for ELAs and a library of routines to program the £LAs from
a VAX or UNIX-based workstation are now being tested. The "envelop” allows
automated testing of prototype £LAs, and replacement of software ELAs with real
LLAs in simulations.

¢ Measuring the performance of hybrid digital-analog architectures. A series of
experiments to determine the Shannon channel capacity of ELAs has been designed to
run on the ELA "envelop." These experiments, together with area measurements of
analog and digital LLAs, represent the first steps toward determining the information
density of equivalent analog and digital systems. Metrics such as information density
are needed to justify the design of provably optimal hybrid digital-analog architectures
for a given problem domain.

¢ Developing applications for ELAs: neural networks, expert systems and fuzzy logic
controllers. While single Hopfield neurons have been simulated by sentence schemata,
more efficient use of LLAs should be possible. Simple recurrent networks that
dynamically recognize tempo are being investigated.

Further study is needed to increase our understanding of programming languages and architcctures
for hybrid digital-analog processors. Some topics of interest include:

. Programming language design for CnxLP systems,
. Algorithms to derive sentence schemata from neural network descriptions, and
. Complexity, efficiency and optimality of hybrid digital-analog architectures.

Connectionist logic programming provides a restricted — and thus excellent — domain for this
research.

t.ukasiewicz Logic Arrays

& v
f=—=1 a

| | 1852
n
- |
u
N
i \
| |
‘“ @

1 =
> 3

Jonathan W. Mills
Charles A. Daffinger
Computer Science Department

M. Gordon Beavers
Philosophy Department

Indiana University
Bloomington, Indiana USA

Mills, Daffinger and Beavers caih

dod. s

Overview

Origins

Implementation

Analysis

Advantages / Disadvantages
Programming -
Applications

Conclusions

Future Work

Mills, Daffinger and Beavers—)

Origins

Multiple-Valued Logic
- Lukasiewicz

- Giles
- Zadeh

Cellular Automata
- von Neumann

- Codd
- H. T. Kung

Analog Circuits

- Yamakawa
- Mead

e Cellular automata as computational models for inference
systems using multiple-valued and relevance logic

* Synthesis of classical and connectionist Al

- classical: axiom sets and inference rules
- connectionist: sentences and valuation functions

Mills, Daffinger and Beavers —

Implementation

tmin(T T-a+B) |
' L, Ir

| 111 A AI {diode | select |
' E-E!ﬂggilﬁ-‘ij’s
luzi L ' Vv i

. multiple max(Ea-f)
t fanout :

.....................

* First version: H-Tree based on Yamakawa's basic logic cell
with selectable implication or negation

\

Mills, Daffinger and Beavers—

Implementation

? 7 n !
& 1 — [] — M- H—- [®
1 I
— — _:.

& - | a —®
@«_._ —_— —_— — —_— —_ _)“”“““'.
: L H

— O
‘ T :
= ——®
e— = L= L] = = — L9
— — —
i
i 11— [— — 11— [—®

o—| |

* Prototype: H-Tree in implication only

Mills, Daffinger and Beavers —

Evaluation of Prototype

210.00

190.00

LN\
\\‘ N\

180,00 -5

170.00 = ot 25
A

160.00

N
\!

150.00

140.00

\

N
AN
\\

130.00

120,00

110.00 -3

\
N
N

:
N
\'1

\

80.00 _ 5 //

70.00 -} sl

40.00

o i
50.00 E [‘/ C’_ ':; 7
o /

30.00 g

3 /
10.00 - / s

.“./;‘-"f
0.00 -t
'1u'm.v:‘.<,-'l:»,--i‘tl!:‘!-i,-:--,-:l._.!'.

0.00 20.00 40.00 60.00 80.00 100.00 120,00 140.00 160.00 180.00 200.00

— alpha_out — gamms_ocut == beta_out_inv == delta_out_inv

Mills, Daffinger and Beavers —

Evaluation of Prototype

0.00 —

0.00

:

l]llil]’llill[rirll’Ti’llll

200 400 6.00 800 1000 1200 14.00 1660 18.00 20060 2

{-sm-_m() » ﬂ(o(-? ‘n()

A —

Mills, Daffinger and Beavers -

-
=
-
-
-
-

0 50 100 150 200
€ lout, B=0pa 48 Iout, B=50pa < Iout,B=100ua @ Iout, B=150pa & lout, B=200pa

— Ideal — Ideal — Ideal — Ideal — Ideal

5.00

0.00

-5.00

-10.00

-15.00

50 100 150 200

=

— % error in Iout, B = Oua

3.00
2.00
1.00
0.00

B LLA Celis with outputs < 20u2

Figure 6. Evaluation of the "notch” using £L9

Advantages & Disadvantages

+ Regular, simple
+ Area-efficient because they are analog (1 wire per signal)

+ Inductive architectures (can be cascaded)

Precision in the range of 5 to 8 bits for prototype

1

Programming introduces data inputs on order O(ZH)

Pin-limited

Difficult to develop programs and predict recursive
behavior

Analog design leads to susceptibility to fabrication error

But! Potential as relatively general-purpose
analog processor encourages further investigation

\ Mills, Daffinger and Beavers—/

Programming t.L.As

* Prototype LLA does not have circuitry for negation
* Negation is "unfolded" into implication and logical constant

