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Abstract. It has long been a fundamental open problem whether polylog time and linear
processors are sufficient to find the strongly connected components of a directed graph and compute
directed spanning trees for these components. This paper provides the first nontrivial partial solution
to the tree problem: for a planar directed graph with n vertices, if the graph is strongly connected,
then a directed spanning tree rooted at a specified vertex can be built in O(log? n) time using O(n)
processors. The algorithm is deterministic and runs on a parallel random access machine that allows
concurrent reads and concurrent writes in its shared memory. The result complements an algorithm
by Kao that computes the strongly connected components of a planar directed graph in O(log® n)
time and O(n) processors.

1. Introduction. The problems of finding directed spanning trees and strongly
connected components frequently appear in more complex problems involving directed
graphs. In sequential computation, both problems have linear-time algorithms [1]. In
parallel computation using a parallel random access machine, the best algorithms for
these two problems are based on matrix multiplication and require O(log® n) time
and O(n®37%) processors for an n-vertex directed graph [11], [8], [6]. The work of an
algorithm can be estimated by the product of its time and processor complexities.
Thus, there is a substantial gap between the work done by the above sequential and
parallel algorithms. In light of the gap, it has long been a fundamental open problem
whether polylog time and linear processors are sufficient for computing the strongly
connected components and their directed spanning trees. This paper offers the first
nontrivial partial solution to the tree problem: for a planar digraph with n vertices,
if the graph is strongly connected, then a directed spanning tree rooted at a specified
vertex can be built in O(log2 n) time and O(n) processors. The algorithm is determin-
istic and runs on a parallel random access machine that allows concurrent reads and
concurrent writes in its shared memory. The result complements an algorithm by Kao
that computes the strongly connected components of a planar digraph in O(log® n)
time and O(n) processors [10].

The directed spanning tree algorithm and the strongly connected component algo-
rithm share some of their techniques and are based on new insights into the structure
of planar digraphs. An insight used in the tree algorithm is as follows. If a strongly
connected embedded planar digraph has a maximum degree of at most three and has
exactly one positive face (a face whose boundary forms a clockwise directed cycle),
then a directed spanning tree can be constructed by deleting from the graph an arbi-
trary edge of the positive face and the first edge of each positive segment (a maximal
clockwise directed path on the boundary of a noncycle face ). (See Fig. 1.) This edge
cutting technique takes only logarithmic time and linear processors. The efficiency of
the technique relies on the fact that edges are chosen and deleted locally. The cor-
rectness of the technique derives from a fundamental order property: if an embedded
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planar digraph is strongly connected, then its dual digraph is acyclic. The acyclicity
of the dual graph induces a partial order on the faces of the primal graph. This partial
order in turn induces an ear decomposition for the primal graph with the positive face
being the first ear and the positive segments being the remaining ears. To build a
directed spanning tree for the primal graph, it suffices to remove an arbitrary edge of
the first ear and the first edge of each remaining ear.

This simple edge cutting technique can do more. A directed tree is called con-
vergent (or divergent) if the edges in the tree point from a vertex to its parent (re-
spectively, children). A CD-pair of spanning trees is a convergent spanning tree and
a divergent spanning tree rooled at the same vertez. The spanning tree built above is
convergent. Symmetrically, a divergent spanning tree can be built by deleting from
the input graph an arbitrary edge of the positive face and the last edge of each pos-
itive segment. (See Fig. 1.) These two spanning trees form a CD-pair of spanning
trees if the two edges deleted from the positive face are chosen appropriately. Given a
CD-pair of spanning trees, it is straightforward to reroof the pair to compute another
CD-pair of spanning trees rooted at a specified vertex. The rerooting can be easily
done in logarithmic time using linear processors. Therefore, the edge cutting tech-
nique in effect computes a spanning tree oriented in a specified direction and rooted
at a specified vertex in logarithmic time and linear processors.

However, the edge cutting technique does not work if the input graph has two or
more positive faces or has a maximum degree greater than three. If the graph has
exactly one positive face but the maximum degree of the graph is four or greater, then
the edge cutting technique sometimes produces a subgraph containing directed cycles.
(See Fig. 2.) On the other hand, if the maximum degree of the graph is at most three
but the graph has two or more positive faces, then the edge cutting technique always
produces a CD-pair of spanning forest by deleting an appropriate pair of edges on
each positive face and the first and last edges of each positive segment. (A CD-pair
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F1G. 4. Verter expansion.

of spanning forests is a convergent spanning forest and a divergent spanning forest
rooted at the same vertices.) (See Fig. 3.) To resolve these two difficulties, the
spanning tree algorithm employs several novel ideas to reduce a strongly connected
embedded planar digraph into one that has exactly one positive face and a maximum
degree at most three.

Reducing the number of positive faces is coupled with merging the CD-pair of
spanning forests produced by the edge cutting technique. It is in general very costly
to merge a forest into a tree. To pinpoint the problem, let 77 and 7% be two disjoint
divergent trees. Let d = u; — us be a directed edge from 77 to 73. To attach 7%
to T through d, there are two cases. If us is the root of T3, then a larger divergent
tree is readily formed by d, T1, and T5. However, if us is not the root of 75, then
merging T3 to 7} through d requires rerooting 75 to us. Rerooting is in general very
expensive. To facilitate rerooting, the spanning tree algorithm uses the following
ideas. A key property of the CD-pair of spanning forests produced by the edge
cutting technique is that each positive face is covered by a unique convergent tree and
a unique divergent tree. These two trees are rooted at the same vertex in that positive
face. They may cover different vertices but they share a well-structured neighborhood
of that positive face. Using the shared root and the opposite orientations of these two
trees, it is easy to reroot them at any vertex in the neighborhood and thus it is
easy to merge the forests in the neighborhood. Furthermore, from its good structure,
the neighborhood can be contracted to reduce by half the number of positive faces.
Therefore, logarithmic iterations are sufficient to recursively reduce the number of
positive faces down to one and recursively merge the forests into a CD-pair of spanning
trees. Of course, vertex contraction may produce large-degree vertices and the two
major difficulties of the edge cutting technique have be resolved in concert.

