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Abstract

A paralle] algorithm is presented for finding a sublinear size cycle separator on an
undirected planar graph in O(log®n) time on the CRCW PRAM. Let O(n™) denote
the number of processors required to carry out a breadth first search on a graph
of size n in O(log? n) time and let £ denote n{M~F)/M where nP is the number of
processors available to our algorithm and 1<P<M. The size of the cycle separator
is the best possible O(v/d-n) when the maximum face size d is large, d>k, and is
O(n(M=F)/2M) when d is small, d<k. If the algorithm uses O(n) processors, the
size of the separator is the optimal O(v/d - n) when d>n%%8 and O(n%") otherwise
because the best M achieved so far is 2.376 [8]. Pan and Reif’s parallel nested
dissection algorithm and our small cycle separator algorithm are combined into a
parallel algorithm for finding a BFS tree on a planar graph in O(log®n) time using
O(n!®*%) processors.

1 Introduction

Divide and conquer is one of the fundamental techniques used in parallel algorithms.
To apply this strategy to solve a graph theory problem, we usually need to find proper

separators. Given a graph G of size n and a constant C > 2, a (-é:, gg—l-) vertex separator

on G is a vertex set which divides G into connected components no larger than C—Eln‘
The most commonly used C is 3. The feasibility and the efficiency of divide and conquer
techniques depend on separators’ sizes and topological properties. For many parallel
algorithms, the smaller separators are, the better their processor-time complexities.
Lipton and Tarjan show that there is a vertex separator of size /8 -n for every
planar graph [12]. This result is optimal up to a multiplicative constant in the worst
case. Their result was later improved to v/6 - n by Djidjev [5] and then to %ﬁ by Gazit
[6]. In many cases, vertex separators with certain topological properties are essential

for developing efficient parallel algorithms. A cycle separator is a simple cycle whose



vertices constitute a vertex separator. If a separator has only one vertex, it is called a
cut point. Cycle separators have proven very useful for developing parallel algorithms to
solve graph theory problems such as depth first search [10,1]. In addition, finding small
cycle separators is a major means of finding small vertex separators. A graph G can be
triangulated and treated as an undirected graph G’ so that a small cycle separator on G’
is a small vertex separator on G. Not necessarily small, a cycle separator on an undirected
planar graph can be found in O(log n) time using linear processors [16]. Kao showed that
every strongly connected digraph has a cycle separator and a cycle separator on a planar
digraph can be found by a DNC algorithm [10]. Kao and Wan showed that not every
strongly connected planar graph or 2-strongly-connected planar graph has a sublinear
size cycle separator or path separator [11]. Miller presented an algorithm to find a cycle
separator of size 2v/d - n on an undirected planar graph in O(log n) time when a BFS
tree on the graphs face incidence graph is part of the algorithm’s input [13]. However,
this algorithm’s processor-time complexity is O(n®logn) when an O(n®) processor BFS
algorithm is used and is O(n?®"log’n) when an O(n?3"®) processor BFS algorithm is
used [8]. Gazit and Miller have claimed that an O(+/d - n) size cycle separator on any
undirected planar graph can be found in O(y/nlogn) time using O(y/n/logn) processors
[9]. While giving optimal processor-time complexity, it is not a polylogarithmic time
algorithm. Gazit and Miller also presented a randomized algorithm which can find an
O(Vd - n) size cycle separator on an undirected planar graph in O(log?n) time using
O(n + f'*¢) processors, where f is the number of faces [7]. So it is interesting to know
whether there is a linear processor DNC parallel algorithm to find small cycle separators
in undirected planar graphs.

