TECHNICAL REPORT NO. 311

Average Time Analysis
Of Clause Order Backtracking

by

Khaled Bugrara, Northeastern University
and

Paul W. Purdom, Jr., Indiana University

Revised: January 1992

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Average Time Analysis of Clause Order Backtracking
Khaled Bugrara, Northeastern University and Paul Walton Purdom, Jr., Indiana University

Abstract: Backtracking algorithms solve problems by selecting a variable and assigning each possible value
to the variable. The resulting subproblems are simplified and solved recursively. Simple backtracking selects
variables in a fixed order. Clause order backtracking selects variables from the first nontrivial clause that
has not yet been satisfied. Formulas are given for the average time used by clause order backtracking
when solving random CNF satisfiability problems, where the problem sets have v variables, ¢ clauses, and a
probability p of a literal being in a clause. The average time for clause order backtracking is always less than
that for simple backtracking. It leads to polynomial time under many conditions where simple backtracking
uses exponential average time. Cases where clause order backiracking uses average time less than v™ (in the
limit of v going to infinity) include p < 1/(2v)el(*~1nv-1ntl/t and p > | /int + (Inv)/2]/v. (The second
result needs a slight increase in the coefficient of Int when ¢ increases faster than v'"v.)

1This work was supported by Northeastern University, Indiana University, and FAW (Research Institute for
Applied Knowledge Processing at the University of Ulm).

i

1 Constraint satisfaction and backtracking

Many interesting problems require determining whether a set of constraints on variables with discrete
values can be satisfied. Let Ri(z1,...,2y), ..., Ri(21,...,2,) be a set of relations and #;, ..., z, be a
set of variables, where each variable has a finite set of possible values. A constraint satisfaction problem
consists of determining whether the variables can be set in a way that makes all of the relations true. Such
problems can be quite difficult even when each relation is simple. For example, if each relation is a clause,
then the constraint satisfaction problem becomes the classical Conjunctive Normal Form (CNF) satisfiability
problem. Many special forms of the constraint satisfaction problem are NP-complete [3, 6, 12].

Searching is one common way to solve constraint satisfaction problems. The basic idea of searching
is to choose a variable and generate subproblems by assigning each possible value to the variable. In each
subproblem the relations are simplified by plugging in the value of the selected variable. If any subproblem
has a solution, then the original problem has a solution. Otherwise, the original problem has no solution. The
subproblems are solved by applying the technique recursively. Simple search algorithms stop the recursion
when all variables have values. They use exponential time when used to find all solutions.

If any relation of a constraint satisfaction problem is always false, then the problem has no solution.
Backiracking improves over plain search by immediately reporting no solution for problems with a false
relation. Often this short cut saves a huge amount of time. Backtracking can take either exponential or
polynomial average time, depending on the set of problems being solved [1, 11].

Simple backtracking has a fixed order for selecting variables. Sometimes it wastes time by assigning
values to variables that do not appear in the problem. Even when the original problem uses all the variables,
some of the simplified subproblems may use only a few of them. For problems with a few short clauses
simple backtracking frequently assigns values to absent variables.

Clause order backiracking reports no solution if the problem has a relation that is always false. Otherwise,
it selects the first relation that is not always true. For the first variable that affects the value of this relation,
each possible value is plugged in, the predicate simplified, and the resulting subproblem is solved by recursive
application of the algorithm. Each solution of the subproblem (along with the the partial assignments of
values that lead to the subproblem) gives a solution to the original problem. If the original problem has no
nontrivial relations, then every assignment of values to the remaining variables results in a solution.

The following is a precise statement of the version of the algorithm that we analyze. This version is
tailored for CNF satisfiability problems. The algorithm finds every solution to the given CNF problem, but
it reports the solutions in a compressed form. A clause is always false if and only if it is empty (contains no
literals). A clause is a tautology if and only if it contains a variable and its negation. A tautological clause
always evaluates to {rue.

Clause Order Backtracking Algorithm for CNF problems.