To remove large-degree vertices, the basic idea is to replace each vertex of de-
gree greater than three with an appropriate cycle face. (See Fig. 4.) This operation
is called verter erpansion. There are three problems associated with vertex expan-
sion. The first problem is about undoing vertex expansion. Let F' be a graph with
large-degree vertices. Let F' be the graph constructed from F' by expanding the
large-degree vertices into cycle faces. To build a spanning tree for F, the spanning
tree algorithm first builds a spanning tree T for F'. Then, the problem is that 7"
contains several duplicates for each large-degree vertex of F. The spanning tree algo-
rithm uses a duplicate removal technique to turn 7" into a spanning tree of F without
duplicates. The second problem is concerned with the graph size. To reduce the num-
ber of positive faces, well-structured neighborhoods of positive faces are contracted.
Vertex contraction in general creates large-degree vertices. Therefore, it is necessary
to expand these new large-degree vertices into cycle faces. Because vertex contrac-
tion is repeated several times to recursively reduce the number of positive faces, it is
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necessary to repeatedly expand large-degree vertices. Now, because vertex expansion
increases the size of a graph by a constant factor, there is a danger that repeated
vertex expansion might increase the size of the input graph to more than linear and
thus make a linear-processor complexity unattainable. By their good structures, the
contracted neighborhoods of positive faces are large enough to offset the effect of ver-
tex expansion on the graph size. The third problem is to decide whether large-degree
vertices should be replaced by positive faces or negative faces. The replacement by a
negative face never increases the number of positive faces, and the replacement by a
positive face sometimes destroys more than one positive face and thus makes progress
on reducing the number of positive faces. The spanning tree algorithm actually uses
different replacement strategies to suit the needs of different stages.

The above discussion has highlighted some of the major difficulties and key ideas
m the linear-processor NC algorithm for computing planar directed spanning trees.
The following sections proceed to detail the algorithm. Section 2 provides basics
of planar digraphs. Section 3 elaborates on the edge cutting technique. Section 4
describes the tree rerooting technique and the duplicate removal technique. Section
5 gives the spanning tree algorithm. Section 6 briefly discusses open problems.

2. Basics for planar digraphs. A planar digraph is one that can be drawn on
a plane such that the edges in the drawing intersect only at common ends [9], [4]. A
drawing of a planar digraph can be specified by the clockwise cyclic order of edges
incident with each vertex. Such a specification is called a combinatorial embedding and
is useful for algorithmic purposes. For an n-vertex planar digraph, a combinatorial
embedding can be found in O(log® n) time using O(n) processors [12]. Recently, the
complexity has been reduced to optimal O(logn) time and O(n/logn) processors
[16). Because these complexity bounds are comparable to the desired complexity
for computing planar directed spanning trees, the tree algorithm assumes without
loss of generality that an embedding of its input graph is already given. However,
be aware that these embedding complexity bounds are for graphs without multiple
edges and loop edges. In the spanning tree algorithm, although these two types of
edges can simply be removed without affecting the existence of a directed spanning
tree, the edges require special attention. The reason is that multiple edges and loop
edges play subtle roles in tracing and analyzing boundary portions of a face that
remain unchanged under vertex contraction. These edges are treated as follows. At
the beginning, without loss of generality, the input to the directed spanning tree
algorithm is a planar digraph without multiple edges and loop edges. Then, the tree
algorithm uses vertex contraction to manipulate the input graph. Vertex contraction
may create multiple edges and loop edges. Multiple edges must be kept to trace
invariant boundary portions of a face; loop edges are useful in the analysis of these
portions and are deleted to simplify the contracted graph.

The remaining discussion is divided into two parts. Subsection 2.1 defines basic
concepts for planar digraphs and describes the planar primal-dual orientation struc-
ture highlighted in the Introduction. Subsection 2.2 defines vertex expansion and
vertex contraction, and describes useful boundary portions of a face that remain un-
changed under vertex contraction.

2.1. Basic definitions and primal-dual orientation. Throughout this sub-
section, let F' be a connected embedded planar digraph with more than one vertex.
For simplicity, further assume that F' is bridge-connected. A bridge-connected graph
is a connected graph such that the removal of any single edge cannot disconnect
the graph. To justify this focus, notice that if F' is strongly connected, then F is
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bridge-connected.