Another motivation of looking for a more efficient parallel small cycle separator al-
gorithm is to find a more efficient parallel BFS algorithm. As mentioned above, Gazit
and Miller presented a DNC BFS algorithm which has achieved the best processor-time
complexity O(n??*"®log’n) so far [8]. If a family of s(n) size separators on G is given,
Pan and Reif have a parallel nested dissection algorithm to find a BFS tree on G in
O(I(n)log?n) time using s*(n)/(I(n)logn) processors, where I(n) denotes parallel time of
computing the sum of n values [14]. Thus an efficient parallel small separator algorithm is
indispensable for making use of Pan and Reif’s reduction. Gazit and Miller’s randomized
parallel separator algorithm [7] and Pan and Reif’s reduction can be combined into a
randomized parallel algorithm to perform BFS on a planar graph in O(log®n) time using
O(n'?®/logn) processors. But no known DNC BFS algorithm uses less than O(n?37)
processors, even if 1t is used for planar graphs.

This paper presents a parallel algorithm which finds a sublinear size cycle separator
on an undirected planar graph in O(log® n) deterministic time on the CRCW PRAM. The
size of the cycle separator depends on how many processors are available to our algorithm
and how many processors are required for matrix multiplication. We let O(n™) denote
the number of processors required to multiply two n x n matrices over the ring of integers
in O(log” n) time and let O(n?) denote the number of processors used for our algorithm,
where 1<P<M. The size of the cycle separator is O(v/d - n) when the maximum face size
d is larger or equal to k=nM~-P)/M and it is O(n(*M-P)/2M) when d<k. If O(n) processors
are available to the algorithm, the size of the separator is the optimal O(v/d - n) when



d>n"%8 or is O(n®"®) otherwise because the best M achieved so far is 2.376 [4]. Since our
algorithm can find a O(n°®') size vertex separator on every planar graph when O(n!-®*)
processors are available, a BFS on any planar graph can be done in O(log® n) deterministic
time using O(n'®%) processors. This result is a substantial improvement over previous
DNC BFS algorithms for planar graphs.

This algorithm is similar to that developed by Gazit and Miller [7]. Adjacent faces of
an undirected graph will be repeatly united until the number of faces is small enough to
apply Miller’s algorithm [13] directly with the available processors. A new approach is
adopted to make face uniting easier while maintaining the existence of a sublinear cycle
separator.

The rest of the paper contains four parts. The first part is an outline of our small cycle
separator algorithm. The second and the third parts describe and analyze two important
subroutines in the algorithm. The two subroutines are interesting in their own right.
The last part analyzes the algorithm as a whole and extends the result to a parallel BFS
algorithm for planar graphs.

2 A General Outline

An undirected graph G=(V ,E) consists of a vertez set V and an edge set E. Each of
its edges is identified by a pair of unordered vertices. A graph G is a planar graph if G
can be drawn on a plane without any edges crossing. Symbol n represents the number
of vertices, m represents the number of edges, and f represents the number of faces.
Therefore, Euler’s Theorem is written as f4+n—m=2. A face is regular if its boundary is
a simple cycle and is irregular otherwise. The size of a face is the number of vertices on
the boundary of the face. The shape of a face is the number of vertices which are on the
boundary of the face and have a degree no less than 3. An vertex set is independent if it
has no two adjacent vertices.

An n-weighted graph is defined by the following inductive steps. Initially, every bi-
connected undirected planar graph that has n vertices is an n-weighted graph and each
of its faces is assigned a weight equal to the size of the face. The rest of the n-weighted
graphs are constructed from existing n-weighted graphs by uniting some of latters’ faces
in a way described as the followings. Two faces are eligible to be united into one face if
their boundaries share at least one edge. The two faces are united into one face by first
deleting all edges shared on their boundaries and then deleting all isolated vertices. The
weight of the new face is the sum of the two original faces’ weights minus the number of
vertices shared by the two original faces. In another word, a face’s weight is the face’s
size plus the number of vertices merged into the face in the different stages when the face
is constructed. Thus a face’s size is no larger than the face’s weight. Although an n-
weighted graph may have fewer than n vertices, it owes its origin to a biconnected planar
graph that has n vertices. For the sake of convenience, a face is called k-face if its weight
is no larger than k and is called k" -face otherwise. A pair of k-faces is called a k-uniting
if they can be united. A k-uniting produces either a k-face or a k*-face no larger than
2k. An algorithm ezhausts k-unitings of an n-weighted graph G if it repeatly performs



k-unitings on G till G has no remaining k-uniting. We will prove that an n-weighted
graph without any k-unitings has O(n/k) faces. First, we will show that an n-weighted
graph has at most O(n/k) k*-faces.