1. If the CNF problem has an empty clause, return with an empty set of solutions, and charge one time
unit. '

2. If the first remaining clause of the CNF problem is a tautology, then remove it from the problem.
Repeat this part of the step as long as it applies. If there are no clauses, then return with the current
assignment of values to the variables as a solution (each assignment of values for the remaining unset
variables results in a solution) and charge one time unit.

3. Let k be the number of unset variables in the first remaining clause. (Step 1 ensures that k£ > 1, and
Step 2 ensures that each variable occurs in at most one literal of the clause.) For j starting at 1 and
increasing to at most k, generate the j** subproblem by setting the first 7 — 1 variables of the clause
so that their literals are false and setting the j'* variable so that its literal is true. Use the assignment
of values to simplify the CNF problem (remove each false literal from its clause and remove from the
problem each clause with a true literal). Apply the algorithm recursively to solve the simplified problem.
If setting the first 7 — 1 literals of the first remaining clause to false results in some clause being empty,
then stop generating subproblems. The set of solutions for the original problem is the union of the set
of solutions for the subproblems. If the loop stops with j = h, then charge h + 1 time units.

The cost in time units has been defined to be the same as the number of nodes in the backtrack
tree generated by the algorithm. The actual running time of the algorithm depends on how cleverly it is

2

c3 sol.

Fig. 1. The backtrack tree for the predicate consisting of the three clauses ¢y =zVy,co =2V z,e3 =3 VZz.

implemented, but a good implementation will result in a time that is proportional to the number of nodes
multiplied by a factor that is between 1 and tw, where v is the number of variables and # is the number of
clauses.

The backtrack tree includes nodes for determining that the first remaining clause is empty. The compu-
tation associated with these nodes can be done quickly. In the analysis we briefly consider the effect of not
charging for these nodes (giving an upper limit of k time units for Step 3). A cost of up to k+1 units at Step
3 is natural when comparing the algorithm with simple backtracking, but a limit of k units is more natural
when comparing the algorithm with unit clause backtracking. (Unit clause backtracking selects variables
from clauses of length one when possible.)

Fig. 1 illustrates the counting of nodes. Each internal node is labelled with the variable that is set
at the corresponding point in the computation, the left branch corresponds to setting the variable to false,
and the right branch corresponds to setting it to true. The first clause, ¢; = = V y, contributes nodes
1, 2 and 3. The second clause, ¢ = z V z, contributes nodes 4 and 5. Node 6 represents the solution
{z = false, y = irue, z = irue}. When z is true, both the first and second clauses are satisfied, but the third
clause, cg = ZVZ contributes nodes 7 and 9. Node 8 represents the set of solutions with {z = true, z = false}.
All values of y are permitted at node 8. If the predicate had a fourth clause, ¢4 = = V 7, then the predicate
would be false at node 4 and clause ¢; would contribute only node 4. Nodes 5 and 6 would not be in the
tree. With the three clause problem of Fig. 1, nodes 3, 5, and 9 would not be charged for using the alternate
charging method of the previous paragraph.

2 Probability model

The random clause model generates random CNF satisfiability problems using a set of v variables. A
random clause is formed by independently selecting each of the 2v literals with probability . A random
predicate is formed by independently forming ¢ random clauses.

In this model some variables may not occur in a particular problem. Some clauses may be empty.
Some clauses may be tautologies. Some clauses may be duplicates of others. Each of these features may be
considered to be a defect in the model, since problems initially given to a satisfiability algorithm are not
likely to have them. However, these defects are not as important as it may first appear because most of
the features do occur in the subproblems that are produced by searching algorithms. The model has the
advantage that the distribution of clauses does not change much when setting a variable. This leads to a
relatively easy analysis. As a result more satisfiability algorithms have been analyzed with this model than
with any other. The problems generated by this model can be either easy or hard (for the algorithms that
have been analyzed so far) depending on how the parameters are set [2, 4, 5, 7, 8, 9, 10, 11]. The model is
useful for comparing strengths and weaknesses of various satisfiability algorithms.

3 Discussion of results

This section discusses the the average time performance of clause order backtracking and compares it

3

v = 100

1 10 100 200
¢

Fig. 2. The outer contour shows for each t the value of p that results in an average of 100 nodes. Proceeding inward,
contours for an average of 1002, 100%, and 100* are also shown. The line from the left side to the right side shows for
each t which value of p results in the largest average number of nodes. Consecutive points on a contour are connected
by a straight line.

with that of other satisfiability algorithms. The following sections contain the detailed derivation of the
results.