DEFINITION 2.1 (HoLEs, FACES, ORIENTATIONS, AND CLUSTERS). Let B be a
connected subgraph of F' that has more than one vertex. If the vertices and edges
of B are removed from the embedding plane of F, then the plane is divided into
disconnected regions. Exactly one of the regions is infinite; the others are all finite.
The infinite region is called the ezternal hole of B. Among the finite regions, some may
contain edges from F'; these regions are called the iniernal holes of B. Similarly, if the
edges and vertices of F' are deleted from the embedding plane of F, then the plane is
divided into disconnected regions. Each region is called a face of F. The boundary of a
face f is the edges and vertices surrounding f. Because F is connected, the boundary
of f is connected. Furthermore, because F' is bridge-connected, the boundary of f
can be arranged into a unique edge-simple undirected cycle. This arrangement is
made by an observer staying inside f and walking along the boundary of f. The
orientation of a boundary edge with respect to f is also determined by the observer. A
boundary edge is positive (or negative) with respect to f if it points in the clockwise
(respectively, counterclockwise) direction on the boundary cycle of f. This definition
of edge orientation is in fact based on the corresponding spherical embedding of F.
The face f is called a cycle face if its boundary cycle is a directed cycle. The face f
is called a positive (or negative) face if f is a cycle face and every boundary edge is
positive (respectively, negative) with respect to f. Two positive faces hy; and hsy are
linked if there is a sequence of positive faces fy,---, f, such that hy = fy, hs = f;,
and for 1 <1 < s—1, f; and fi4+1 share at least one vertex. A cluster of positive faces
is a maximal set of positive faces that are linked. For brevity, a cluster of positive
faces is called a positive cluster. Negative clusters can be defined in a symmetric way.
The planar directed spanning tree algorithm is described mainly in terms of positive
boundary paths, positive faces, and positive clusters. Symmetrically, the algorithm
can also be described using only the negative orientation.

DEFINITION 2.2 (DuAL PLANAR DIGRAPHS). The dual of F, denoted by F, is
the embedded planar digraph constructed as follows. For each face f in F, there is a
vertex f in F'; f is called the dual of f. For each edge d in F, there is an edge d in F'; d
is called the dual of d. The edge d is determined as follows. Let f; and f» be the two
faces in F' that share d as a boundary edge. If d is positive (or negative) on fi, then d
is a directed edge from f1 to fg (respectively, from fg to fl) Intuitively, F is obtained
by placing a vertex in each face of F' and turning each edge of F' counterclockwise by
90 degrees. Observe that the dual of the dual of F' is the same as F' with reversed edge
directions; consequently, each vertex in F also corresponds to a face in F. Finally,
observe that a source (or sink) in F corresponds to a positive (respectively, negative)
cycle face in F.

THEOREM 2.3 (PRIMAL-DUAL ORIENTATION). F is strongly connected if and
only if F is acyclic. Consequently, if F' is strongly connected, then F contains at least
one positive face and one negative face.

Proof. A detailed proof is given in the planar strongly connected component paper
[10]. Briefly, this theorem is based on the following folklore observation: for an edge
d € F, if the two ends of d are in the same strongly connected component of F, then
the two ends of d are in different strongly connected components of F'. O

2.2. Vertex expansion and vertex contraction. Vertex expansion and ver-
tex contraction are two useful operations in the planar directed spanning tree al-
gorithm. This subsection gives the precise definitions of these two operations and
describes useful boundary portions of a face that remain unchanged under vertex
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contraction.

DEeFINITION 2.4 (VERTEX EXPANSION). The planar directed spanning tree algo-
rithm is sensitive to vertices with degree greater than three. For this reason, a vertex
of degree four or more is called a large-degree vertex. A useful operation for handling
large-degree vertices is to replace them each by a positive face or a negative face as
shown in Fig. 4. This operation is called vertez ezpansion. In another important
application, vertex expansion is used to destroy cycle faces and may apply to vertices
of degree three or less. For technical uniformness, if the graph in question consists of
a single vertex, then this vertex is expanded into a cycle face with two edges. Finally,
vertex expansion for degree two or more is formally defined as follows. Let v be a
vertex with degree s. Let dy,.--,d, be the edges incident with v in the clockwise
order. To expand v into a negative face, there are three steps: (1) create s copies of v,
namely, w, - - -, w,, (2) replace the v-end of each d; by w;, and (3) link the w;’s into
a counterclockwise directed cycle with s edges, wy «— wa, -+, w;_1 — wW;, w; +— wy.
Expanding v into a positive face can be done by reversing the direction of the edges
connecting the w;’s to form a clockwise directed cycle.

DEFINITION 2.5 (VERTEX CONTRACTION). Throughout this paper, vertex con-
traction always satisfies the following two specifications: (1) to preserve planarity,
vertex contraction contracts only connected vertex subsets, and (2) to trace invari-
ant boundary portions of a face, vertex contraction always keeps multiple edges and
deletes loop edges as mentioned earlier. The embedding induced by vertex contraction
is as follows. Let F' be a strongly connected embedded planar digraph. Let B be a
connected vertex subset of F. Let F’ be the graph constructed from F' by contracting
B. The embedding for F’ is specified as follows. For a vertex v ¢ B, v remains a
distinct vertex in F' and the cyclic order of the edges incident with v is the same
in F and F’. For the vertices in B, all these vertices become a single vertex B’ in
F’. The cyclic order of the edges incident with B’ in F' are determined by whether
an edge is around the external hole or an internal hole of B in F. The edges around
each hole of B stay together around B’. For the edges around the external hole of
B, their order around B’ is the same as their order around the external hole of B.
For the edges around an internal hole of B, their order around B’ is opposite to their
order around that internal hole. The order difference between the external and in-
ternal holes is for maintaining consistency with the edge order around uncontracted
vertices. The embedding of F' as defined above is not necessarily unique. In this
paper, any induced embedding that satisfies the above definition is sufficient for the
planar directed spanning tree algorithm.

