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Abstract

Genetic algorithms are adaptive search algorithms that have been shown to be robust op-
timization algorithms for multimodal real-valued functions and a variety of combinatorial op-
timization problems. In contrast to more standard search algorithms, genetic algorithms base
their progress on the performance of a population of candidate solutions, rather than on a single
candidate solution.

We will concentrate on the application of genetic algorithms to the traveling salesman prob-
lem. For this problem, there exist several such algorithms, ranging from pure genetic algorithms
to genetic algorithms which incorporate heuristic information. We will review these algorithms
and contrast their performance.

A serious drawback of genetic algorithms is their inefficiency when implemented on a se-
quential machine. However, due to their inherent parallel properties, they can be successfully
implemented on parallel machines, resulting in considerable speed-up. We will review parallel
genetic algorithms and indicate how they have been used in the traveling salesman problem.

1 Introduction

Suppose we have an object space X and a function f: X — R* (R* denotes the positive real
numbers) and our task is to find a global optimum for that function. Genetic algorithms are a class
of adaptive search algorithms invented by John Holland [16] to solve (or approximately solve) such
problems. Genetic algorithms differ from more standard search algorithms (e.g., gradient descent,
controlled random search, hill-climbing, simulated annealing etc.) in that the search is conducted
using the information of a population of structures of the object space X instead of that of a single
structure. The motivation for this approach is that by considering many structures as potential
- candidate solutions, the risk of getting trapped in a local optimum is greatly reduced. In Figure 1
we show the layout of a typical genetic algorithm (GA). The initial population P(0) consists of
structures of X, usually chosen at random. Alternatively, P(0) may contain heuristically chosen
structures. In either case, the initial population should contain a wide variety of structures. Each
structure z in P(0) is then evaluated by applying to it the function f. The genetic algorithm then
enters a loop. Each iteration of that loop is called a generation. The new population P(t+1) is
constructed in two steps 1) the selection step and 2) the recombination step. In the selection step,
a temporary population (say P'(t 4 1)) is constructed by choosing structures in P(t) according
to their relative performance. For example, if we are maximizing f, the structures with greater
than average performance will be selected with higher probability than the structures with below
average performance. This resembles the survival of the fittest principle of natural evolution. After

*Presented at Sym. on Parallel Optimization2, Univ. of Wisc., Madison, July 1990.



P(t) denotes the population at time t.

t «— 0;
initialize P(t);
evaluate P(t);
while (termination condition is not satisfied)
{
t «— t+1;
select P(t);
recombine P(t);
evaluate P(t);

Figure 1: Layout of a Standard Genetic Algorithm

the selection step, the temporary population P'(t + 1) is recombined. (The resulting population
is the new population P(t+1).) Typically, recombination is accomplished by applying several
recombination operators, such as crossover, mutation, inversion [9,16], or local improvement [40],
to the structures in P/(t + 1). After the recombination step is completed, the new population is
reevaluated and a termination condition is checked for validity.

The difference between genetic algorithms and earlier introduced evolutionary algorithms is the
usage of crossover in the former. A crossover operation produces an offspring from two structures.
It is typically defined such that a sufficient amount of information embedded in the parents appears
in the offspring. Therefore, crossover can be viewed as a history preserving operation which at the
same time introduces a new structure to be tested in the competition. This is clearly different from
a random mutation which was the central operator in evolutionary algorithms.

Genetic algorithms have been applied to global function optimization, combinatorial optimiza-
tion, machine learning etc.[10]. In this paper, we will concentrate on the application of genetic
algorithms to the traveling salesman problem. For this problem, there exist several different ge-
netic algorithms, ranging from pure genetic algorithms to genetic algorithms which incorporate
heuristic information. We will review these algorithms and contrast their performance (Section 2).

A serious drawback of genetic algorithms is their inefficiency when implemented on a sequential
machine. However, due to their inherent parallel properties, they can be successfully implemented
on parallel machines, resulting in considerable speed-up. We will review parallel genetic algorithms
in general, and subsequently indicate how they have been used in the traveling salesman problem
(Section 3). In Section 4 we will show some additional results of applying parallel genetic algorithms
to large TSP’s (the largest problem is a 1000 cities problem). This section also contains data that
indicates the relative importance of certain recombination operations.

In Section 5 we discuss how the research on parallel genetic algorithms can be used in the
parallelization of probabilistic sequential search algorithms.

2 Genetic algorithms for the traveling salesman problem.

The traveling salesman problem (TSP) is easily stated: Given a complete graph with N nodes, find
the shortest Hamiltonian tour through the graph (in this paper, we will assume BEuclidean distances
between nodes). For an excellent discussion of the TSP, we refer to [22].

