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Abstract

Lukasiewicz logic arrays (LLAs) are analog VLSI array processors based on
an 11-transistor cell that possesses a dual algebraic and logical semantics. By
switching between semantics £LAs support both classical and connectionist
artificial intelligence applications. In this paper we briefly describe ELA
architectures, CMOS VLSI implementation, and programming. Data resulting
from the usc of the prototype £L.9 as a fuzzy function recognizer is reported. The
application of ELAs to expert systems, analog models of single neurons, and
simple recurrent neural networks is also described.

1. INTRODUCTION

This paper describes the implementation and applications of Eukasiewicz logic arrays
@LAs). LLAs are analog VLSI array processors based on a processing element that
possesses a dual algebraic and logical semantics. By switching between semantics this
architecture supports both classical and connectionist artificial intelligence applications.

1.1 Classical and Connectionist Al
Artificial intelligence (Al) applications are broadly categorized as either:

. classical (symbolic), typified by theorem proving, logic programming and
expert systems, or

¢ connectionist (sub-symbolic), typified by pattern classification and learning
algorithms, with little or no requirement for logical inference or explicit
representation of a problem domain.
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Application-specific architectures for Al are similarly categorized: architectures for classical
applications provide hardware data types, unification support and control for imperative
search strategies, but have few or no features for massively parallel pattern classification;
architectures for connectionist applications provide massive parallelism and local
communication between processors, and favor rapidly reconfigurable weights or threshold
values whose precision is often less than six bits.

The need for parallelism in classical Al applications, and symbolic processing in
connectionist Al applications has led to research into hybrid symbolic and sub-symbolic
architectures [1, 2, 3].

1.2 Digital, Analog and Hybrid Computers

The differences between analog and digital architectures parallel the differences between Al
architectures. Digital computer architectures may be classified as either general purpose,
such as RISC and CISC architectures, or application specific, such as systolic arrays or
language processors. Properties that have made digital computers the dominant form of
computing device include the ability to handle discrete data, arbitrary precision,
programmed control, and the availability of dense program and data stores.

Analog computers provide an analogy to a physical system. An analog computer need not
be electronic, but could be composed of soap bubbles, conductive paper, strings and
weights, pins and wires, or scale models of aircraft. In fact, all of these have been used
with varying success as analog computers [4]. The advantages of analog computers
include their speed, inherent parallelism, and small size. For example, to study melting
Murray [5] has implemented an analog computer with colloidal crystals that uscs 109
"processors” in an arca of approximately 3 cm2. To study this same problem with a
general purpose digital computer would require 15,000 Connection Machines, each with
65K processing elements. As well-suited as Murray's computer is to its task, it ial‘so
exhibits the disadvantages of analog computers. These include limited accuracy, inability
to process discrete data, and applicability to a small class of problems.

In a similar fashion ELAs have limitations that can be avoided by including ELAs in hybrid
digital-analog computer architectures: for example, although capacitance can be designed
into an LLA 1o store analog values for a network's weights in the short term, digital storage
is better-suited to store weights for repeated long-term use.

Another type of hybrid architecture exists when computers possess different operational
semantics at a fundamental level, allowing the operation of the processor to change without
modifying the hardware or programming an emulator or interpreter are also "hybrid"
architectures. Architectures that have this property are not paradigm-specific, and can
support fuzzy logic [6] as well as neural networks [7, 8, 9].

LLAs both possess the second type of hybridism, and can be used as processors in hybrid
digital-analog computers; thus £LAs are well-suited as "bridge" architectures that span the
gap between digital and analog processors, and classical and connectionist Al applications.