The next lemma describes useful boundary portions of a face that remain un-
changed under vertex contraction. In general, it is difficult to trace a face under
vertex contraction because adjacent faces may be combined and thus lose their indi-
vidual identities. In contrast, it is easy to trace an edge because although the end
vertices of an uncontracted edge may change, the link stays the same and thus keeps
its unique identity. For this reason, the next lemma is stated implicitly in terms of
uncontracted edges. Be aware that if multiple edges are not kept, then the lemma is
false.

LEMMA 2.6. Let f' be a face in F'. Let P’ be an internally vertez-simple path
on the boundary of f' such that the two end vertices of P’ are new vertices contracted
from F bul the internal vertices of P’ are original vertices in F. Then P’ originally 1s
a path on the boundary of a face f in F, and each edge of P’ has the same orientation
with respect to f and f'.
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Proof. Vertex contraction can be done by performing a sequence of contracting a
nonloop edge and deleting a loop edge. The proof of the lemma is by straightforward
induction and is based on direct observations of the effects of deleting a loop edge and
contracting a nonloop edge. 0

3. Edge cutting. This section elaborates on the edge cutting technique high-
lighted in the Introduction. The elaboration is divided into four parts. Subsection
3.1 brings out the mechanism behind the deceivingly simple technique. Subsection
3.2 uses the technique to compute a CD-pair of spanning irees for a positive clus-
ter. Subsection 3.3 computes a well-structured CD-pair of spanning forests for an
embedded planar digraph that is strongly connected and has no large-degree vertices.
Subsection 3.4 takes advantage of the structure of the forests and computes a useful
neighborhood around each positive face. The neighborhood is called the biconnected
territory of a positive face, and the contraction of the neighborhood is a key step in
reducing the number of positive faces.

3.1. The mechanism of edge cutting. The mechanism behind the edge cut-
ting technique is best exposed via a generalization of the standard ear decomposition.
Let F be a digraph. An ear of F' is an internally vertex-simple directed path, that
is, the internal vertices appear only once in the path. A decomposition of F' is a
partition of its edges into ears. An ordered decomposition is a decomposition whose
ears are arranged into a partial order. A head is an ear that is a minimal element in
the partial order. A multihead ear decomposition of F is an ordered decomposition
with the following properties. (1) For each head, its end vertices are the same. (2)
Two distinct heads may not intersect at all. (3) For each nonhead ear, its end vertices
must be in some smaller ears but its internal vertices may not be in any smaller or
incomparable ears.

The next lemma describes the relationship between the notion of multihead ear
decomposition and the technique of edge cutting. In the lemma, given a multihead
ear decomposition of F, let F, and Fj be the graphs constructed from F' by deleting,
respectively, the first edge and the last edge in each ear.

LEMMA 3.1. F, and Fy form a CD-pair of spanning forests for F. For each head,
its vertices are in exactly one tree in each forest; conversely, in each forest, each tree
contains the vertices of exactly one head. Each tree is rooted at the end vertex of its
corresponding head.

Proof. The proof is by straightforward induction on the partial order of the ears.
The idea is to add into an initially empty graph the ears one by one starting with
the heads. The forest shape is enforced by the internal simplicity of ears, the second
property, and the second half of the third property. The number of trees in a forest
is controlled by the first property, and the second property, and the first half of the
third property. 0O

There are two immediate observations concerning the usage of the lemma. One is
that to compute a CD-pair of spanning trees, it suffices to create a decomposition with
only one head. The other is that given a multihead ear decomposition, a CD-pair of
spanning forests can be computed in constant time using linear processors. Therefore,
the complexity of computing a CD-pair of spanning forests is determined by that of
computing a multihead ear decomposition.

3.2. Computing spanning trees for positive clusters. Let F' be an embed-
ded planar digraph that may have large-degree vertices. Let II be a positive cluster
of F. A CD-pair of spanning trees for II can be computed in three stages as follows.
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The first stage computes an auxiliary graph for II. Notice that because F may
have large-degree vertices, Il may contain several positive faces and each face may
not be vertex-simple. Also notice that a positive face can be decomposed into vertex-
simple directed cycles by computing the biconnected components of that face. Let T
be the set of all such cycles from II. Let U be the set of vertices shared by cycles in
I'. The auxiliary graph I is an undirected graph such that (1) the vertex set of II
consists of the vertices in U and the cycles in ' with each cycle treated as a single
vertex, and (2) for C € T and u € U, there is an undirected edge in II' between C
and u if and only u is a vertex in C.

The second stage imposes a total order on the vertex-simple cycles in II. Observe
that because II is connected, II’ is also connected and thus has a spanning tree. The
desired total order on II is constructed by computing an arbitrary undirected spanning
tree T of I’ and a preorder numbering of T'. This preorder numbering naturally induces
a total oder on the cycles in T'.

The third stage uses the total order to construct for II an ear decomposition with
only one head. The construction is based on the notion of breakpoints and segments.
For the smallest-numbered cycle in T', the breakpoint of the cycle is an arbitrary vertex
in the cycle; for each other cycle in T, the breakpoints of that cycle are the vertices
shared by that cycle and smaller-numbered cycles. The breakpoints are defined with
respect to a face, and a vertex may be a breakpoint for a face but not for another face.
A segment is the directed subpath of a cycle between two adjacent breakpoints of the
cycle. The segments are the desired ears. The desired partial order < of the segments
is naturally induced by the preorder numbers of the cycles in I'. Let L; and L2 be two
segments. Let C) and C; be the cycles that produce Ly and L3, respectively. Then
L1 < Lo if and only if the preorder number of C; is less than that of Cs.