For the TSP, the object space X consists of all Hamiltonian tours (tours, for short) and f,



A=984|56713210
B=871]|2310/9546

Two aligned tours

A'=9842310]1657
B'=8101|567]9243

Result of the PMX crossover on the two above tours

Figure 2: Illustration of a PMX crossover

the function to be optimized, returns the length of tours. In recent years, a variety of GA’s for
the TSP have been proposed, [4,11,10,12,15,14,18,23,2?,28,29,40,39,37]‘ These algorithms can be
separated into two groups: 1) the pure genetic algorithms, i.e., algorithms that do not use domain
specific information about the TSP [11,10,14,29], and 2) heuristic genetic algorithms (HGA), i.e.,
algorithms that do use domain specific information about the TSP [4,12,15,14,18,23,27,28,40,39,37].

2.1 Pure genetic algorithms for the TSP

Pure genetic algorithms use recombination operators that apply to arbitrary permutations, hence
they can be used in any problem domain involving objects represented as permutations!.

e An example of a domain independent mutation operator is the inversion operator [16,14].
This operator, for a given tour, simply reverses a randomly chosen subtour.

e We now consider various pure crossover operators. All these crossover operators share the
property of preserving, in the offspring, subtours of the parents. The intuition is that in doing
so, potentially good subtours from the parents are combined to obtain a possible better tour
as an offspring.

1. The partially matched crossover (PMX) [11,10] starts by aligning two tours, subsequently
two crossing sites are picked uniformly at random along the tours (see top part of Fig-
ure 2). These two points define a matching section that is used to effect a cross through
position-by-position exchange operations. Notice that it might be necessary to change
the original tours outside the matching section to guarantee that the new objects are
again tours (the result of a PMX crossover is shown in the bottom part of Figure 2).
The order crossover operator [8,7,10,29,38] is a variant of the PMX crossover.

2. The cycle crossover (CX) operator [8,7,10,29,38] performs recombination under the con-
straint that each city name come from one parent or the other. Consider the tours at
the top of Figure 3. The result of applying the cycle crossover is shown at the bottom
part of Figure 3.

3. The Grefenstette crossover (Gref-X) [15,14,34] operator takes two tours and constructs
an offspring as follows. Randomly choose a city as the current city for the offspring tour.
Consider the four edges incident to the current city in the parents. Randomly select one
of these four edges and include it in the offspring. (If none of the parental edges leads
to an unvisited city, create an edge to a randomly chosen unvisited city.) Repeat this

'From now on, we will use the term tour instead of permutation since we are only considering the TSP.



A=98217451063
B=12345678910

Two tours before applying the CX crossover

A'=92315478610
B'=18247651093

Two tours resulting from the CX crossover

Figure 3: Illustration of a CX crossover

A=98217451063
B=12345678910

Two tours before applying the Gref-X

B=98234567110
A possible offspring after a Gref-X

Figure 4: Tllustration of a Gref-X crossover

process until all cities have been visited. Consider the tours at the top of Figure 4. A
possible offspring of these tours is shown at the bottom of this figure.

4. The Mulhenbeim-crossover [27] uses a donor and receiver tour. From the donor a random
substring is chosen. All nodes which are included in the string are deleted from the
receiver. Then the substring of the donor is copied over and the remaining receiver
nodes in the order they appear. Consider the donor and receiver at the top of Figure 5.
Assuming that the section between the two || is the portion donated by the donor, the
resulting offspring is shown at the bottom of the figure.

2.2 Heuristic genetic algorithms for the TSP

Heuristic genetic algorithms use recombination operators that incorporate heuristic information
about the TSP. The essential heuristic in all these operators is the observation that solutions to
the TSP contain short edges. Hence, when the opportunity arises to select between edges, the
operators choose the shorter ones.

¢ Heuristic mutation is usually implemented in the form of so called local improvement oper-
ators. Examples include the 2-opt and 3-opt operators of Lin and Kernighan [24] and the
Or-opt operator of [22,30].

donor =98|2174|51063
recetver = 12345678910

of fspring=21743569103

Figure 5: The Mulhenbeim-crossover operator
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Figure 6: Illustration of a 2-opt operation

1. The 2-opt operator randomly selects two edges (a,b), (c,d) from a tour (see Figure 6)

and checks if £D(a,b) + ED(c,d) > ED(a,d) + ED(c,b) (ED stands for Euclidean
distance). If this is the case, the tour is replaced by removing the edges (a,b), (¢, d) and
replacing them with the edges (a,d), (c,b).

- The 3-opt operator is similar to the 2-opt operator, except that it applies to three rather

than two edges.