Lemma 1 An n-weighted graph G cannot have more than 3(,%1 k*-faces.

Proof: For a specific n, we show that at least one n-weighted graph which has n vertices
and has no k-face has the maximum number of faces any n-weighted graph can have.
Given any n-weighted graph G, if we add as many vertices as the weight of each face
minus the size of the face to the boundary of the face, we get a new graph G’ from G
without changing face weights. G’ has as many k*-faces as G and is an n-weighted graph
which has exactly n vertices by the definition of n-weighted graphs. The k-faces of G’
can be removed by deleting edges shared by a k-face and a k*t-face repeatly. The result
is a graph G" which has at least as many kt*-faces as G’ and still has exactly n vertices.
Since each face of G” has at least k+1 edges on its boundary, (k+1)f<2m=2(f+n—2)
by Euler’s Theorem. Because there is such a G” for every n-weighted graph G, no n-
weighted graph has more than 3(}%1 k*-faces. W

If an n-weighted graph G has no k-uniting, k-faces of G turn out to be an independent
set in the dual graph of G. We will use this fact to prove that G cannot have too many
k-faces.

Lemma 2 If I is an independent set of a planar graph G=(V, E) and each element of I
has a degree no less than 3, |I| < %(n — 2).

Proof: Because I is an independent set and each element of I has a degree no less
than 3, 3|I|<m. If we remove edges between vertices in set V—I so that V—I becomes
an independent set, neither V nor I is changed. In this case, no face size is less than
4, otherwise either 7 or V—1I will not be independent any more. By Euler’s Theorem,
m<2n-4 which implies |I|<%(n—2). N

We are now in a position to prove that an n-weighted planar graph only has O(n/k) faces
if its k-unitings are exhausted and all its small faces have shapes larger than 2.

Theorem 1 If a biconnected n-weighted graph G has neither a k-uniting nor a k-face
whose shape is less than 3, G has no more than ﬂ% — 4 faces.

Proof: Let f; denote the number of k-faces of G and let f, denote the number of the
rest, we have f=f1+f,. Let G=(V, E) be the dual graph of G with multiple edges be-
ing united as a single edge. It is clear that G is a planar graph and |V] is equal to
f. Because G has no k-uniting and every k-face’s shape is larger than 2, k-faces of
G become an independent set whose elements have degree no less than 3 in G. By

Lemma 2, fi<2(fi+f,—2) which leads to f;<2(f,—2). By Lemma 1, fzg?—(,-:%l‘ So
J=fi+£<2f=2)+ fr=3f—4<*0=D 4. B

The bottle neck of previous small cycle separator algorithms has been the O(f*) pro-
cessors required to perform BFS on a face incident graph. To get around it when

only n® processors are available, where 1<P<M, we r?nduce a graph’s faces to a fea-
sible number. If we let the & in Theorem 1 be nyﬁ_, G will have no more than



f=6(n—-2)/(n ——,_1) —4= O(nM) faces. Under this circumsta.nce, Miller’s algorithms
[13,8] can be used to find a small cycle separator on G in O(log?n) time using only

O(fM)=0(n") processors. The size of the separator is O(/maz{d, k} - n). When d>k,

the best O(v/d-n) size cycle separator still can be found. So Theorem 1 suggests a
paradigm of finding small cycle separators on undirected planar graphs.

