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Abstract

Lukasiewicz logic arrays (ELAs) are massively parallel analog computers
organized as binary trees of identical processing elements. We have designed and
performed preliminary tests on a series of CMOS VLSI £LAs whose cells

perform Lukasiewicz implication (—). In this paper we describe the ELA
architecture and its relationship to cellular automata, the CMOS VLSI
implementation of versions LL9 and LL10 and their initial characterizations, z}nd
report on the results obtained by programming £1.9 and £L.10 as fuzzy function
recognizers, the first step in designing more general function units such as expert
systems and neural networks.

1. INTRODUCTION

Lukasiewicz logic arrays (ELAs) are massively parallel analog computers. They are
organized as binary trees of identical processing elements (called PEs, or cells), each PE
performing cither Lukasiewicz implication (—), negated implication () or both. We have
designed and built two versions of a 31-cell CMOS VLSI LLA whose cells perform
Lukasiewicz implication (=), £L9 and £L10. The success of the prototype ha_s
encouraged us to continue research in the design and application of £LAs. During this

rescarch we have observed that LLAs offer advantages as massively parallel analog
computers.

1.1 Advantages
LILAs are regular VLSI architectures. VLSI implementations of ELAs are simple and area-

efficient because they are derived from cellular automata, and implemented with analog
rather than digital processing elements. Although-1LAs are analog computers they can be
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made precise (5 to 8 bits), due to the simplicity of their processing elements and the
accuracy of VLSI process technology.

LLAs are inductive architectures, which means that they can be expanded by adding more
processing elements without redesigning the interconnection network. While small £LAs
can be used as circuit components, large ELAs can be used as massively parallel
computers. Larger ELAs can be created by cascading individual ELAs.

The general-purpose nature of ELAs is theoretically well-founded. Multiple-valued logics
used in computational networks are capable of both symbolic and algebraic computation.
LLAs can implement fuzzy inference and expert systems [1], neural networks [2, 3], and
algebraic functions [4, 5]. Viewed as circuit components, ELAs are one form of multiple-
valued programmable logic arrays (PLAs).

The processing elements are simple, performing only Eukasiewicz implication (=) to
evaluate the sentences in L defined by the schema. Processing elements need only two
input wires and one output wire because they use analog values. Thus, the bus structure of
the ELA is also area-efficient.

However, one drawback to an area-cfficient circuit is that it is limited by the number of pins
available on existing VLSI circuit packages. Although an array of 1024 Lukasiewicz

implication (—) cells could easily fit onto a 4500u x 2300 chip, it would require 204'8
input pins and 1 output pin. This is 1,921 more pins than are available on a 128 pin-grid
array package. Our research has shown that many functions implemented with LELAs will
have more than half of their inputs tied to true or false. For these functions LLAs can be
built that use a programmable interconnection network to route internally replicated true and
false inputs to the PE array. Data inputs also tend to be used more than once, so they could
be internally replicated and routed also. This approach allows large £LAs to fit into
existing VLSI packages.

1.2 Disadvantages

Of course, LLAs are not ideal analog processors, but we are working to reduce their
drawbacks.

The prototype11L.As are programmed using sentences in the Lukasiewicz logic structured

as binary trees. This introduces data inputs on the order of O(2%) for sentences in 7
implications, limits the size of the sentences that can be evaluated by a given £LA, and
increases the number of pins needed on the VLSI package, far beyond the number available
even in the foreseeable future. However, many data inputs are frue or false, or are
composed of a repeated number of variable inputs. Based on this observation we are
designing LLAs that have external control inputs, and a restricted number of external data
inputs. The data inputs are replicated and selected internally at each input of the processor
array according to the externally applied control inputs.

Because ELAs are a new form of computational engine their applications are still being
studied. We have only a basic understanding of the programming methodology for ELAs.
For example, the theoretical applicability of ELAs as neural networks does not immediately
lead to the construction of algorithms for back-propagation.



LLA programming is an instance of the more general problem of programming analog and
hybrid digital-analog computer architectures. Research in this area stopped about 1970 due
to the dominance of digital computers. Becausc ELA-based systems will be either analog
or hybrid digital-analog computers we must develop programming languages for them.
Mills and Faustini [6] have proposed a language for ELA-based systems, but its operational
semantics is not fully defined. Completion of the semantics will require a better
understanding of the dynamic behavior of ELAs, particularly ELAs with cyclic
interconnections.