. The Or-opt was introduced by Or [22,30] and is a variant of the 3-opt operator. The

advantage of the Or-opt operator is that it only considers a small percentage of the
exchanges that would be considered by a regular 3-opt operator. To understand how
the Or-opt procedure works, we refer to Figure 3. For each connected string of s cities
in the current tour (s can be 3, 2, or 1), we test to see if that string can be relocated
between two other cities at reduced cost. If it can, we make the appropriate changes.
For example, for s = 3 (see Figure 7), we test to see if the string of the three adjacent
cities m, n, p in the current tour is considered for insertion between a pair of connected
cities ¢ and j outside of the string. The insertion is performed if the total cost of the
edges to be erased, {a,m}, {p, b}, and {i, 5}, exceeds the cost of the new edges to be
added, {7, m},{p,7} and {a,b}.

e Heuristic information has also been incorporated in various crossover operators for the TSP:

1. The Brady-crossover [4,3] takes two tours and searches for subroutes where some com-

mon subset of cities are visited in a different order (see Figure 8). The shorter subroute
is then copied over to replace the longer one. In the figure, we assume that the sequence
21745 is shorter than the sequence 2 75 1 4.

- The Heuristic-crossover (Heur-X)? [15] operator constructs an offspring from two par-

ent tours as follows: Pick a random city as the starting point for the offspring’s tour.
Compare the two edges leaving the starting city in the parents and choose the shorter

?In fact, the crossover we describe here is a variant of the crossover introduced in [15].

(9]
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Figure 7: Illustration of a Or-opt local improvement operation.

A=98]21745]1063
B=89|27514|36 10

Two tours before applying the Brady-crossover

C=89217453610
A possible offspring after a Brady-crossover

Figure 8: Illustration of a Brady crossover operation
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Figure 9: The Grefenstette-crossover operator

edge. Continue to extend the partial tour by choosing the shorter of the two edges
in the parents which extend the tour. If the shorter parental edge would introduce a
cycle into the partial tour, check if the other parental edge introduces a cycle. In case
the second edge does not introduce a cycle, extend the tour with this edge, otherwise
extend the tour by a random edge. Continue until a complete tour is generated (see
Figure 9). Variations of the Grefenstette-crossover including more heuristic information
where introduced by [18,23,40,37].

2.3 Performance results of genetic algorithms for the TSP

We now describe the performance results of the pure and heuristic genetic algorithms. We will
indicate the size of the TSP problems attempted and the quality of the obtained solutions. Since
most papers do not report the time required to run the algorithms, we can sometimes not report on
this performance parameter. Instead, we will give the population size and the number of generations
for the GA’s to converge.

We first consider the performance of pure genetic algorithms. These results were obtained
from [10,14] and shown in Figure 10%. In this table, the column algorithm indicates the chosen

*We do not report the results of Lie87, because we consider TSP problems with 15 cities too small.



Reference | Algorithm | Problem Population | Best | Average | Time
[10] PMX 33-cities 2000 | 10.0 NA 300
[10 Inversion | 33-cities 2000 | 70.0 NA 300
[14 Random 100-cities 100 | 480.0 NA 200
| [14] PMX 100-cities 100 | 210.0 NA | 200

Figure 10: Results of pure genetic algorithms applied to the TSP

recombination operators, population denotes the population size, best gives the percentage above
the known optimum for the TSP under consideration, of the best solution found by the GA, average
gives the percentage above the optimum for a sample of solutions produced by the GA, time gives
the number of generations. The 33-cities problem (100-cities problem) is a TSP with 33 (100)
randomly distributed cities in a square.

As can be seen from this table, pure genetic algorithms perform poorly, especially when larger
TSP problems are considered. We therefore don’t consider such algorithms in the rest of the paper.
Argument for this poor performance can be found in [14].

We next consider the performance of heuristic genetic algorithms. These results were obtained
from [4,12,15,14,18,27,28,40,39,37] and are shown in Figure 11. We have organized the results
chronologically since this reflects 1) how the problem sizes of attempted TSP problems increased,
and 2) how the fine tuning of these algorithms led to better performance. The 50-cities (100-cities,
200-cities) problem is a TSP of 50 (100, 200) randomly distributed cities in a square. The optimum
tour length for such problems can be estimated as described in [1]. The Krolak problem is the
often cited 100 cities problem described in [21]. This problem has been used in numerous studies
as a benchmark ([22], Chapter 7). The lattice problem is a TSP of 100 cities arranged in a ten by
ten grid. This problem has been used as a benchmark in the performance of simulated annealing
[5,35]. The Grotschel problem is a TSP with 442 cities non-uniformly distributed in a square [35].
The Padberg problem is a TSP problem of 532 cities in the United States [31].

As a general comment, it can be see that genetic algorithms are very good heuristic algorithms
for the TSP. In several cases the best solution was the optimum solution, in other cases, the
performance was to within 1% of the optimum. Also notice how the robustness of the genetic
algorithms is reflected in their average performance. To even better appreciate the quality of these
algorithms, we refer to Chapter 7 in [22] where a survey is given of the performance of many other
heuristics for the TSP. Compared to this study, heuristic GA’s compare well or outperform the best
results obtained with the best heuristics reported.

The table in Figure 11 does not indicate all the features that where considered in GA’s for
the TSP. For example, some authors have studied the effects of the population size [4,18,27,28],
the initial diversity in the population [14], the quality of local improvement [18], the robustness
of the GA (i.e., its ability to repeatedly find similar results) [12,18,17] and the usage of dynamic
recombination operators [37,40,18].