Algorithm 1 Find-Simple-Cycle-Separator
Input: A biconnected undirected planar graph G = (V, E)
Output: 4 simple cycle separator of G

1. Find a planar embedding of G by Ramachandran and Reif’s algorithm [15];
2. Exhaust k-unitings of G and call the new n-weighted graph G’;

3. Simplify G’ into a biconnected graph G” without increasing either face number or
face size;

4. Find a cycle separator on G” by Miller’s algorithm [13,8].

In the above algorithm, Step 1 needs O(log n) time and O(n) processors [15]. The planar
ernbeddmg can be easily maintained or be calculated a.ga.m when necessary. When k&
equals n "5 , Step 4 can be done in O(log® n) time using O(n®) processors as mentioned
before. So the processor-time complexity of Algorithm 1 mainly depends on Step 2 and
Step 3 which are the main issues of the following sections.

3 Exhaustion of k-Unitings

As usual, face unitings will be conducted on dual graphs. Because we only unite k-faces,
we delme a class of dual graph like graphs which we call k-dual graphs of n- We1g]1ted
graphs. A k-dual graph Gy=(Vi, Ey) of an n-weighted graph G is constructed from the
dual graph G of G in three steps. First, each vertex of G inherits the weight of the
corresponding face in G and each edge of G is assigned a weight equal to 2. Secondly
and repeatly, unite two parallel edges if they form a face and let the weight of the new
edge equal the total weight of the two original edges minus one. Lastly, delete all vertices
weightier than k. Apparently, the total weight on the edges between two vertices of
Gk equals the number of vertices shared by the two corresponding faces in G and a
connected component of Gy can be contracted into one vertex whose weight equals the
total weight on the vertices of the component minus the total weight on all edges between
these vertices. Component contractings on Gy are equivalent to face unitings on G and
can easily be imitated on G. Since we want to simulate exhausting k-unitings, no vertex
weightier than 2k should be formed and a vertex weightier than & should be dropped
from G when it is formed. An example of G, G, and G}, is given 1n Fig 3. In the figure,
(1)is G, (2) is G, (3) is Gk, (4) and (5) are what Gy and G look like after their k-unitings
are exhausted. The numbers in Fig 3 are face weights, vertex weights, and edge weights
accordingly.
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Figure 1: Example of G, G, and G;.
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A vertex of Gy is said to be satiated when a connected component containing the vertex
is contracted into a vertex weightier than k or when the maximal connected component
containing the vertex is contracted into a vertex no weightier than k. When a vertex
is satiated, it is contracted into a vertex which either should be dropped from Gy or
becomes an isolated vertex in G. We use divide-conquer techniques to contract vertices
of Gy in logn stages. In each stage, the vertices on separators of connected components of
G will be satiated first so that Gy is divided into smaller connected components whose
k-unitings can be exhausted separately and recursively.

First, we show how to satiate a cut point of a connected Gi. If we label vertices of
G from 1 to |Vi| so that the cut point is labeled 1 and the top z vertices constitute a
connected component for any £<|Vj|, we can satiate the cut point by uniting the first =
vertices which can be contracted into a vertex weightier than k if possible or uniting the
whole graph otherwise.

Algorithm 2 Satiate-Cut-Point
Input: A connected k-dual graph Gy and a cut point
Output: Separated components of Gy

1. Find a spanning tree in Gy, label vertices in preorder from the cut point, and sort
vertices of G in ascending order by their labels;

2. Compute increments for all vertices, where the increment of a vertex is the weight
of the vertex minus the weights on edges between the vertex and other vertices
labeled smaller;

3. Find a label z, if there is one, so that the total increment of the first z vertices is
larger than k and unite them. Otherwise, unite the whole G}, into one vertex.

Clearly, the above processing only leaves behind connected components smaller than one
third of the original size of Gg.

Lemma 3 Algorithm Satiate-Cut-Point can be performed in O(logn) time with O(n)
processors.