A contour plot of the performance for problems with one hundred variables is given in Fig. 2. A similar
plot for fifty variables is given in [9]. The line that runs from the left to right side shows for each t, the value
of p that leads to the largest average number of nodes. The remaining contours denote constant running time

4

and are as follow. The outer contour in Fig. 2 shows the conditions where the average number of nodes per
problem is 100. Each contour inward shows the conditions where the average number of nodes per problem
is a factor of 100 larger. Thus, the contours show the conditions where the average number of nodes per
problem is v, v?, v, and v*. The actual average running time is bounded by a low degree polynomial times
the average number of nodes, where the details of the polynomial depend on just how cleverly one programs
the algorithm.

The average number of nodes for clause order backtracking is never more than the average number of
nodes for the version of simple backtracking that reports every solution. Under many conditions, clause
order backiracking is much faster, but when pv is small and /v is large the improvement is not important.
(This is the lower right region of Fig. 2.) The comparison with simple backtracking [11] implies that the
average number of nodes for clause order backtracking is bounded by v™ for large v when

t _In2—n(lnv)/v

Rl o= and pv<In2 (1)

and also when

ty pt[2In2 — n(lnv)/v]
v~ (In2)In(1+ pt/In2) + ptIn[l + (In 2)/pt]

and pv >In2 provided pv/lnv goes to zero. (2)

There are additional cases where clause order backtracking is fast. Under most of these conditions the
average number of solutions per problem is exponential. The reason that clause order backtracking is able to
run in polynomial time and report every solution is that solutions are reported in compressed form. When
the algorithm reports a solution, it often does not assign values to all the variables. Any truth assignment
to the remaining variables is a solution.

For small p we show that the average number of nodes is no more than v™ when

1 n—1)lnv—-Int—
pS%'g[(1)lnv—Int-0(1)]/t (3)

This limit approaches 1/(2v) when t grows faster than a constant times Inv. This result corresponds to the
fact that in Fig. 2 the contours all remain above p = 1/(2v). The result in eq. (3) is better than the one in
eq. (1) when

t In2
- <0743 < —mm—. 4
v = < —In(1 —e~1/2))
For large p we show that the average number of nodes is no more than v™ when
14+68)Int+ (Inv)/2
o SOOI S (Vi (5)

for any § > 0 and large v. When In[(Int)/(Inv)] < Inv (i.e., when ¢ < v'*?), § can be replaced with zero.
This result corresponds to the upper branch of the contours in Fig. 2. Iwama’s counting algorithm [7] for
satisfiability has an average number of nodes bounded by v™ when

Int—Inn
> “T' (6)

This is quite similar to eq. (5), but somewhat better. Exact calculations for particular cases [9] confirm the
suggestion of these upper bound calculations, i.e., Ivama’s algorithm is faster for large p. (It is slow for
small p). Iwama’s algorithm provides a count of the number of solutions, but does not give the solutions.
When p is above the bound in eq. (5) clause order backtracking quickly provides a complete list of solutions
(in compressed form).

Egs. (3) and (5) show that for all p we have polynomial average time when

t<2(n—1)— O([lnlnv]/Inwv). (7)

5

Other algorithms are known to be faster for small ¢, but none of them report all solutions. For example,
the upper bound for the pure literal rule algorithm [10] is better than the upper bound for clause order
backtracking for small ¢t. (Comparing upper bounds does not always show which algorithm is best, but the
measurements in [9] suggest that the upper bounds are close to the true values.) Comparing eq. (3) with
eq. (28) of [10] shows that for small p, the pure literal rule algorithm has a better upper bound for

t < 2(nvlnv)/2, (8)

Eq. (18) of [10] shows that the pure literal rule has a better upper bound for large p when

<2t firo (2] .

The fastest analyzed algorithm [5] for small ¢ combines the unit clause rule, the pure literal rule,
and resolution to eliminate variables that occur no more than two times. The use of resolution results in
polynomial average time when t is below v2/3 so long as p is not too large (when p is too large for this result,
Iwama’s algorithm is fast).