3 Parallel Genetic Algorithms

Genetic algorithms, when implemented on a sequential machine, are notoriously slow. Luckily,
genetic algorithms lend themselves naturally to speed-up through parallelization. This led to the
introduction of parallel genetic algorithms (PGA) 6,12,13,17,25,27,28,26,32,33,36,40,41,42].

In addition to seeking speed-up, this research has also pointed out some weaknesses in the
design choices for genetic algorithms as originally proposed by Holland [16]:



Ref. | Algorithm | Problem Population | Best | Avg Time | Comments
[4] | 2-opt 64-city 24(max) | NA 1.3 1.0s | Avg. 100
Brady-X IBM 3081D
[15] | Heur-X 100-cities 100 | 16.0 | 27.0 400
[37] | Inversion | 50-cities 10| 55| NA 1000 | Dynamic-X
Heur-X
[37] | Inversion | 100-cities 12| %32 NA 3700 | Dynamic-X
Heur-X
[37] | Inversion | 200-cities 15| 34| NA 5800 | Dynamix-X
Heur-X
[40] | 2-opt krolak 100 | 1.8 a7 500 | Low % 2-opt
Heur-X Avg 5
[40] | 2-opt lattice 100 | 0.0 0.4 200 | Low % 2-opt
Heur-X Avg b
[40] | 2-opt 200-cities 100 | 2.4 4.5 850 | Low % 2-opt
Heur-X Avg 5
[39] | 2-opt krolak 100 | 1.2 2.3 400 | Parallel
Heur-X Low % 2-opt
Avg 10
[39] | 2-opt lattice 100 | 0.0 1.1 200 | Parallel
Heur-X Low % 2-opt
Avg 10
[ [39] | 2-opt 200-cities 100 | 1.9 3.6 800 | Parallel
Heur-X Low % 2-opt
Avg 10
| [14] | Heur-X 100-cities 100 | NA | <74 200 | Post 2-opt
(27] | 2-opt krolak 100max | NA 1.9 NA | Paralle]l GA
Muhl-CX Avg 5
High % 2-opt
(28] | 2-opt krolak 241 0.0 0.0 60 | Parallel GA
Muhl-CX High % 2-opt
Avg 25
(28] | 2-opt Grotschel 24 1.0 NA NA | Parallel GA
Muhl-CX | 442 cities High % 2-opt
Best
(18] | 2-opt krolak 100 | 0.0 1.4 590 | Low % 2-opt
Or-opt Low % Or-opt
Heur-X
[18] | 2-opt lattice 100 | 0.0 0.4 420 | Low % 2-opt
Or-opt Low % Or-opt
Heur-X
[12] | 2-opt Grotschel 64 | 0.3 0.4 NA | Moderate % 2-opt
Muhl-CX | 442 cities Avg 10
[12] | 2-opt Padberg 64 | 0.2 0.4 1200 | Moderate % 2-opt
Muhl-CX | 532 cities Avg 10

Figure 11: Results of heuristic genetic algorithms applied to the TSP
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e In accordance with nature, it is more natural to view a population as consisting of a set of
independent structures, each with it own local behavior, i.e., each has the opportunity to
initiate or undergo recombination operations, without the control of a global agent.

o Selection in standard GA’s is a global process, i.e., selection of an individual depends on
its performance relative to the average performance of the entire population. This is quite
unlike nature and inefficient to parallelize [17]. Parallel GA’s therefore introduce local selection
without affecting the performance of the algorithm.

e PGA’s are very reliable, especially when implemented is as distributed a fashion as possible,
i.e., the failure of a processor usually does not affect the rest of the computation.

e PGA’s allow for asynchronous behavior. This is not possible in standard GA’s. This allows
different structures to evolve at different speeds which may result in the global speed-up of
the algorithm as well as the maintenance of diversity, a critical component for the success of
a GA.

Parallel genetic algorithms can be categorized according to their level of distributedness of the
population (coarse-grained versus fine-grained), and the manner in which the recombination and
selection strategies are supported.

In a typical coarse-grained PGA, the population is divided into sub-populations. Each processor
of the parallel machine gets allocated a sub-population and independently runs a standard GA.
In particular, the recombination and selection operations are performed within a sub-population.
To support global competition between the sub-population, on an occasional basis, communication
is established between the processors to facilitate selection between the sub-populations. As a
side-effect of this global selection, individuals can migrate to other populations.

A typical fine-grained PGA is obtained by allocating a single individual® to each processor. Each
processor is powerful enough to perform evaluations of individuals, and to perform recombination
operations such as mutation, local improvement and crossover. Occasionaly communication is
established between the processors to facilitate recombination and selection.