LEMMA 3.2. The segments and < form an ear decomposition with only one head.

Proof. First of all, because a cycle in T is vertex-simple, a segment is internally
vertex-simple and thus is an ear. Furthermore, in T', except the smallest-numbered
cycle, every cycle shares at least one vertex with some smaller-numbered cycle. This
vertex sharing property is inherited in essence from the property that in a preorder
numbering of a tree, except the smallest-numbered vertex, every vertex is adjacent to
at least one smaller-numbered vertex. From the vertex sharing property, every cycle in
T’ has at least one breakpoint and thus is partioned into segments. Consequently, the
segments form a decomposition of II. Because the preorder numbering of T induces
an order on the cycles in I, the order < on the segments is a partial order and the
decomposition is an ordered one. Because the order on the cycles in I' is a total order,
from the definition of the breakpoints, the segments and < satisfy the three properties
of a multihead ear decomposition. Finally, because the order on I' is a total order and
the smallest-numbered cycle in T’ produces only one segment, the decomposition has
only one head, which is the segment produced by the smallest-numbered cycle. O

THEOREM 3.3. Given an embedded planar digraph, a CD-pair of spanning irees
for each positive cluster can be constructed in logarithmic time using linear processors
in the size of the graph.

Proof. Lemmas 3.2 and 3.1 can be used to compute a CD-pair of spanning trees for
each positive cluster. As for the complexity, the key fact is that from the construction
rule for the edges in IT’, the size of I’ is linear in the size of II. Therefore, the total

complexity is logarithmic time and linear processors using well-known fundamental
algorithms [18], [17], [3], [2], [5], [13], [14]. O
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3.3. Computing directed spanning forests. Let F' be an embedded planar
digraph that is strongly connected, has more than one vertex, and contains no large-
degree vertices. From Lemma 3.1, to compute a CD-pair of spanning forests for F,
it suffices to compute a multihead ear decomposition for F. The construction of the
desired decomposition is based on the notions of breakpoints and positive segments.
For a noncycle face, the breakpoints of the face are the local sources and sinks on the
boundary of the face; for a positive face, the breakpoint of the face is an arbitrary
vertex on the face; a negative face has no breakpoints. Notice that the breakpoints
are defined with respect to a face and that a vertex may be a breakpoint for a face
but not for another face. Also observe that the boundary subpath of a face between
two consecutive breakpoints is a directed path. Such a path is called a segment.
A segment of a face is called positive if the edges of the segment are positive with
respect to that face. The positive segments are the desired ears. As for a suitable
partial order on the positive segments, because F' is strongly connected and has more
than one vertex, from Theorem 2.3, the dual graph of F' is acyclic and thus can be
regarded as a partial order <; on the faces of F' with the positive faces being the
minimal elements. The partial order <; on the faces naturally induces a partial order
<, on the positive segments. Let f; and f; be two faces. Let L; and L, be two
positive segments of f; and fo, respectively. Then L; <, Ly if and only if f; <; fa.

LEMMA 3.4. The positive segments and <, form a multi-head ear decomposition.
Each positive face is a head and the positive faces are the only heads.

Proof. Because I is strongly connected, the boundary of a face forms an edge-
simple cycle. Moreover, because F' has a maximum degree of at most three, the
boundary cycle is vertex-simple. Thus, a segment is internally vertex-simple. Because
F is strongly connected, an edge in F is contained in exactly two faces and is positive
on either face. Therefore, the positive segments together cover all the edges and form
a decomposition of F. Because < is a partial order, <, is also a partial order and the
decomposition is an ordered one. Because the positive faces are the minimal elements
in <y, their segments are the heads. Because a positive face has only one breakpoint,
these heads satisfy the first property of a multihead ear decomposition. Because F'
has a maximum degree of at most three, no two positive faces share a vertex, the
heads satisfy the second property of a multihead ear decomposition.

To prove third property, let L; be a nonhead ear, and let Ly be a distinct segment
that intersects L; at a vertex v. Because F has no large-degree vertices, v cannot be
an internal vertex for both L; and Lj. Therefore, there are two cases: (1) v is an end
vertex of L, and (2) v is an internal vertex of L; and thus is an end vertex of Lj.
These two cases are actually symmetric. The first case proves the first half of the
third property and the second case proves the second half of the third property. The
following proof only discusses the first case. By definition, v is a source or a sink on
the face f; that induces L). By symmetry, assume without loss of generality that v
is a source on f;. From the strong connectivity of F, the degree of v is at least three.
From the small degree of F, the degree of v is exactly three. Let wy, ws, and w3 be
the three vertices adjacent with v in the clockwise order. Assume that w; and w; are
on the boundary of f; and ws is not on that boundary. Then because v is a source,
the three edges between v and the w;’s are the following: dy = v — wy, d2 = v — wy,
and d3 = w3 — v. Because the face f; contains d; and dj, the segment L; must be
the one on f; that contains d; as a positive edge. Let f; be the face that contains da
and ds as positive edges. Then the segment L, must be the one on f, that contains
d» and d3 as positive edges. Now notice that fo <5 fi. Thus, Ly <5 L;. O
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In the next theorem, let . and Fj be the graphs constructed from F by deleting,
respectively, the first edge and the last edge of each positive segment.

THEOREM 3.5. F, and Fj can be computed in logarithmic time using linear
processors in the size of F. Furthermore, F. and Fy form a CD-pair of spanning
forests for F. For each positive face, the vertices of the face is coniained in ezactly
one tree in each forest; conversely, in each foresi, each iree contains the vertices of
ezactly one positive face. Each iree is tooled af the breakpoini of ils corresponding
positive face.