2. LUKASIEWICZ LOGIC ARRAYS
2.1 Design

Systolic logic arrays (SLAs) implement sentence schema of multiple-valued logics with
small, fast, analog processing elements that have limited precision. £ukasiewicz logic
arrays, or £LAs are systolic logic arrays restricted to sentence schema of the multiple-
valued Eukasiewicz logic [10, 11]. £LAs are organized as H-trees of identical processing
elements. A processing element may perform Lukasiewicz implication (—), negated
implication (), or both, with the connectives defined as follows:

a—=p

o +p

min( 1, 1-a+p)
max(0, o - B)

- (o —=p)

The architecture is implemented as an analog VLSI array of processing elements (PEs),
with each PE composed of only 11 MOSFET transistors. The first 32-PE array prototype
£L.9 was fabricated on a MOSIS "tiny" chip in January, 1990; the second prototype,
L1110, in June, 1990.

The design of £1.9 and £L.10 followed from the relation of ukasiewicz logic to the theory
of cellular automata, and inference cellular automata in particular [12]. An £LA processor
is an H-tree interconnection network whose nodes are processing elements that perform

simple — even single — functions: Eukasiewicz implication (—), negated Lukasiewicz

implication (- ), or both. The processing elements are derived from lhc_bognded
difference circuit of Takeshi Yamakawa [13, 14], leading to an architecture that is simple,
regular and pipelined: a systolic array for Eukasiewicz logic.

The operation of the prototypes £L9 and £L10 is described elsewhere [33].
2.2 Dual Operational Semantics of LLAs

Lukasiewicz' logic is sufficiently general to deal with a broad class of approximate
reasoning paradigms because it is representationally complete relative to the class of
multiple-valued logics whose valuation functions can be defined in terms of +, —, min and
max, including fuzzy logic [15, 16, 17, 18, 19].

McNaughton's theorem [20] allows us to use E at different levels of abstraction, in
particular as a classifier for elements of fuzzy sets. By showing that valuation functions
for connectives in sentences in E are equivalent to piecewise-constructable first-degree
polynomials that map the hyperspace [0,1]7 into the interval [0,1], the capability of
building fuzzy pattern recognizers is provided. Thus, a series of sentences in £ defines the
polytope of some convex and simply connected solid in a hyperspace of degree n. This
allows us to express arbitrarily complex membership relations in logical form; in a VLSI
circuit we define the polytope with a sentence from E, which is converted to the normal
form (described in section 3) of the sentence representable by one or more ELA circuits.
The ELA circuit may be “programmed” to deal with variants of the original sentence by
assigning incoming data to specific circuit inputs.

The dual semantics gives Lukasiewicz logic arrays surprising utility. Within the array
some processing clements may operate at a low level of abstraction, evaluating membership



in a fuzzy set, while other processing elements may operate at a higher level of abstraction,
implementing connectives of fuzzy logic. A single Lukasiewicz logic array can implement
an expert system by processing input from analog sensors (fuzzy membership), accepting
judgmental input in the form of confidence factors, then identifying a likely problem and its
solution by a fuzzy logical deduction. It is our hypothesis that the Lukasiewicz logic array
is a fundamental processor for approximate reasoning systems for two reasons: first,
because the Lukasiewicz logic is complete with respect to the class of multiple-valued
logics Ly, _ »,v} as shown in this paper; and second because the dual semantics of £ allow
it to describe expert systems, Boltzmann machines [7], neural networks [7, 21], fuzzy
computers [6, 22], and sparse distributed memories [23].

2.3 Advantages and Disadvantages of ELAs as Al Processors

£LAs have several advantages as Al processors: they can implement both classical and
connectionist Al systems by switching between the dual logical and algebraic semantics of
Lukasiewicz logic. Eukasiewicz logic can be used in a logical sense to model propositions
whose truth values are distributed over the interval [0,1], thus £ukasiewicz logic is closely
related to fuzzy logic [16, 19, 22, 24, 25]. Yamakawa's designs for fuzzy inference
engines and expert systems use primitive functions equivalent to the connectives of
+Lukasiewicz logic [6, 13, 26].