Among the analyzed satisfiability algorithms that report all solutions, clause order backtracking is one
of the fastest. Selecting short clauses before long clauses would clearly improve the speed but complicate
the analysis. A version of clause order backtracking where unit clauses are selected before longer clauses has
been partly analyzed [9], but it is significantly faster than simple clause order backtracking only when pv
is small. Resolution based algorithms are much faster than clause order backtracking for small t and some
values of p. For some applications the fact that they do not report all solutions is a disadvantage. Clause
order backtracking runs in low degree polynomial average time for both large and small p. Only intermediate
values of p lead to problems that are difficult for the algorithm.

4 Analysis

In the analysis, we associate clauses with nodes in the backtrack tree in a way that is equivalent to that
described in Section 1 but different in detail. The backtrack tree always has a root. Each variable that is
set when processing a clause results in two nodes, one for setting it to ¢rue and one for setting it to false.
Thus, in Fig. 1, this way of counting associates node 1 with the root, nodes 2, 7, 3, and 4 with clause ¢,
nodes 5 and 6 with clause ¢y, and nodes 8 and 9 with clause cs.

We now derive a sum that gives the average number of nodes generated by clause order backtracking.
First, we consider the probability that the first clause attempts to contribute j nodes to the all false branch
of the search tree (the branch where all variables are set to false). Then, we consider the probability that the
first clause contributes zero nodes to the branch. (This happens when the first clause is a tautology.) Next,
we consider the probability that the clauses following the first clause frustrate its attempt to contribute j
nodes (by becoming false before j variables have been set). Finally, we use the fact that the probabilities
are the same on all branches to obtain the sum for the average number of nodes.

The probability that a clause contains the first variable appearing positively but not negatively is p(1—p).
The probability that the first variable appears either positive or negatively, but not both is 2p(1 — p). The
probability that a clause contains k literals and the clause is not a tautology is

()2 e-mra-pmm= (D)2sta - p u)

Suppose i variables are set to false. The probability that a random clause contains no true literals,
contains k unset literals, and is not a tautology is

(u ; i) 2k pE(1 — p)2v—i=k, (11)

The probability that such a clause contains its first true literal when j of its variables have been set to false
is 277 (provided j < k). Let a;(%) be the probability that a random clause is not a tautology, that it contains

6

no true literals initially, and that it first contains a true literal after setting the first j of its previously unset
variables. Summing eq. (11) times 277 gives

&)=Y (” ; i) 28ip*(1 —p)® " F forj>1. (12)

k2]

This is the probability that the first clause attempts to contribute j nodes to the all false branch of the
backtrack tree.
The probability that a clause contains no true literals and is not a tautology is

Y. (k i) 21— = (L-p)(1 4P)

k

Let ao() be the probability that a random clause evaluates to irue after i of its variables have been set to
false. Any clause meets these conditions except those considered in eq. (13). Thus,

ao(i) =1-(1-p)"(1+p)" " (14)

This is the probability that a clause is skipped in Step 2 of the algorithm, and thus contributes zero nodes
to the all false branch of the backtrack tree.

A clause evaluates to false if it contains only false literals. It can not contain true or unset literals.
The probability that a clause contains no such literals in (1 — p)**~*. Thus, the probability that a clause
evaluates to false is

1-(1-p)®—t, (15)

Consider a particular predicate and a particular node in the associated backtrack tree. Let n be the
number of clauses that contribute nodes to the path from the root to the selected node. (These are the
clauses that are skipped in Step 2 and those that are used in Step 3 of the algorithm). Let j,,, be the number
of nodes that the m*® clause contributes to the path. Then j,, > 0 for 1 < m < n, and j, > 1. Let s,, be
the number of nodes contributed before those of the m*" clause. That is,

- Z Jk- (18)