» Other expansion as necessary to map expression exactly

onto LLA

(¢ =P —=-1))—=>-0

'(((T“‘T) =T —=8)) = (T —>T)=(T—=F))

Mills, Daffinger and Beavers—/

Applications

Fuzzy Logic Devices

- Zadeh (1975) describes fuzzy logic
- Giles (1976) relates4.ukasiewicz logic to fuzzy set theory
- Yamakawa (1986,1988) multi-function fuzzy controllers

* fuzzy functions implemented with-LLA prototype

Expert Systems

- Shortliffe (1976) MYCIN expert system

- Giles (1979) notes relationship of-Lukasiewicz logic
to Dempster-Shaefer inference

* decision tree implemented with-LLLA prototype

e Neural Networks

- McCulloch & Pitts (1943) nerve nets

- von Neumann (1956), Kleene (1956) net automata
- Alspector & Allen (1987) VLSI neuromorphic system

* single "neuron" constructed with-L.LA simulator

Mills, Daffinger and Beavers—"

Fuzzy Controller

e LILAs control system functions using different rule sets
stored as vectors of logical constants

* Local and global feedback from the system is used to control
the system at that time instant and select the next rule

vector
sentence
store

LLA

ADC (address generator)

—~

L

., System

Mills, Daffinger and Beavers —

Expert System

 Inputs may come directly from a transducer, possibly
with scaling

 Inputs may be classified based on context (other inputs
from transducers or controls)

* Rules are mapped to an LLA

e Threshold units fire when a rule is triggered

Thresholds

Rules

Classified
Inputs

Mills, Daffinger and Beavers —

(OMNECTING LOGIL T° CoNNECTIONISM

McNAUGHTONS v B0EM (19s1)

EUERY SENTENCE S INt HAS A CoRRESPONDING
LINEAR POULINOMIAL OV@® TME VARIABLE OF S

s(u,)u.“ —Un) S P(u‘,,u-:,,,_ Ua)

= S DEFMES A PIECE-WISC LINEAR APMOXINATON OF
SoME DIFFERENTIABLE FUNCTON . '

SHANNON — POUR-EL TMESIS (1941, 1974)
ouTouT OF A GPAC (NETWoRK IPUTS, SUTRVT,
Fus CTNONS 4,=,%X,+) (oReEIPONDS EXACTLY
™ some runcton Ft) T™AT SATISFIES AN
ALLEBRAIC DIFFERENTIAL EQUATION |
A . K€ §f-1,007
K,,S '
Z k&) =0 '
| rsi € §ort-§

10
2 LLA APPROXIMATE GPAC |
EXAMPLE | GROSSBERG'S LEARNING uATIoN (118T)

ok I;
“zij = (-z,.j *E?:)’lj

Neural Network

* "Neuron" is constructed in two parts: ¥,
Out é
t -
8 =
I] Fd]bc | . .. False
E Threshold %
In i — e ar — XO False
(a) Thresholded output unit (b) Input summation unit

* At least initially, these units can be mapped to prototype LLA

e Area-efficient neural networks will use a different topology
and may mix digital and analog components

L Q L
"Neurons” : o eee
: | & e]_I
Interconnection | i Lol
Network ‘ siae |
: L S =
| L R =
2 n-cell ELA
: = Switches :
e (A ;l cos (M @ Potentiometer
LA t/ | 5
Generators NN \(J Lo (G ORCH -

Mills, Daffinger and Beavers—/

Construction of a Logical Neuron

X
¢ Out
-
f_,‘ 5 2N
= — Fal
F False D Gy
..... R, —| Threshold
{ﬂ‘ X / 5 ==

=1

=

=
|

0.30

fLLLLLLLL

o
i
=)

|

min(1, 1 - min(1, 1 - min(1, 1 - In, + Out,) + Threshold,)) = Out,

Mixed Interpretations in a Single LLA

Logical (fuzzy inference processor)

Algebraic (classification network)

CnxLP: Logic Programming
on a Hybrid Architecture

Digital CPU LLA

Define the network A

analog(nn/1). [t
nn(OutputListN) :- nodel([InputList1], [OutputList1]),
node2([InputList2], [OutputList2]),

nodeN([InputListN], [OutputListN]).

Train the network

train(OutputListN, [InputList1], ... [InputListM]) :-

<training procedure>.

Run the network

evaluate(OutputListN, [InputList1], ... [InputListM]),

Conclusions

An operating CMOS analog VLSI Lukasiewicz logic array
was constructed in 1989-1990

LLAs are current mode devices that operate in the
saturation region of MOS FET transistors

The prototype LLA has 5 to 8 bits of precision

Errors near the "tail" are due to the design operating

too close to threshold voltage (for calculation ofa — f);

this error can be rectified by using an additional power
supply (Vdd, GND, -Vee)

LLAs are programmed using vectors derived from
sentences in Lukasiewicz logic

LLAs are "analog PLLAs" that can be used to implement
fuzzy logic devices, expert systems, and neural networks

Mills, Daffinger and Beavers—J

Future Work

Fabricate and test modified prototype
Test LLAs dynamic behavior
Implement applications using prototype
- fuzzy controller

- expert system
- neural network

Design larger application specific LLAs

- for use as neural networks
- mixing hybrid digital and analog circuits

Mills, Daffinger and Beavers—