The homogeneous arrays used in the prototype LLAs require O(2") nodes to implement a
sentence containing n logical variables. One approach to this problem is the development
of heterogeneous arrays that do not use binary tree form for sentence schemata. A second
approach is to time-multiplex the inputs, and recursively evaluate each sentence. This
reduces the number of nodes to O(n).

The precision of analog ELAs limits their accuracy, and factors such as stabilization time
and environmental factors are difficult to control. However, the fuzzy nature of the
computations reduces the seriousness of this problem, and first test results show accuracy
that ranges from 0.5% to 2% after trimming.

Finally, ELA programming is an instance of the more general problem of programming
analog and hybrid computer architectures. We describe the low-level £LA programming
methodology in the following section.

3. PROGRAMMING LELAS

LLAs are programmed at the lowest level by fixing an interconnection network for the
inputs, and presenting inputs that are either true, false, or variable. Because it 1s not
practical to build an LLA for each sentence in L, it is necessary to develop a normal form
that maps arbitrary sentences onto some general ELA.

The prototype £LA is structured as a binary trec whose nodes are connectives and whose
leaves arc logical variables. Most sentences in £ do not map directly to this schema, but
must be transformed to equivalent sentences which do. This general form of a sentence in
L is the balanced normal form in implication, with explicit negation possible anywhere in
the sentence.



Definition 1. A sentence in L is in balanced normal form in implication if there exists
some designated implication in the sentence, starting at which a binary tree
of implications can be extracted, and for which at each non-leaf node in
the tree the number of implications and logical variables in each subtree
rooted at that node is equal.

The circuit implements balanced normal form sentences in £ because it is structured as an
H-tree. The use of a binary tree to realize n-input R-valued functions for multiple-valued
logic circuits was described by [27].

The next step toward developing a useful normal form is to remove explicit negation.
Simplification will suffice to remove an occasional pair of negations, but single negated

cxpressions of the form—a must be re-written to an equivalent form that does not use

negation explicitly, namely a — false. The advantage is that clauses expressed in only one
connective, while textually more complex, may be mapped to smaller and simpler physical
devices that perform negation using data inputs alone. Consider the transformation of an
arbitrary sentence in E to BNF normal form. The sentence is unbalanced initially, and
contains negation (Figure 1).

i
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(o—(p =~y )) >0
Figure 1.  Unbalanced sentence in L

The resultant BNF normal form to which it is transformed is shown next (Figure 2).
Although the textual form of the sentence is more complex, the BNF normal form uses
cells of the ELA that the first form would have left unused. These "extra" inputs and
implications can be used to adjust the constraints under which the sentence is true.

(T =T~ (T =i+ LI ~B) = S ED) = (T =Ty =T *8) 2T~ Ty~ (T—=5))

Figure 2. BNF normal form of sentence in Figure 1

This programming methodology is useful to define membership functions for fuzzy logic,
but much less so for designing neural networks. However, it appears that the application
of ELAs to neural networks may not require this approach: a network built based on ELAs
using randomly selected inputs for pattern data, others for training, and the remainder for
feedback strongly resembles a simple recurrent network.



4. CLASSICAL AI APPLICATIONS

+ukasiewicz logic arrays were first proposed to evaluate sentences in E, but because
+ukasiewicz logic describes other forms of approximate reasoning, £LAs are useful for a
variety of applications. The dual logical and algebraic semantics of L allow LLAs to
implement expert systems, neural networks [7, 21], and fuzzy computers [6, 22]. We
present schematic examples for each application, and report the results obtained by
programming the prototype £LA as a fuzzy function generator.

4.1 Fuzzy Logic

Lukasicwicz logic is closely related to fuzzy logic [16, 19, 22, 24, 25]. Yamakawa shows
designs for fuzzy inference engines and expert systems which may be embedded in
Lukasiewicz logic arrays [6, 13, 26]. We have used the prototype £LA to compute fuzzy
membership functions, and present the results obtained along with observations on the
crror measured after trimming the output of the prototype ELA.