Proof. The key fact for the complexity is that the partial orders <; and <, are
implicit and require no computation at all. The other statements follow Lemmas 3.1
and 3.4. 0O

THEOREM 3.6. Given a sirongly connected embedded planar digraph with exactly
one positive face and no large-degree vertices, a CD-pair of spanning trees can be
computed in logarithmic time using linear processors in the size of the graph.

Proof. By Theorem 3.5, the proof follows the assumption that the graph has
exactly one positive face and thus there is only one tree in each of F; and Fy. O

3.4. Contracting the biconnected territories. The notion of biconnected
territory is based on F, and Fy as follows. Let F be a strongly connected embedded
planar digraph without large-degree vertices. Let f be a positive face in F. Let C.(f)
and C4(f) be the trees in F, and Fy respectively that contain f. Let S(f) denote the
set of vertices shared by C.(f) and C4(f), and consider S(f) as an induced subgraph
of F. Because f is in S(f) and is biconnected in F, f is in a biconnected component
of S(f). This biconnected component is denoted by BT (f) and is called the positive
biconnected territory of f. For brevity, BT (f) is called a biconnected territory of F.

THEOREM 3.7. Given a strongly connected embedded planar digraph that has no
large-degree vertices, the biconnected territories can be computed in logarithmic time
ustng linear processors in the size of the graph.

Proof. First of all, F. and F; can be easily computed in logarithmic time and
linear processors. The C.(f)’s and C4(f)’s can be computed in logarithmic time and
linear processors, using a well-known connectivity algorithm [17]. More importantly,
because from Theorem 3.5, distinct positive faces have disjoint C.(f)’s and C4(f)’s, the
S(f)’s can be computed in logarithmic time and linear processors in a straightforward
manner. Consequently, the biconnected territories can be computed in logarithmic
time using linear processors. 0

Contracting the biconnected territories is a key step in reducing the number of
positive faces. Let F’ be the graph constructed from F' by contracting each bicon-
nected territory of F' into a single vertex. Because BT (f) is connected, BT (f) can be
contracted without destroying the planarity of F. Therefore F' is planar. Originally,
because F has no large-degree vertices, positive faces are disjoint. The contraction
of the territories may create large-degree vertices in F” and thus positive faces in F’
may cluster together. The next two propositions discuss the relationship between the
number of positive clusters in F’ and the number of positive faces in F.

In the next lemma, let f be a noncycle face in F. Let P be a directed path on the
boundary of f such that P is positive on f and has at least two edges. Notice that
the existence of at least two edges ensures that P has at least one internal vertex.

LEMMA 3.8. If the end vertices of P are in biconnected territories of F but
the internal wvertices of P are not, then the end vertices of P must be in different
biconnected territories.

Proof. Let v and w be the end vertices of P such that P goes from v to w. Let f,
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and f,, be the positive faces with v € BT (f,) and w € BT (f,,). The goal is to show
that BT (f,) # BT (fw)- To prove by contradiction, assume that BT (f,) = BT (fuw)-
From Theorem 3.5, this implies f, = f,,. Now, it suffices to show that f, = f,, implies
P C BT (fw), contradicting the assumption that the internal vertices of P are not in
any biconnected territory. To show P C BT (fy ), notice that because f is a non-cycle
face and P is a positive boundary path of f, the path P is a subpath of a positive
segment @ of f. Let P = py,---,ps with v = p; and w = p,. Let Q = ¢1,---,¢:.
After the first edge of @ is cut, the subpath Q" = ¢5,---, ¢; remains a path in F,.
Because P is a subpath of @, the path P, = ps,- -, p; is a subpath of Q'. Thus, the
vertices pa,---,p, are connected to p, = w in F,. Because w € BT (fy) C Cc(fu),
the vertices ps, - -, p, are in C.(fu). On the other hand, because p; = v € BT (f,) =
BT (fw) C Ce(fw), p1 is also in C.(fy). In sum, P is in C.(fy)- By symmetry, P is
also in C4(fy ). Because f, = fu, Ca(f,) = Cia(fw) and P is in 8(fy,). Finally, from the
proof assumption, P is connected to BT (f,,) at both v and w. Because F' has a small
degree, the union of P and B7(f,) is biconnected in S(f, ). Consequently, the path
P lies in BT (f,). O

THEOREM 3.9. The number of positive clusters in F' is less than half the number
of positive faces in F.

Proof. It suffices to show that each positive face in F’ must contain at least
two contracted biconnected territories of F. To prove this claim by contradiction,
assume that there exists a positive face f' in F” that contains at most one contracted
biconnected territory of F. There are two cases based on whether f’ contains one
or zero contracted biconnected territory of F. Case (1): f' contains zero contracted
biconnected territory of F. Then, f’ must be a positive face in F. This contradicts the
fact that every positive face of F is contracted in F’. Case (2): f' contains exactly one
vertex v’ that is a contracted biconnected territory of F. Let f” be a vertex-simple
directed subcycle on the boundary f’ such that f” contains v'. From Lemma 2.6,
the boundary path P of f” from v’ to v’ is originally a positive boundary path of a
noncycle face f in F' such that (1) the two ends of P are in biconnected territories
of F, and (2) the internal vertices of P are not in any biconnected territories of F.
Because F' has no loop edges, f” has at least two edges and thus P has at least two
edges. Now from Lemma 3.8, the two ends of P must be in different biconnected
territories of F. This contradicts the proof assumption that f’ contains exactly one
contracted biconnected territory of F. 0O