3.1 Coarse-grained parallel genetic algorithms

Pettey et.al. [33] describe a coarse-grained PGA (implemented on an Intel iPSC, with a n-cube
interconnection network, upto 16 processors) applied to De Jong’s [9] test bed of five global function
optimization problems. To support global selection, once every generation each processor sends its
best individual to its neigboring processors and incorporates the best individuals, sent to it by its
neigbors, into its local population. Best results were obtained with the maximum of 16 processors,
each with a sub-population of size 50, and were comparable with results obtained with standard
GA’s. In [32] a theoretical analysis of this PGA is given.

Tanese [41] describes a coarse-grained PGA (implemented on a 64 NCUBE/six hypercube made
by NCUBE corporation) applied to a GA-hard global function optimization problem (see [41] for
a definition of GA-hardness). To support global optimization, once every five generations, each
processors sends a portion of its best individual to one of its neighbors. A fixed population of 400
individuals was distributed over 1 through 32 processors. The quality of the solution obtained with
the PGA was similar to that of a standard GA. Furthermore, a nearly linear speed-up was recorded.
([42] is a continuation of this study.) An interesting addition is the introduction of a partitioned
PGA, ie., a PGA without migration. The author reports that this PGA is a better optimizer

*Sometimes, instead of a single individual, a small number of individuals is allocated to each processor.
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than a standard GA on the same problems, however, significant variations exists in the average
performance of the sub-populations. To improve this, a reasonably small degree of migration was
introduced to yield both the quality of the partitioned PGA and to obtain comparable performance
average amongst the sub-population.

Cohoon et.al. [6] describe a PGA which is a hybrid of the Pettey and Tanese algorithms After a
fixed amount of generations, each processors sends a set of its best individuals to all its neighbors.
After receiving these individuals, each processor selects a new population on the basis of the old
population and these new individuals. The chosen application problem is the quadratic assignment
problem. In a simulation of the parallel algorithm on a sequential machine, the authors report
better quality of solutions for PGA than for a standard GA.

3.2 Fine-grained parallel genetic algorithms

Muhlenbein, Gorges-Schleuter and Kramer [27,28] describe a fine-grained PGA and apply it to the
traveling salesman problem. Their algorithm (see [27,28]) is as follows:

1. Take a sequential heuristic algorithm for the TSP (such as 2-opt).
2. Give the problem to N processors with different starting configurations.
3. Each processor computes a local optimum according to the sequential heuristic algorithm.

4. Each process performs a local selection by assigning ranking weights to individuals in neigh-
boring processors (better individuals receive higher weights and each processor has four neigh-
bors). A mating partner is chosen probabilistically according to this weight distribution.

5. Perform crossover and mutation (see Section 2).

6. Reduce the problem by collapsing common subtours, solve the reduced problem and expand
these solutions.

7. If not converged go back to step 3.

The fine-grained nature of this algorithm is transparent in a) steps 2, 3, and 6 where individuals
processors independently work towards a local minima, b) step 4 where local selection is performed
instead of global selection as done in standard GA’s, and c) step 5 where crossover and mutation
are done independently as local processes of the processors. This algorithm, and a refined version
reported in [12] was successfully applied to various TSP problems (see Figure 11). The work
reported in [26] applies a similar fine-grained PGA to the quadratic assignment problem.

Suh and Van Gucht [39] describe a fine-grained PGA and apply it to the traveling salesman
problem. Their approach considers a framework consisting of a pool of processors which execute
identical or nearly identical tasks in parallel. Each processor has a local memory large enough to
store a small number of structures, one of which is called the local structure. The collection of all
these local structures in the processors constitutes the population of the genetic algorithm. Each
processor is capable of performing local tasks and communicating with the other processors. The
local tasks and communication serve to 1) perform evaluation of individuals 2) perform recombi-
nation operations and 3) perform local selections (as described in [39]), there exists a variety of
reasonable local selection strategies). Their algorithm is very similar to the one of Muhlenbeim
et.al., except that 1) instead of letting processors completely converge to local optima (as in step
3 of the Muhlenbein et.al. algorithm) only a certain amount of local improvements is performed
before processors can interact, and 2) communication can be established directly between each
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pair of processors, regardless of their geometric relationship within the connection network of the
parallel machine. This algorithm was successfully applied to various TSP problems (see Figure 11).
and yields the same results as standard GA’s. In Section 4 we will apply this algorithm to large
TSP problems with different rates of local improvement operations.

Manderick and Spiessens [25] describe a fine-grained PGA very similar to the algorithms of
[27,28,26,12] and [39]. Each individual of the population is allocated to a single processor. The
processors are interconnected in a grid. Each processor performs the evaluation of its individual.
Mutation occurs locally within the processors. Local selection is performed by each processor and
is implemented by the calculation the fitness distribution in the neighborhood of that processor.
Each processor selects a new individual on the basis of this distribution. Crossover is done between
neighboring processors. A simulation of this algorithm was applied to global function optimization
problems [9,41] and a comparison was made with a standard GA. The quality of various performance
measures showed only minor differences between the PGA and the standard GA.