The first function we evaluated was the "half notch" (Figure 3). The untrimmed £LA has a
stable 10% output error when implementing this function, which can be removed easily.
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Figure 3. LLA implementation of (( ~a —a)— F

The next function (Figure 4), an inverted "notch," is defined by the expression

((~a—=a)—= = (o— - a))—p). This membership function was programmed
into the 31-cell ELA as the following 32-element vector:

(F,E,F,F,a,F,T,a,T,0,o,FFFT,FFEFFEFFFFFFFFFEFET}).
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This function can be turned into a series of "clipped notches" by instantiating f to different
truth values. The worst-case error in this function is approximately 14%, but can be
reduced by trimming [28, 29].

The final fuzzy membership function is the uninverted "notch", defined by the expression

(~a—=a)— - (a-—-a). This membership function was programmed into the 31-
cell ELA as the following 32-element vector:

(LTTLTLTTT.TLTLTTTTTTTT.T.TToETa, T,a,0,FETTTF).

The result of this experiment showed that the ELA implemented the notch function linearly,
but with a slope that varied from that of the calculated function. This scaling is due to an
arbitrary choice of a resistor in the measuring circuit. By changing this resistance, or
"trimming", the output can be adjusted to produce a much closer fit, with the center of the
notch ncar 100uA (Figure 5). We have calculated that an optimally trimmed £LA would
have a typical error of less than 2%, and a mean error less than 0.5%. The ELA computes
fuzzy functions accurately. Error is within 1.5% of ideal, with error near 4% where the
current changes value rapidly.
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Figure 5. LLA implementationof (- a—=a)— - (a—=> -0a)
4.2 Expert Systems

LLAs implement expert Systems by mapping membership functions to processing elements
at lower levels in the array, and rules to processing elements higher in the array. A ruleis a
single tree that is true or false to a degree that depends on its inputs. Rules can be designed
that do not fire unless their inputs reach a desired confidence level (Figure 6).

Rules

Classified

Inputs A EHLA
Inputs O Sensor

Figure 6. LA implementation of expert system

A single Lukasiewicz logic array can implement a simple expert system, which may be
used to embed limited "intelligence" in individual sensors. Within the array some
processing elements operate at a low level of abstraction, evaluating membership in a fuzzy
set, while other processing elements operate at a higher level of abstraction, implementing a
rule for that sensor. The rule's operation may vary based on control inputs to the £LA.
The expert system evaluates its sensor's input, firing the rule if the confidence factor is
exceeded.



5. CONNECTIONIST AI APPLICATIONS

McNaughton's theorem (sce Section 2) and Giles' Logic of Assertions [25] relate sentences
in Lukasicwicz logic to piecewise-lincar functions and the theory of convex analysis. This
is the functional domain of pattern recognizers and classifiers (Figure 7), which has
encouraged us to investigate neural networks implemented with ELAs.

Lukasiewicz logic also has an algebraic interpretation. The claim that Eukasiewicz logic
arrays are useful as pattern recognizers and classifiers is due to a theorem of McNaughton.
This theorem relates sentences in Lukasiewicz logic to piecewise-linear functions [20]. A
more recent observation by Giles points out the similarity between resolution using his
Logic of Assertions (LA) and the theory of convex analysis — linear spaces with convex
sets and convex functions [25]. This is exactly the functional domain of perceptrons and
neural networks, strongly suggesting that ELAs can be used to emulate the pattern
classification functions of ncural networks (Figure 7).

(o<

Non-convex space Decomposed into convex hulls Expressed as a sentence in Lukasiewicz logic:

OA-YA-T

Figure 7.  Relationship of non-convex space to a sentence in Lukasiewicz logic

When symbolic and sub-symbolic computation are merged in an £LLA, some processing
elements operate at a low level of abstraction evaluating membership in a category, while
other processing elements operate at a higher level of abstraction evaluating the truth of a
logical sentence.