1<k<m

Consider a particular set of j,,’s and the set of all predicates that generate backtrack trees with that
set of jn’s. Assume that each set variable is assigned the value false. The m'® clause must contribute 7,
nodes to the all false branch, with s,, variables having already been set. The remaining ¢ — n clauses (those
that are not associated with any m) must not be false after s, 41 — 1 variables have been set. If all these
conditions are met, then the backtrack tree has a node for both values of the last literal: one value results in
the current clause containing a true literal while the other value results in each literal of the current clause
being either false or unset. Let B(n,ji,...,jn) be the probability that the backtrack tree for a random
predicate contains a node where the m*® clause contributes j,, (for 1 < m < n) nodes to the path and where
the last set variable makes the n'® clause true. Since each condition pertains to one clause, and each clause
is independently selected,

B(n, jl, . -,jn) — [1 _ (1 _ p)zu—s»+1+1]t—n H Gjm(sm)' (17)
1<m<n

The a;, factor in this formula gives the probably that the first clause of a random predicate contributes
J1 nodes, the a;, factor gives the probability that the second clause contributes j; nodes, etc. The [1 —
(1 — p)?v—e=+1+1]t=n factor gives the probability that the clauses that have not contributed nodes have not
previously evaluated to false. If you consider node 5 in Fig. 1, it was reached by the first clause contributing
two nodes (nodes 2 and 4), the second clause contributing one node (node 5). To reach node 5 it was
also necessary for the remaining clauses (clause c3 in this case) not to evaluate to false at node 4. If the

7

noncontributing clauses were not false at node 4, then they could not have been false at any of the earlier
nodes on the path. The factor a;(0) gives the probability that the first random clause will contribute two
nodes, and the a;(2) factor gives the probability that the second clause will contribute one node (even though
two variables have already be set). The factor [1 — (1 — p)*]® gives the probability that the one remaining
clause does not evaluate to false even though two variables have been set at the parent of node 5.

Eq. (17) gives the probability that the tree has a node with the specified characteristics. In particular,
the last variable has been set so that its literal in the selected clause evaluates to true. With the same
probability the tree has a node where that variable is set so that the literal evaluates to false. Thus, the
average number of nodes corresponding to a particular ji, ..., jn, with each variable being assigned any
preselected value (such as false), is 2B(n, j1,...,Jn)-

In the random clause model each branch of the backtrack tree has the same probability. There are 2
branches that have i variables set. Also each backtrack tree has a root node. Thus, the expected number of
nodes in the backtrack tree is

N@)=1+ Z E Z Zzsnﬂ—l_lB(nsjll'“?jﬂ)' (18)

1€n<t §120 jp_120 jpo>1

The initial 1 counts the root of the backtrack tree, and the remaining terms count the nodes on level s, for
1 < s < v. Using b;(i) = 2/a;(i) and eq. (17), eq. (18) can be written as

Nit)=1+2 Y Yoo X Y- -pP et I bin(om)- (19)

1€a<t 5120 §a120 ju>1 1<m<n

4.1 Recurrence equation

The number of terms needed to evaluate N(¢) with eq. (19) increases rapidly with ¢ and v. We now
derive a recurrence equation that is quicker to evaluate. Define

Ngd=142 3 T 3 Sn-@-pr-imsttpn [bo(i+om) (20
1<n<t §120 Jn-120 jp2>1 1<m<n
Note that N(t) = N(t,0).

Giving separate consideration to the n = 1 case in eq. (20) results in

N(t,i)=1+2 Z[l — (1 — p)* I 1(5)

i>1
+2 3 30 Y Tu--prienti e I baGitem). (1)
2<n<t 7120 ja120 ja21 1<m<n

Giving separate consideration to the j; sum, results in

N(t, ‘I) - 22[1 _ (1 . p)Zu—i—_f-Fl]i—lbj(i)
i>1

+ZZ“)ZZ F. o

2<n<t §220 jn_120 jn>1

[1—(1—p)—ti=snnatl]t=n T b (i+47+4l,), (22)
2<m<n

where s} = sy — j. Now replace n by n+ 1, m by m+ 1, j; by ji_;, and 8i+1 by 8i. As a result the new s;
is the sum of the new j; through j,, and

N(t,i) =1+2) [1—(1—p)™ 1)
i1
+ij(i) Y ¥ zo Z>
j 1<n<t-1 /120 ja-120 jn21

21— (1—p)?i-i=tantif=n=t TT b (i+] + sm). (23)
1<m<n

The part of eq. (23) to the right of the second b;(z) is N(t — 1,i+ j) — 1, so N obeys the recurrence
equation

N(t,i)=1+2 _Z:[l = (1= p)? IR (6) + E_b:' (AN(E-1,i+7) - 1] (24)
=1+ bo(_i)[N(t —1,8) =1+ Y b2l - A -p)* I Nt —1,i4+5) -1} (25)

Eq. (20) gives the boundary condition N(0,3) = 1.