Sannier and Goodman [36] describe a fine-grained PGA allocating a single or small number
of individual to each processor. The processors are interconnected in a grid. Communication can
be established between each pair of processors, but the likehood of this depends inversely on the
distance in the grid between the processors. This communication is used to perform inter-processor
selection and crossover. This algorithm was applied to a survival game in which individuals compete
for food.

4 Parallel algorithms applied to large TSP’s

A closer look at Figure 11 reveals that an important calibration factor in determining the quality
of solutions obtained for various TSPs is the amount of local improvement operations performed
on a tour during each generation.

The intuition is a follows: if too little local improvement is performed, the selection pressure
of the GA will make it prematurely converge into a sub-quality local optimum. If too much local
improvement is performed, however, there will be few chances for tours to crossover and selection
will have few opportunities to weed out poor tours. This will unnecessarily increase the convergence
time.

It therefore is reasonable to state that a balance has to be stricken between the desired quality
of the solution and the time in which it is obtained. For example, the work of [40,39,18] emphasizes
speed, whereas the work of [27,28] emphasizes quality of solution. The best balance can be found
in the work of [12], in which high quality solutions are obtained, in the presence of plentiful use of
the recombination operations and local selection.

The natural question arises to what degree one can decrease the amount of local improvement
operations per generation and still obtain high quality solutions. In this section, we address this
question by applying the parallel genetic algorithm of [39] to a variety TSP’s of growing size®.
Besides the krolak, and padberg problems (see Section 2), we have considered:

e The hamiltonian tour 318-cities problem of non-uniformly distributed cities of [24]. The
optimum solution for this problem is reported in [31].

e The lattice-400 problem, consisting of 400 cities arranged in a 20 by 20 grid. This problem
has been studied in the context of simulated annealing [19].

5The algorithms were run on the BBN Butterfly at the Iowa State University. We were able to use up to 90
processors.
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e The 1000-cities problem of 1000 randomly distributed cities in a square. Problems of this
size have been studied in the context of simulated annealing. To our knowledge, this is the
largest problem yet attempted with a genetic algorithm.

In the top part of Figure 12, we show results of experiments run with a parallel version, in the
style of [39], of the genetic algorithm with 2-opt and Or-opt of [18]. The low column contains results
of this algorithm with a low amount of local improvement operation per generation. The moderate
column contains results of this algorithm with a moderate amount of local improvement operation
per generation. The z column indicates the amount of local improvements in the following sense.
If z = 0.1 and we are working on a TSP of size s, then 0.1 * s are performed on each tour per
generation. The best (average) column contains the percentage away from the optimum of the best
(average) solution found by the PGA. The time columns give the time in seconds of the PGA run
with the maximum number of available processors (typically 70) 6. (In Appendix A, we show the
best tours obtained with the PGA’s for a selection of TSP’s.) This figure clearly indicates the thesis
that more local improvement per generation improves the quality of the solutions, but clearly at
the expense of extra time.

It could be asked what the limit behavior is of a PGA with an “unlimited” amount of local
improvements between generations. Such algorithms are PGA’s without selection and crossover. We
call such algorithms independent strategies, because they consist of running, in parallel, independent
sequential local searches. In the bottom part of Figure 12, we show the results of the independent
strategy on a selection of TSP’s. Whereas on the smaller TSP’s (i.e., size 100), the results are
not significantly different, on the larger problems (above 500 cities), it is clear that crossover and
selection do play a critical role in the performance of GA’s for the TSP. It is also interesting to
observe that on larger TSP’s, PGA’s with a low amount of local improvement yield better solutions
than the independent strategies and this with better efficiency.

Finally, a word about speed-up. Our PGA is coded so that it can be simulated on a varying
number of processors. This allows us to measure the speed-up of the algorithm as a function of
the number of processors. Clearly, the more available processors, the closer our implementation
comes to a true fine-grained distributed algorithm. Figure 13 shows the speed-up curve of the PGA
applied to the krolak problem. (Similar curves can be obtained for all the other reported TSP’s.)
As can be seen, the speed-up curve is nearly linear up to 90 processors.

5 Parallelizing probabilistic sequential search algorithms

So far, we have concentrated on genetic algorithms and discussed how heuristic operations, such
as 2-opt and Or-opt, can be successfully integrated. Originally these heuristics were used in prob-
abilistic sequential search algorithms. These algorithms typically take the following format: 7

1. Generate a random candidate solution.
2. Attempt to find an improved candidate solution by some heuristic transformation.

3. If an improved solution is found, then replace the previous candidate solution by this better
one.

®In this respect, we would also like to point out that the majority of the time is spent in calculating double float
square roots since for the large TSP’s we were not able to distribute the distance matrix to each processor. If this
could be done, all the algorithms would run a factor of 4 faster (this is a conservative estimate).