Early models of nerve nets were described by McCulloch and Pitts [30]. Kleene and von
Neumann anticipated much of the present-day work in neural networks, offering theoretical
descriptions of the events representable in neural networks [31], and the creation of reliable
computing systems from unreliable components [32].

5.1 Model of a Neuron

The evaluation formula for Lukasiewicz implication shows how it may be used to construct
a very simple "ncuron." In the expression min(1, 1 — a + B), ais an inhibitory input that

lowers the "firing rate", or truth value. B is an excitatory input that increases the "firing
rate." Recursively connecting several implication cells produces a "neuron” with a variable
threshold (Figure 8a). Summation units can also be devised (Figure 8b).

Simulations of intcrconnected £LA "neurons" and summing elements show that they have
the basic propertics needed to construct a neural network. The behavior of a "neuron” can
be changed by modifying its threshold. For example, the slight delay before the second
output pulse in the simulation is due to an intermediate "neuron" (Figure 9).
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Figure 9.  Simulation of interconnected £LA "neurons”

We are now working to construct a trainable neural network from these basic components.
The initial version will be a hybrid digital-analog system, similar to those of Alspector and
Graf |7, 8, 9]. However, we hope to devise analog-only systems using double-poly
capacitors as storage clements for weights.

5.2 Simple Recurrent Networks

LLAs provide a forest of sentences all of which may be true to various degrees depending
on order of inputs. A programmed LLA defines a metric on a set of inputs, expressed as
the truth of a logical sentence. Thus a neural net can be built with LLAs by using a large
sentence, some of whose inputs arc mapped to statistically separable patterns, and the rest
mapped to weights adjusted during the learning process. Learning in an LLA is a process
of generating a sentence that is maximally truc only for elements of the training set, and
false for others. Due to the analog nature of LLAs, the less similar a new element is 0
those in the training set, the less likely it is to be recognized.

We close with a brief summary of our results and directions for future research.



6. CONCLUSIONS

We described the architecture of an operational 31-cell CMOS VLSIELA, which is regular,
simple, area-efficicnt and implemented with analog rather than digital processing clements.
The prototype £LAs are programmed with input vectors derived from normal forms of
sentences in the Lukasiewicz logic. This requires data inputs on the order of O(21) for
sentences in # implications, limits the size of the sentences that can be evaluated by a given
LLA and increases the number of pins needed on the VLSI package. However, many data
inputs are true or false, or are composed of a repeated number of variable inputs. Based on
this observation we are designing £LAs that have external control inputs, and a restricted
number of cxtcrnal data inputs. ELA programming is an instance of the more general
problem of programming analog and hybrid digital-analog computer architectures. Because
£LA-based systems will be either analog or hybrid digital-analog computers, future
research includes developing programming languages for them.

The dual logical and algebraic semantics of £ukasiewicz logic allow £LAs to implement
expert systems, neural networks, and fuzzy logic functions. We presented schematic
cxamples for cach application, and reported the results obtained by programming the
prototype £LLA as a fuzzy function gencrator. The results showed that the ELA
implemented the noich function linearly, but with a slope that varied from that of the
calculated function. Trimming the ELA inputs and outputs is expected to result in a typical
error of less than 2%, and a mean crror less than 0.50}3. With further modifications to the
circuit, and trimmed outputs, the error should drop to less than 1% for each cell as reported
by Yamakawa [13].

Applications of ELAs to expert systems, a model neuron, and simple recurrent networks
were proposed. Current work to complete a hybrid digital-analog testing environment for
LLAs with up to 128 inputs will allow us to implement the proposed applications using the
prototype £LAs. ELAs present a new challenge in the design of massively parallel
processors, as well as the design and programming of analog and hybrid computers. For
those problems where precision may be traded for speed, £LAs provide an excellent
solution.
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