4. Tree rerooting and duplicate removal. As mentioned in the Introduc-
tion, tree rerooting and duplicate removal are useful techniques for computing planar
directed spanning trees. When used together, duplicate removal provides crucial flex-
ibility to tree rerooting so that forests can be merged efficiently. The details of the
two techniques and their combination are given in §4.1, 4.2 and 4.3, respectively

4.1. Tree rerooting. The next lemma describes the generic technique for tree
rerooting. In the lemma, let F' be a digraph. Let T, and Ty be, respectively, a
convergent tree and a divergent tree in F' that are rooted at the same vertex r. Let
U, and U, be the sets of vertices, respectively, shared by T, and T}, and contained
in the union of T, and Ty. Let n. and ngz be the numbers of vertices in T, and Ty,
respectively.

LEMMA 4.1 (TREE REROOTING). Given T,, Ty, and a vertex v’ € U,, it takes
only O(log(n. +ngq)) time and O(n. + nq) processors to compute a convergent tree T,
and a divergent tree Tj of F' such that T, and T} are rooted at r', share at least U,
and contain at most Uy.
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Proof. To create T, the idea is to add into T, the tree path P; in Ty from r to r’.
The path Py exists because v’ € U;. In T, U Py, there is a directed path from every
vertex to r via T, then to v’ via P;. The subgraph T. U Py is not yet a convergent tree
rooted at r’ because the addition of P; may cause some vertices to have two outgoing
edges. This can be easily remedied by deleting appropriate edges. After the remedy,
it is straightforward to verify the remaining statements in the lemma for T;. The tree
T} is constructed and analyzed in a symmetrical way. O

COROLLARY 4.2. Let F be a strongly connected digraph. Given e CD-pair of
spanning trees for F, another CD-pair of spanning irees for F rooled at a specified
verter can be computed in logarithmic time using linear processors in the size of F.

Proof. This is a straightforward corollary of Lemma 4.1. 0O

4.2. Duplicate removal. The next lemma discusses the generic technique for
removing duplicates from a tree. In the lemma, let F' be a digraph with n vertices.
Let Uy, .-, U, be disjoint vertex subsets of F. Let F’ be the version of F' with the
vertices in each U; identified as a single vertex.

LEMMA 4.3 (DupLICATE REMOVAL). Given the U;’s and a directed spanning tree
T for F, it takes O(logn) time and O(n) processors to construct a directed spanning
tree T' for F' such that T' and T' have the same orientation and the same root.

Proof. The basic idea is to choose an appropriate representative for U;. This done
in three steps as follows. First, let the representative be the highest vertex u; of U;
in T; if there are two vertices or more at the same highest level, choose one of them
arbitrarily. Second, delete from T all the edges between the vertices in U; — {u;} and
their parents. Third, contract U; into u;. The resulting graph is the desired tree T". It
is straightforward to verify that 7" is indeed a directed spanning tree for F’ with the
same orientation and the same root as those of T. As for the complexity, the key fact
is that the representative vertices can be found in O(logn) time and O(n) processors
using well-known tree contraction algorithms [14]. O

COROLLARY 4.4. Let F be a strongly connected embedded planar digraph. Let
F' be constructed from F by replacing some verlices each with a positive face or a
negative face. Then given a CD-pair of spanning trees for F', a CD-pair of spanning
trees for F' can be consiructed in logarithmic time using linear processors in the size
of F.

Proof. This is a straightforward corollary of Lemma 4.3 with F' and F' in the
reversed roles. The key observation is that for each expanded vertex of F, there is a U;
consisting of the vertices of the corresponding cycle face in F’. As for the complexity,
the key fact is that the size of F’ is at most five times the size of F. 0O

4.3. Combining tree rerooting and duplicate removal. The next lemma
combines the tree rerooting technique and the duplicate removal technique. In the
lemma, let F' be a strongly connected digraph. Let Uy,---,U; be disjoint vertex
subsets of F. Let S; . and S; 4 be a CD-pair of trees in F' that each cover U;. The
trees S; . and S; 4 may contain vertices not in U;; this condition provides necessary
flexibility for Theorem 4.6 given below. Let F’ be the graph constructed from F by
contracting each U; into a single vertex. Let T, and T be a CD-pair of spanning trees
for F'.

LEMMA 4.5 (TREE REROOTING AND DUPLICATE REMOVAL). Let n be the num-
ber of vertices in F. Let o be the sum of the numbers of vertices in the S; .’s and S; g4’s.
Given T!, T}, the S;.’s, and the S; 4’s, it takes O(log(a + n)) time using O(a + n)
processors to compute a CD-pair T, and Ty of spanning trees for F.
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Proof. By symmetry, it suffices to construct T, in two stages as follows. The first
stage applies Lemma 4.1 to every S;. and S; 4. Let u} be the vertex in F’ that is
contracted from U;. The supervertex u! in T} is expanded back to an appropriate tree
covering U; in two steps: (1) choose a vertex u; at which T enters U;, and (2) apply
Lemma 4.1 to S; . and S; 4 to find a convergent tree R;. in F' that is rooted at u;
and covers U;. Let T, be the subgraph of F' resulting from the first stage. Observe
that T, is very close a convergent spanning tree for F. The only remaining problem
is that T, may have duplicates because S;. and S;4 may contain vertices not in
U;. The second stage simply uses Lemma 4.3 to remove the duplicates from 7. As
for the complexity, the tree rerooting stage clearly runs in O(log ) time using O(a)
processors. The duplicate removal stage relies on the fact that the number of extra
copies of vertices concerning each U; cannot exceed the total number of vertices in
Si,c and S; 4. Thus, before the duplicates are removed, the total number of vertices in
T. is bounded by o+ n. Consequently, the total complexity for the duplicate removal
stage is at most O(log(a + n)) time using O(a + n) processors. In sum, the total
complexity for computing T, is O(log(a + n)) time using O(a + n) processors. 0O