"More recent algorithms, such as simulated annealing [2,5,20,35] take essentially the same format.
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Problem Low o Moderate ]
B x | Best | Avg | Time(in sec) X Best | Avg | Time(in sec) |
lattice(100) 0.1 08] 23 17] |10 08| 1.2 42
krolak(100) 02] 05| 21 171 |30 00| 05 70
318-cities 02| 29| 46 275 | | 1.6 20| 2.9 730
400-lattice [ 0.15 | 1.9 | 2.2 310 | | 1.2 04| 1.0 1060
| padberg(532) | 0.2 2.9 3.8 470 | |05 16 24| 1070
| 1000-cities G2 28] 3i 2700 | [ 1.2 1.0] 1.6 7000

Parallel genetic algorithms with low and moderate local improvement for various TSP’s

Problem Best | Avg | Time
lattice(100) L] 19 33
krolak(100) 0.0] 0.2 73
| padberg(532) | 7.4 | 8.1 490

1000-cities 40| 4.2 | 5500

The independent strategy for various TSP’s

Figure 12: Performance of parallel genetic algorithms

4. Repeat from step 1 if the solution is not satisfactory and time permits 8.

An alternative way of looking at the results of parallel genetic algorithms would be to shift the
attention to the sequential algorithm built around the local improvement operator and view the
parallelism in the GA’s as a technique to parallelize these sequential search algorithms. This is the
viewpoint we will take in this section. We will focus on the 2-opt operator for medium-size TSP’s
(100 cities) (For a more detailed discussion see [17].)

The simplest way to parallelize probabilistic sequential search algorithms is to let the processors
work independently. That is, each processor randomly generates an initial candidate solution
and then repeatedly applies the 2-opt operator. At the end, that is after a prealloted time has
expired, all processors stop and the best available solution is taken as the solution of the parallel
algorithm. This is called the independent strategy®. A potential problem with this strategy is
that some processors may get caught in local optima or may simply search the wrong areas of
the search space. Intuitively, it seems likely that we may do better if we let the processors work
independently for a while, then exchange information about “good” candidate solutions, then again
work independently for a while, then again exchange information and so on. Clearly there are many
ways to exchange information and thus there are many such strategies. Such a strategy will be
called an interdependent strategy and the processing time between information exchanges is called a
generation. One way to exchange information is to redistribute a certain number of best candidate
solutions after each generation. More sophisticated strategies would involve exchanging structural
parts of candidate solutions as with crossover operators of genetic algorithms.

Step 2 will be called an attempt at local improvement or a trial. If an improved solution is found in a trial we
shall say that the trial has been successful.

*This kind of strategy can also be found in the work of (4,28,35] where it is investigated as a technique to see
how genetic algorithms differ in quality and time of performance compared to simply running a certain number of
sequential algorithms and taking as solution the best obtained local optima. It turns out that GA’s perform better
than such algorithms.
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The independent strategy has the advantage that each processor is able to devote its entire time
to attempting local improvements. In the interdependent strategies the processors spend some time
exchanging information and thus in the same total time, they attempt a smaller number of local
improvements than the independent strategy. But information exchange may help the parallel
algorithm as a whole to search the space more efficiently. However if too much time is spent in
communication, then the performance will obviously degrade, since any randomly chosen candidate
solution will require a certain number of successful local improvements to achieve a solution close to
the optimum. We will indicate the tradeoffs involved in communication versus working in isolation
and try to come up with some preferred strategies for the parallelization of probabilistic sequential
search algorithms.

To compare the various approaches, it is necessary to introduce several performance measures:
(1) accuracy, in terms of how good are the optimums obtained, (2) efficiency, that is how much
time is taken for the execution, (3) robustness, that is how confident are we of obtaining good
solutions repeatedly and (4) speedup, which is the ratio of efficiency of the sequential algorithm and
the efficiency of the parallel algorithm. Probabilistic sequential search algorithms usually follow
a principle of diminishing returns in the sense that getting values very close to the optimal may
take an extremely long time, and so much accuracy may not be necessary. Hence for the following
study, we will define efficiency as the time required to come up with a tour within 10% of the global
optimum!°.

5.1 The Independent Strategy

As stated above in the independent strategy each processor randomly generates an initial tour and
repeatedly applies the 2-opt operator until the given time expires.

The independent strategy shows a speedup of only about 2 as the number of processors is
increased from 1 to 80. It therefore seems that the additional processors are not being utilized in
a meaningful way. However, this is not true. With one processor about 40% of the experiments
fail, in the sense that by the end of given time they are unable to come up with a tour which is
within 10% of the global optimum. (Our definition of efficiency in the previous section implies
that in such cases efficiency can not be measured.) Therefore the parallel algorithm is not very
robust if it has only a few processors. After the number of processors increases to above 20, no
experiments fail and the algorithm is now robust. The accuracy of the algorithm improves as the
number of processors increases and with about 80 processors we can get an accuracy of within 5%
of the optimum.

Even with 80 processors up to 30% of the processors fail to find good optimums and the good
accuracy is only a result of the using a large number of processors. So some processors are not
doing any useful work and we may be wasting processor power. We will next attempt to make all
processors search useful regions of the search space by exchanging information at regular intervals.