With eq. (25), the average time can be computed in time O(¢v?). Fig. 2 shows the results of calculations
for v = 100.

The recurrences in this paper were checked by comparing their solutions with the actual number of
nodes generated by programs for the algorithms. Each recurrence was solved algebraically for 1 < t < 3,
1 < v < 3 using Macsyma. (A modification of eq. (25) was checked for 1 <t < 6,1 < v < 6, tv < 12.) Also,
each of the 22*¥ SAT problems was generated and solved with a program that counted the number of nodes
that were generated. A problem with i literals has probability p*(1 — p)**¥—*. Multiplying the count by the
probability and summing over all problems gives a formula for the average number of nodes. (This formula
is a polynomial in p with integer coefficients.) The formulas generated from the recurrences were identical
with the ones generated by the programs.

4.2 Related recurrences

The number of nodes that results when a clause of length k is allowed to contribute at most k& nodes
can be obtained by replacing 2a;, in the previous derivations with a;, +a} , where a’ is defined by eq. (12)
with the k = j term omitted from the sum. Let T'(,3) be the solution to

T(t,d) =1+ Y [1— (1= p)* I HT1[b;(3) + bja ()] + D by ()[T(E — 1,6 +5) — 1] (26)
i>1 i

with boundary condition T(0,%) = 1. The average number of nodes for the alternate counting method is
T(t) = T(t, 0).

The recurrence for the number of solutions (in compressed form) is given by eq. (25) with the constant
term dropped. Let S(2,1) be the solution to

S(t,3) = E b (5)S(t — 1,3+ 7) (27)

with the boundary condition 5(0,¢) = 1. The average number of solutions is given by S(t) = S(t, 0).

5 Comparison with simple backtracking

Theorem 1. The average number of nodes generated by simple backtracking is greater than or equal
to the average number of nodes generated by clause order backtracking for any distribution where the
probability of a predicate is not changed by permuting the variable names in a single clause.

Proof. Consider an arbitrary node, ¢, in a possible backtrack tree. Refer to this node with a string
of T’s and F’s, where the #*® symbol says which way to set the i*" variable. (The important point is that
the node can be described without reference to which variables are set on the path to the node.) For each
predicate, P, consider whether or not node g occurs in the clause order backtrack tree for P. If node q does
not occur, it is either because one of the clauses used to determine the order of assigning values to variables
becomes false or because one of the other clauses becomes false. For the comparison between clause order
backtracking and simple backtracking, construct a predicate P’ in the following way. If node ¢ does not
occur in the clause order backtrack tree for P, then P’ is the same as P. Otherwise, let & be the number
of variables on the path from the root to node g, let v; be the i*" variable set by clause order backtracking
on the path from the root to g, and let ¢; be the clause that introduced v; into the clause order backtrack
tree. Form predicate P’ from P by making the following change in variable names in the indicated clauses.

9

For i from 1 to k, interchange variable names v; and i in all clauses after ¢;. For any node g, this mapping
from P to P’ is well defined, each P’ is the image of a unique P, and P and P’ have the same probability
in the model for generating random clauses. Finally, if node g occurs in the clause order backtrack tree for
P, then it also occurs in the simple backtrack tree for P/. Summing over all predicates P, we find that the
probability of node ¢ occurring in the clause order backtracking tree is no larger than the probability of it
occurring in the simple backtracking tree. (For most distributions the node is less likely to be in the clause
order tree, because a node g that does not appear in the clause order backtrack tree for P may still appear
in the simple backtrack tree for P'.) []