Proof: In Step 1, finding a spanning tree, computing depths for vertices, and sorting n
numbers need O(log n) time and O(n) processors when Tarjan and Vishkin’s tree tour



technique and Cole’s sorting algorithm are used [17,3]. Step 2 is trivial. The preorder
guarantees that the top = vertices constitute a connected component. The increment of
the zth vertex is exactly the difference between the weights of the vertex contracted from
the top z vertices and the vertex contracted from the top z—1 vertices. So we can satiate
the cut point in Step 3 by using doubling and binary searching techniques on increments.

Algorithm 3 Satiate-Cycle
Input: A k-dual graph Gy and a cycle separator
Output: Left components of Gy,

1. Unite concatenate vertex pairs on the cycle into vertices no weightier than & till
there is no more such pair left;

2. Label the vertices on the current cycle in order and unite every odd labeled vertex
with its successor, if there is one.

Apparently, this algorithm either totally separates G} or only leaves a cut point.

Lemma 4 When algorithm Ezhaust-Cycle is applied to a k-dual graph Gy and a cycle
separator, all vertices on the cycle separator are satiated ezcept at most one vertez. The
algorithm needs O(log n) running time and O(n) processors.

Proof: Step 1 is easy when doubling technique is carefully used and will not break the
cycle separator because no vertex weightier than k is formed. Step 2 uses O(log n) time
and O(n) processors to reorder and unite the cycle. In Step 2, two concatenate vertices
are united into a vertex which must be weightier than k and is removed from Gy, otherwise
the two vertices should be united in Step 1. The last odd labeled vertex in Step 2 may
be left as a cut point. W

Algorithm 4 FEzhaust-k- Unitings
Input: A planar embedding of an undirected planar graph G = (V, E)
Output: An n-weighted graph G’ formed by ezhausting k-unitings of G

1. Find the k-dual graph Gy = (Vk, E) of G;
2. Go to next step if Ej is not empty, Exit otherwise;
3. Find a conventional cycle separator for every maximal connected component of Gy;

4. Apply Exhaust-Cycle to all cycle separators;

5. Apply Satiate-Cut-Point to all cut points including those left in Step 3 and jump
back to Step 1.

Theorem 2 Algorithm Ezhaust-k-Unitings can ezhaust k-unitings of an undirected pla-
nar graph in O(log®n) time using O(n) processors.



Proof: In Algorithm 4, each iteration runs in O(log n) time using O(n) processors. Step
1 can utilize standard doubling technique to unit multiple edges. Step 2 is trivial. In
Step 3, a conventional cycle separator on an undirected planar graph can be found in
O(log n) time by a linear-processor algorithm [16]. Step 4 and 5 are covered by Lemmas
3 and 4. Since each iteration reduces the size of the maximum connected component of
Gk by one third, E; will be empty within O(log n) iterations. il

4 Simplification of n-Weighted Graphs

In this section, G’ denotes an n-weighted graph as the result of applying algorithm
Exhaust-k-Unitings to a biconnected undirected planar graph G. We have to simplify
irregular faces of G’ without increasing either the largest face size or the number of
faces. And the simplified graph should have no face weightier than ;n. Although a sim-
ilar problem was studied before [7], our simplification method is simpler because a tree
representation is used to decide relations between positions of irregular faces.

A planar graph without irregular face is biconnected [2]. So a graph G’ will be a
biconnected graph when its irregular faces are properly simplified. In this paper, all
simple cycles on the boundary of a face are called the eigencycles of the face and one
cigencycle is called the out-cycle of the face while the rest are called the in-cycles of the
face. For an out-cycle, the side of the corresponding face is its inside. For an in-cycle, the
side of the corresponding face is its outside. The inside weight of an out-cycle (in-cycle)
is the weight of a face formed by uniting all faces inside the out-cycle (in-cycle). A face
surrounds another face if and only if the latter is inside one of the former’s in-cycles.
If two irregular faces do not surround each other, they are independent. The proof of
the following lemma provides an efficient algorithm to simplify a group of independent
irregular faces.

Lemma 5 Giwven G, G', and a set of independent irregular faces of G', we can either
find a cycle separator no larger than 2k or simplify given irregular faces in O(log n) time
using O(n) processors.