5.2 Redistributing the Best

A simple way of exchanging information is to redistribute the one best tour from among all pro-
cessors at regular intervals. We shall call this the One Best Strategy. The important variable to
adjust here is the time per generation, or tpg. As tpg increases information exchange is done less

""The results we give are from experiments done on a BBN Butterfly at the University of Maryland. We chose
the Butterfly because it is a nice example of a shared memory MIMD machine and because on the Butterfly the
processors can easily be made to work, when required in isolation from each other. (For example, in the independent
strategy when each processor accesses its tour to improve it, that access does not interfere with another processor
trying to access its tour.)
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often. (If tpg is equal to the total time then we have the independent strategy.) We found that
low values of tpg make the algorithm more efficient. (About four times faster than the independent
strategy.) However, the accuracy worsens significantly. Not only that but the robustness fails to
improve as the number of processors is increased. The speedup curve is now close to logarithmic
until about 16 processors and then it flattens out.

These results can be explained as follows: By redistributing the one best tour very often, all
processors concentrate on the tours that currently looks to be “good”. When all processors try to
improve this tour at least one processor is often able to find a big improvement. Hence the efficiency
improves significantly. However, a tour that looks to be the best in a particular generation may not
be a good one in the long run. It is possible that it may just lead to a local optimum, and so the
one best strategy could get trapped in a local optimum. This phenomenon of getting trapped in a
local optimum is called premature convergence. It also explains why the accuracy is significantly
worse than the independent strategy.

We can avoid premature convergence by redistributing the k best instead of the one best strategy.
We shall call this the k£ Best Strategy. We find that as k increases the efficiency worsens, but the
robustness improves. With & = 8 and 16 or more processors the algorithm is very robust. However,
the accuracy remains significantly worse than the independent strategy.

So while we have been able to improve the efficiency and maintain robustness by the k best
strategy, we have not been able to match the accuracy of the independent strategy. Clearly, to
improve the accuracy and efficiency, as well as to get good speedup we need a more sophisticated
strategy of information exchange.

5.3 The Selection Strategy

Holland has shown [16] that in the absence of any disruptive operators the strategy of allocating
exponentially more trials to the observed best is optimal in searching good regions of the search
space. This strategy is called the selection strategy. The selection strategy combines the idea of
creating multiple copies of good candidate solutions so that a push is given towards what seems to
be the global optimum, as well as the idea of avoiding premature convergence by keeping around a
few currently bad looking candidate solutions.

We tested this global selection strategy as a strategy of exchanging information after each
generation. In terms of speedup results, the selection strategy performs very poorly beyond about
16 processors. The reason for this is that it requires a global synchronization of all processors and
the selection strategy spends a considerable amount of time in redistributing the tours. Luckily,
this situation can be resolved by instead of considering global selection, it is possible to implement
selection as local processes. In this way it is possible to both get quality solutions with speedups
as seen in the k best strategy.

Finally, to improve the robustness and quality of the interdependent strategies, one can intro-
duce structural exchange operators, yielding of course the parallel genetic algorithms studied in
Section 3.

6 Conclusion

In this paper, we have given a review of parallel genetic algorithms applied to the traveling salesman
problem. Our main conclusion is that such algorithms make excellent approximation algorithms for
this problem when compared with more standard sequential heuristic algorithms. This is especially
the case on large TSP’s. Since the PGA’s lend themselves naturally to parallelism, such algorithms
can also be efficiently run on parallel machine.
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We

This paper however leaves open some research issues:

o Asindicated, the crossover plays a role in the quality of tours obtained with PGA’s. It would
be interesting to more thoroughly study its effect. As mentioned before, we expects the role
of crossover to gain importance with growing size TSP’s.

® Bven PGA’s which use low amounts of local improvement can yield good results. An interest-

ing question would be to determine how small we can make this amount (thereby improving
the efficiency of the algorithm) and still get reasonable tours.

e Although we have purposely selected TSP’s with different structural properties (for example,
compare the random cities problems and the lattice problems) we did not thoroughly deter-
mine if these properties play a critical role in the quality of the PGA’s. We conjecture that
indeed such structural properties can be important in the outcome of the algorithms.

plan to address these issues in a forthcoming paper.
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Length = 21285 (0.0%)

Figure 14: Best tour with moderate local improvement for the krolak problem
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Figure 15: Best tour with low local improvement for the 318-cities problem
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Figure 16: Best tour with moderate local improvement for the 318-cities problem
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Figure 17: Best tour with low local improvement for the 400-lattice problem
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Figure 18: Best tour with moderate local improvement for the 400-lattice problem
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Figure 19: Best tour with moderate local improvement for the padberg problem
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Figure 20: Best tour with low local improvement for the 1000-cities problem
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Figure 21: Best tour with moderate local improvement for the 1000-cities problem
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