7 Asymptotics

Let U(t) be an upper bound on N(%,1) — 1 so that U(t) > N(¢,4) — 1 for 0 < i < v and ¢ > 0. Since all
the coefficients in eq. (25) are positive

N(t,i) —1 < b(3)U(t—1)+ Z B; ({2t - (1 - p)>® -1 Uk - 1)} (28)
Using
Y b3 (5) = 2p(v — i)(1 — p)* (1 +p)* ! (29)
i>1
and
1-(1-p)* " >1-(1—p)* 9+ forj>1 (30)
gives

N(t,i)~1 < [1-(1-p) (14)* |0 (t~1) +2p(v—i)(1—p)" (14p)* "~ {2[1-(1—p)* |- 14U (t-1)}, (31)
which can be written as

Nt - 1<4pv—)(1-p)' (1 +p)" 1= -p)" 77"
+{2p(v—4) — 1-pl(1—p)" (1 +p)" " +1}U(t - 1). (32)

Replacing the i’s on the right side of eq. (32) with the value that maximizes each part and replacing two
factors of (1 + p)~1 with 1 gives

N(t,i) — 1 < 4po(1 —p*)'[1 — (1 — p)*1 1 + {1 + [20v — 1](1 — P?)'}U(t — 1), (33)

where we have assumed that 2pv — 1 is nonnegative. (When 2pv — 1 is negative, a slight modification of the
current derivation shows that N(t,%) is small, so that case is not considered further.)
Now let U(t) be the solution to the recurrence

U(t) =4po(1 - p*)'[1 - (1 -)™ + {1+ [2pv - 1](1 - p*)"}U (¢ - 1) (34)

with boundary condition U(0) = 0. Eq. (34) and the boundary for eq. (25) imply that U(%) is an upper
bound on N(t,i) — 1. Let a = 1+ (2pv — 1)(1 — p?)* and b =1 — (1 — p)?*. Then,

ot — bt
U(t) = 4po(1 - p*)" : (35)
a—b
Since (a* — b)/(a—b)=a*" 1 +a*" 2 +a" 3%+ .- - +abt 2+ b1, a>b>0,and a > 1, we have
U(t) < 4ptv(1 — p?)’a’. (36)
Also,
A]
U@) < (1 -p) . (37)

a—2b

10

Fig. 3 shows the contours from the approximation

4pv(1 — p?)" [1+ (2pv — 1)(1 — p?)* /(1 + p)]* — [1 — (1 — p)®]!
1+p (2pv —1)(1 -2 /(1 +p) + (1 — p)* ‘

This approximation is eq. (35) modified by including the (1 + p)~! factors that were dropped in deriving
eq. (35). When eq. (38) gives a small result, it appears to have the main features of the real results (except
in the lower right region where p is small and is large). The (1 + p)~* factors that are including in eq. (38)
but omitted in eq. (35) have a noticeable effect in the upper part of Fig. 3, but the following derivations
show that the factors are not significant when v!/2 is large.

The right side of eq. (38) is large when a is above 1, and it is small when a is near 1. Thus, it is small
when pv is near 1/2 (so that 2pv — 1 is small) and when p?v is large (so that 2pv(1 — p?)? is small). When
p is larger than v=! but smaller than v=1/2, the bound is exponentially large (provided £ is not small).

N(t,) <1+

(38)

6.1 The small p case
From eq. (36) we obtain

N(t,4) < 1+4pto(1 - p*)"[1 + (2pv — 1)(1 - 2°)"T". (39)
When p is small, the (1 — p?)" term is not important. Replacing it with the upper limit of 1 gives
N(t,3) < 1+ 4ptv(2pv)*. (40)

The number of nodes is no more than v when

o™ > 1+ 4ptv(2pv)*. (41)
Rearranging and taking logarithms gives
— In(4ptv) — O(v~™
In(2pv) < nlnv — In(ptt'u) (v) (42)
Since p < 1, the number of nodes is no more than v™ when
P 1 Jt-1)mv-me-o()/t (43)
- 2v
6.2 The Large p case
From plugging in the values of a and b into eq. (37) we obtain
. 4}7”(1 I Pﬂ)v 2\u1t
N(t,7) <1+ 1+2pv—-1)(1—p ; 44
Dropping terms that lead to an even large bound gives
: 4pv(1 - p) 2\u 1t
Nt <1+ 1+ 2pv(1 — p?)" 45
2
<14+ ———F——[142pv(1 - p*)']} 46
<1+ |140 (ﬁ) [1+ 2pv(1 — p?)"]". (47)
The number of nodes is no more than ™ when
i 1\
3142140 (5) [1+ 2pv(1 — P*)'T". (48)

11

v =100

1 10 100 500
¢

Fig. 3. The contours for the approximation to the average number of nodes.