Proof: Since given irregular faces are independent, the inside weights of their out-cycles
can be calculated simultaneously by counting vertices inside those cycles on graph G in
O(log n) time with no more than O(n) processors. The weight computation has three
possible outcomes.

L. If the inside weight of an out-cycle is in [in, 2n], this out-cycle is a cycle separator
and is at most 2k long.

2. If all inside weights of the out-cycles are less than }n, unite all faces inside each of

the out-cycles into one face which is regular because its boundary is single eigency-
cle.

3. If the inside weight of one out-cycle is larger than %n, unite all faces outside this

cycle into one face whose weight is less than :n, find the inside weights of the

in-cycles of the face, and perform following case analysis.



(a) If the inside weight of an in-cycle is in [in, 2n], this in-cycle is a cycle separator

3
no longer than 2k.

(b) If all inside weights of the in-cycles are less than in, unite all faces inside each

of the in-cycle into one simple face and recover all vertices and edges in this
irregular face from G. Because G is biconnected and the weights of irregular
faces of G' are controlled to be no weightier than 2k, the newly recovered
subgraph of G is biconnected and has at most 2k vertices. Therefore, any
conventional cycle separator on the new n-weighted graph is not larger than
2k and is a cycle separator of G! Such a conventional cycle separator can be
found in O(log 2k) time with O(2k) processors by Shannon’s algorithm [16].

(c) If the inside weight of an in-cycle is larger than 2n, unite all faces outside this

cycle into one face lighter than in.

If the above processing doesn’t find a small cycle separator, the independent irregular
faces are either united into simple faces inside their out-cycles or united into a simple
face outside an in-cycle of one of them. The processing has constant steps and each step
needs no more than O(log n) time and O(n) processors. §

In order to use the processing of Lemma 5 to simplify G’ systematically, out-cycle selection
is important. The following algorithm explains how to select out-cycles for G’ and get a
forest representation on which vertices represent irregular faces and a vertex is another
vertex’ descendant if and only if the former is surrounded by the later. The forest is called
an irregular-face-forest of G'. In the following algorithm, we assume that the eigencycles
of the same irregular face are disjointed, otherwise we can split joint points first.

Algorithm 5 Find-Irregular-Face-Forest
Input: G and G’
Output: An irregular-face-forests of G'

1. Select any eigencycle as the first out-cycle, find a spanning tree on G, select any
vertex on the first out-cycle as root;

2. Modify the spanning tree by following operations and unite multiple edges into one
whenever they are formed. Bypass and delete all vertices not on eigencycles of
irregular faces. Unite vertices on the same eigencycle into one vertex. Now there is
an one-to-one relation between vertices in current graph and eigencycles of irregular
faces. Each irregular face has an eigencycle met first by a path from the root, select
this eigencycle as the out-cycle of the face. Unite vertices representing the in-cycles
of the same face into one vertex. Link each out-cycle vertex to the first in-cycle
vertex on the path from the out-cycle vertex to the root, if there is one. Delete all
edges between out-cycle vertices;

3. Unite vertices representing the same irregular face into one vertex and use current
forest as an irregular-face-forest of G'.

In Fig 4(1), the boundary of an irregular face consists of cycles having the same prefix in
their labels. Fig 4(2) is a branch of a spanning tree represented by the horizon cut line in
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Figure 2: Example of finding irregular-dual forest of G

Fig 4(1). Fig 4(3) is the result of uniting each eigencycle together and uniting multiple
edges. Fig 4(4) is the irregular-face-forest obtained in the above algorithm. According
to the irregular-face-forest, the out-cycles are denoted with solid lines and the in-cycles
are denoted with dot lines in Fig 4(1).

Lemma 6 Given G and G', algorithm Find-Irregular- Face-Forest finds an irregular-face-
forest of G' in O(log n) time using O(n) processors.