2. ARCHITECTURE
2.1 Design

Lukasiewicz logic arrays resulted from rescarch into cellular automata as parallel
architectures for logic programming. Cellular automata are of particular interest because
they lead to area-cfficient VLSI architectures. Such architectures are implemented as
regular arrays of processing elements which communicate the results of their computation
locally. They are derived by instantiating a portion of a cellular automaton as a VLSI circuit
[7]. Cellular automata model a wide variety of parallel computational devices. Examples
include the systolic architectures of Kung and Liescrson [8], the stochastic neural machines
of Alspector et. al. [9, 10] and the analog VLSI computers of Mead [11].

Ideal Lukasiewicz logic arrays (ELAs) are cellular automata that implement a denumerably
infinite sentence schema of some Lukasiewicz logic, . The sentence schema of £ and the
cellular automaton C are related by requiring the logical variables of L to correspond to
cells in the cellular space S, the structure of the sentence schema to correspond to the
neighborhood function g, and the connectives of E to correspond to the transition function

f of ¢.

Real Lukasiewicz logic arrays are derived by restricting the denumerably infinite sentence
schema of £ to a finite sentence schema, and implementing the finite cellular automaton that
results as a direct correspondence architecture. The structure of the resulting ELA is
dependent on its interconnection network. The prototype £LA uses an H-tree network
whose nodes are the processing elements corresponding to the connectives in the finite
sentence schema. The H-tree network was selected for its efficient use of area on a VLSI
circuit, as first proposed by Leiserson [12].

2.2 VLSI Implementation

Lukasiewicz logic arrays are implemented with analog processing elements. A cell in the
LLA is implemented as an analog current-mode device performing addition, subtraction,
min and max on currents. Early in our work we learned of a series of fuzzy functions
implemented by a basic logic cell [1]. The circuits which implement these functions also
implement the algebraic valuation functions for E. For our purposes the most useful of

Yamakawa's circuits are implication (—), which computes min(1, 1 - a + ), and
bounded difference, which computes max( 0, a - B). The original ELA cell used

Yamakawa's components directly, but the more recent versions, £1.9 and LL10, simplified
the design by combining all components into a basic cell (Figure 1). £L10 adds two more



current mirrors to provide for an additional reference voltage, intended to increase the range
of the circuit.

Figure 1. Schematic of £L.9 implication-only cell (—>)

The basic cell consists of six current mirrors, and performs Lukasiewicz implication (—).
A cell has two inputs and a single output, and is designed to be tiled in an H-tree. The
basic cell uses 11 transistors, and is 35w by 114y using the 2u ORBIT SCPE technology
provided by MOSIS. Basic cells are combined in an H-tree to form the ELA (Figure 2).
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Figure 2. Architecture of L9, a heterogeneous LA in implication (—)

BothL19 and L1.10 have been tested, and found to be functional. The initial eval'uaqon qf
these prototypes is described in the next section. A more detailed characterization 18
planned using an automated test fixture, which is currently being constructed.



2.3 Evaluation

L£L9 has been tested with Vdd voltages ranging from 1.5 to 7 volts, and input and output
currents varying from 0 to 200 microamperes (uA); E£L10 has been tested with Vdd
voltages ranging from 3 to 7 volts, Vss ranging from -3 to 0 volts (ground), and input and
output currents varying from 0 to 400 uA.

Within this range the accuracy of the LA is affected by four sources of error. The first is
steady-state error, which is dependent on the final fabricated dimensions of the transistors
and other process parameters for a particular MOSIS run. The second source of error is
temperature dependent, and varies as the temperature changes over long periods of time.
As long as the temperature of the system in which the £LA is placed varies uniformly this
error can be ignored. The third source of error is transient error which arises when large
current swings occur in the inputs of the LA, and lasts until the cell has stabilized. A
fourth source of error results {rom leakage currents in the CMOS devices, which have not
been characterized at this point, but are typically small.

Initial tests of L9 showed that the five-level ELA reproduced its input at the output linearly
beyond 20uA. Below 20uA the error ranges from 4.5% at Vdd = S volts to 0.75% at Vdd
= 1.5 volts (Figure 3).
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Figure 3.  Output linearity of £L9
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To determine whether variation in the outputs of the current mirrors were affecting the
outputs of the ELLA cells in this range, £1.10 was designed to provide multiple copies of its
output through four current mirrors. For an output inverted with respect to Figure 3, there
is no significant deviation between the four current mirrors' output (Figure 4). This
suggests that the deviation seen results from a characteristic of the MOSFET used in the
design of the ELA, rather than the current mirrors.