Writing this as v™ —1 > 2[1+0(1/(pv))][1+2pv(1—p?)*]! and taking logarithms gives [nlnv—In(1—v~")]/t >
In[1+ 2pv(1 — p?)*] + In 2 + In[1 + O(1/(pv))], which can be written as

elrimv—0(1)]/t _ 4 > 2}”)(1 _PS)V. (49)

Expanding the exponential in a power series gives

oo (222 0.

12

Taking logarithms gives

lnp-i—lnt—l—lnv—lnlnv—()(ﬂ]nv) < wvlin(l - p?). (51)
Dividing by v and replace In(1 — p?) with —p? — O(p?).
e Inp+Int+Inv—Inlnv *O(p‘*)-O(nlnﬂ). (52)
v iv
For any § > 0 and large v, eq. (52) is satisfied by
pz\/(l—ké)lnt—l—(lnv}ﬂ' (53)
v

When In[(Int)/(Inv)] < Inwv (i.e., when ¢ < v!*?), the bound on p is also satisfied with § = 0.

To obtain conditions where the average time is barely exponential (bounded by (1+¢€)" for small positive
€), replace nlnv with € in eqgs. (3) and (52).

Acknowledgement: We wish to thank the referees for their carefully reading of the paper and their
helpful suggestions.

References

1. Cynthia A. Brown and Paul W. Purdom, An Average Time Analysis of Backiracking, SIAM J. Comput.
10 (1981) pp 583-593.

2. Khaled Bugrara, Youfang Pan, and Paul Purdom, Ezponential Average Time for the Pure Literal Rule,
SIAM J. Comput. 18 (1988) pp 409-418.

3. Stephen A. Cook, The complezity of Theorem-Proving Procedures, Proc. 3rd ACM Symp. on Theory of
Computing, ACM, New York (1971) pp 151-158.

4. John Franco, On the Occurrence of Null Clauses in Random Instances of Satisfiability, Indiana Univer-
sity Computer Science Tech. Report 291 (1989).

5. John Franco, Elimination of Infrequent Variables Improves Average Case Performance of Satisfiability
Algorithms, SIAM J. Comput. 20 (1991) pp 1119-1127.

6. Michael R. Garey and David S. Johnson, Computers and Iniractability, W. H. Freeman, San Francisco
(1979) pp 3844, 48-50.

7. Kazuo Iwama, CNF Satisfiability Test by Counting and Polynomial Average Time, SIAM J. Comput.
18 (1989) pp 385-391.

8. Paul W. Purdom, Search Rearrangement Backiracking and Polynomial Average Time, Artificial Intelli-
gence 21 (1983) pp 117-133.

9. Paul W. Purdom, A Survey of Average Time Analyses of Satisfiabilily Algorithms, Journal of Informa-
tion Processing, 13 (1990) pp 449-455. An earlier version appeared as Random Satisfiability Problems,
Proc. of the International Workshop on Discrete Algorithms and Complexity, The Institute of Electron-
ics, Information and Communication Engineers, Tokyo (1989) pp 253-259.

10. Paul W. Purdom And Cynthia A. Brown, The Pure Literal Rule and Polynomial Average Time, SIAM
J. Comput. 14 (1985) pp 943-953.

11. Paul W. Purdom and Cynthia A. Brown, Polynomial- Average-Time Satisfiability Problems, Information
Sciences 41 (1987) pp 23-42.

12. Paul W. Purdom, Cynthia A. Brown, and Edward L. Robertson, Backiracking with Multi-Level Dynamic
Search Rearrangement, Acta Informatica 15 (1981) pp 99-113.

13