Proof: It 1s easy to see that all the nontrivial computations in the algorithm use at most
O(log n) time and O(n) processors. The correctness of the algorithm is based on the
simple fact that an irregular face surrounds another face if and only if a path that starts
from outside the former has to intersect an in-cycle of the former odd times before it
reaches the latter’s boundary. An irregular face that can surround other faces must have
more than one eigencycles but only has one eigencycle which is always met first by paths
from the root of the spanning tree and is selected as the out-cycle of the face. No two faces
can surround each other at the same time under our out-cycle selection, otherwise there
is a path that starts from the root, passes one face’s out-cycle and one of its in-cycles in
order, and meets the other face’s in-cycles first because they surround each other, this
path violates our out-cycle selection rule. So a forest representation of irregular faces is
already decided when out-cycles are selected by the above method, what left to do is just
simplifying the graph into a forest in corresponding to the surrounding relation. One last
detail should be pointed out, an eigencycle may be on boundaries of two irregular faces
so we need to maintain two labels on the vertex representing this eigencycle to guide
further operations. Clearly, this detail does not damage above process and analysis. B

Algorithm 6 Simplify-to-Biconnected
Input: G and G':=Ezhaust-k- Unitings(G)
Output: Biconnected graph G or a small cycle separator of G

. Apply Find-Irregular-Face-Forest to G and G;

2. While current irregular-face-forest is not empty do
Suppose the depth of current irregular-face-forest is h, select all irregular faces
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having depth [A/2]| and apply the processing of Lemma 5 to this set of independent
irregular faces; (Comments: By Lemma 5, each iteration either prunes all branches
underneath selected faces or cuts the forest to a subtree underneath one of the
irregular faces when no cycle separator is found. In both cases, the remind irregular-
face-forest is about one half shorter.)

3. If the shape of a face is 2, unite it with another face when they share the longer
part or an equal part of the former’s two part boundary. If the weight of a new
face is larger than %n, use its boundary as a cycle separator.

Theorem 3 Giwven G and G, algorithm Simplify-to- Biconnected either simplifies G' into
a biconnected planar graph without increasing both the mazimum face size and the number
of faces or finds a cycle separator no larger than 2k. The algorithm needs O(log® n) time
and O(n) processors.

Proof: Since Step 2 needs at most O(log n) iterations, O(log® n) time and O(n) processors
are enough by Lemma 5. In Step 2, the size of a new face cannot be larger than the
maximum face size of G', because the boundary of the new face is always part of the
boundary of a face of G'. Step 2 doesn’t creat a face weightier than %n unless a cycle
separator no larger than 2k is found, so a face created in Step 3 is lighter than %n and
its size is no larger than the size of one of the two faces from which it is formed. B

5 Analysis and Conclusion

Now we can use algorithm FEzhaust-k-Unitings and Simplify-to- Biconnected for Step 2
and Step 3 of algorithm Find-Simple-Cycle-Separator respectively and claim the following
theorem without proof.

Theorem 4 Parallel algorithm Find-Simple-Cycle-Separator can find a cycle separator
on an undirected planar graph in O(log?n) time using O(n®) processors on the CRCW
PRAM, where ISP<M. The size of the cycle separator is O(\/mam{d,nMrE_P} -n), where
d 3 the mazimum face size.

Theorem 5 A BFS tree on a planar graph can be found in O(log®n) time with O(n'®*)
processors on the CRCW PRAM.

Proof: By Theorem 4, we can use Algorithm 1 to find a family of n°®'2.separators on
a planar graph in O(log n) iterations using O(n'®#!) processors. Then Pan and Reif’s
5%(n)/(I(n)log n) processor BFS algorithm can take over. il

Although the processor-time complexity of our parallel small cycle separator algorithm
is optimal to a factor of O(log®n), it is still interesting to find O(log n) time small cycle
separator algorithms. It is still an open issue regarding how to find linear-processor DNC
cycle separator algorithms which have tighter cycle separator upper bound when d<n?58
and how to find more efficient parallel BFS algorithms for planar graphs.
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