Further tests used the four-input two-level ELA, version £LT, to produce normal and
inverted values for each of the four inputs. Here the non-linear behavior is emphasized at
the different ends of related plots: for the non-inverted values a "tail" occurs between 0
and15uA, but for the inverted values the tail occurs between 190 and 200uA (Figure 5).
This suggests that the same mechanism produces the tail, because inverting the value
causes it to move to the opposite end of the range.

Next, a series of "notches," or membership functions in fuzzy logic, were constructed.
Fuzzy functions were chosen because Lukasiewicz logic is closely related to fuzzy logic
[13, 14, 15, 16, 17], and because Yamakawa showed designs for fuzzy inference engines
and expert systems that could be embedded in Lukasiewicz logic arrays [1, 18, 19].

We have used the prototype £LA to compute a variety fuzzy membership functions, and
present the results obtained for two such functions, along with observations on the error
measured using the prototype ELA. The first function, an inverted "notch," is defined by

the expression (( - a = a ) = - (o — - a)) = B). This membership function was
programmed into the 31-cell ELA as the following 32-element vector:

(FEEEa,F, T, o, T, o, o, EEETEE FE E EFEFEEFEEEEFEETB).

The uncorrected output of the LA was measured over the range of 0 to 200 pAmperes

(uA) by varying o in 50pA increments. The ideal membership function was also
calculated after adjusting the evaluation function for Lukasiewicz implication to the
operating range of the circuit (Figure 6). As can be scen, the uncorrected output of £L9
varies from the ideal by as much as 14%. The error is constant, varying in the slope of the
function, which led to the observation that it could be corrected by varying the output
resistance of the ELA, or trimming it.

Other crrors in the output of L9 include a "step" at cach end of the function, related to the
"tail" observed earlier, and a displacement of the maximum output value above the ideal
"true" reference. Referring to the LA cels whose output ideally would fall in the non-
linear range of <20uA, there appears to be no direct correlation between this non-linearity
and the error in the notch function (Figure 6).

The exact cause of these errors is still under investigation, although one attempt to correct
them by introducing a second power supply voltage in £L.10 did reduce the displacement of
the maximum output value above "true" (Figure 7).
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The result of the experiments with the "notch" shows that £L.9 implemented the notch
function linearly except at either end (where the tail appeared) but with a slope that varied
from that of the calculated function. As stated before, this scaling is due to an arbitrary
choice of a resistor in the measuring circuit. By changing this resistance ("trimming"), we
have adjusted the output to produce a much closer fit. Using a simpler "notch" defined by

the expression ( -~ oo = o ) = - (o — - o ) we have calculated that an optimally
trimmed LLA would have a typical error of less than 2%, and a mean error less than 0.5%

(Figure 8).

Choosing an analog processing element yields several advantages. Because the LA is a
current-mode circuit it has a precision which is not achievable with an equivalently-sized
voltage-mode circuit. Although L is infinitely valued, in practice only L, through £256 can
be implemented due to device error and the resolution of our measuring devices. The
output error measured for the prototype £LAs in the range of 0.25% to 2%. This gives an
information density ranging from 5.6 to 8.6 bits, or approximately 50 to 400 discreet
values perELA. This is a useful precision for approximate reasoning systems.
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Figure 8.  Optimally trimmed "notch" and error

3. APPLICATIONS OF LLAS

Lukasiewicz logic arrays were first proposed to evaluate sentences in m_uitiple-valuegi logic,
but because the Eukasiewicz logic E describes other forms of approximate reasoning, we
propose to use LLAs in a variety of applications. The dual logical and algebraic semantics
of L allow LLAs to implement expert systems, neural networks [10, 20], and fuzzy
computers [13, 18]. We present schematic examples for these applications in a related
paper [21].

4. CONCLUSIONS

We described the architecture of two operational 31-cell 32-input CMOS VLSI £LAs,
which are implemented with analog rather than digital processing elements. Initial test
results showed that the LLAs implemented the notch function linearly, but with a slope that
varied from that of the ideal function. Trimming the ELA inputs and outputs 1s expected to



result in a typical error of less than 2%, and a mean error less than 0.5%. With further
modifications to the circuit, and trimmed outputs, the error should drop to less than 1% for
cach cell as reported by Yamakawa [1].

LLAs present a new challenge in the design of massively parallel processors, as well as the
design and programming of analog and hybrid computers. For those problems where
precision may be traded for speed, ELAs provide an excellent solution.
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