THEOREM 4.6. Let F be a strongly connected embedded planar digraph without
large-degree vertices. Let F' be constructed from F by coniracting each biconnected
territory into a single vertez. Then given a CD-pair of spanning irees for F', a
CD-pair of spanning trees for F' can be constructed in logarithmic time using linear
processors in the size of F.

Proof, This theorem combines Lemma 4.5 and Theorem 3.5. The complexity
derives from the fact that the CD-pair of spanning forests computed for F' in Theorem
3.5 has a total size less than twice the size of F. O

THEOREM 4.7. Let F be a strongly connected embedded planar digraph. Let F’
be construcied from F by coniracling each positive clusier inio a single vertexr. Then
given a CD-pair of spanning trees for F', a CD-pair of spanning trees for F' can be
constructed in logarithmic time using linear processors in the size of F.

Proof. This theorem combines Lemma 4.5 and Theorem 3.3. The complexity
derives from the fact that the CD-pairs of spanning trees for the positive clusters
computed in Theorem 3.3 have a total size less than twice the size of F. O

5. Computing directed spanning trees. The main result of this paper is
stated in the following theorem.

THEOREM 5.1. Let G be a strongly connected embedded planar digraph. Let n be
the size of G. Let B be the number of positive clusters in G. A CD-pair of spanning
trees for G can be computed in O([log(B + 1)]logn) time using O(n) processors.
Consequently, from Corollary 4.4, a directed spanning iree with a specified orientation
and a specified root can be compuled in the same complezity. Because f < n, the
time complezity is at most O(log® n). The algorithms are deterministic and run on a
parallel random access machine that allows concurrent reads and concurrent writes in
tts shared memory.

To prove the theorem, it suffices to describe how to build a CD-pair of spanning
trees for G. The description assumes that G consists of more than a single vertex
to avoid triviality. The theorem is first reduced to a restricted version in which the
graph in question has no large-degree vertices. The reduction is through the following
three steps. (1) Let G be constructed from G by contracting each positive cluster
into a single vertex. (2) Let G2 be constructed from G; by expanding into a positive
face each contracted positive cluster of G. (3) Let H be constructed from G2 by
expanding each large-degree vertex into a negative face. Notice that if G consists of a
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positive cluster, then G consists of a single vertex. As mentioned in Definition 2.4,
for technical uniformness, this single vertex is expanded into a positive face with two
edges in Gs.

The following facts about H are straightforward. Because vertex expansion and
vertex contraction preserve planarity and strong connectivity, H is a strongly con-
nected embedded planar digraph. The third step ensures that H has no large-degree
vertices. This degree property in turn ensures that no two positive faces in H share
a vertex. Thus, the number of positive clusters in H is the same as the number of
positive faces in H. As for the complexity, observe that |G1| < n, |G2| < 5n, |H| < 5n,
where | - | denotes the size. Consequently, H can be built easily in O(logn) using
O(logn) processors.

With the above basic facts established, the next two lemmas proceed to describe
the key relationship between H and G.

LEMMA 5.2. The number of positive faces in H is equal to the number of positive
clusters in G.

Proof. In the first step of the reduction, the contraction of each positive cluster
into a single vertex destroys the positive faces in G but may create new positive faces
in G;. Because vertex contraction preserves the edge order around an uncontracted
vertex, each new positive face must contain at least one contracted cluster. In the
second step, the expansion of each contracted cluster into a positive face destroys all
new positive faces. Therefore, the number of positive faces in G is the same as the
number of positive clusters in G. In the third step, the expansion of each large-degree
vertex into a negative face cannot destroy or create positive faces. Thus, the number
of positive faces of H is equal to that of G. In sum, the number of positive faces in
H is equal to the number of positive clusters in G. O

LEMMA 5.3. Given a CD-pair spanning trees for H, a CD-pair spanning trees for
G can be constructed in O(logm) using O(m) processors.

Proof. The given CD-pair for H can be iteratively converted into a CD-pair of
spanning trees first for Gy via Lemma 4.3, then for G; via Lemma 4.3, and finally
for G via Theorem 4.7. From the size relationship among G, G;, G» and H, the total
complexity is O(logm) using O(m) processors. 0O

In view of the above discussion, to prove Theorem 5.1, it suffices to prove the
theorem assuming that the graph in question has no large-degree vertices. This is
formally stated in the next theorem.

THEOREM 5.4. Let H be a strongly connected embedded planar digraph without
large-degree vertices. Let m be the size of H. Let 8 be the number of positive faces in
H. A CD-pair of spanning trees for H can be computed in O([log(f + 1)] logm) time
using O(m) processors.

At the top level, a CD-pair of spanning trees for H is built in three stages. The
first stage uses vertex contraction and vertex expansion to recursively simplify H.
The simplification operates in phases. Each simplification phase converts H into a
new version H' that is still a strongly connected embedded planar digraph without
large-degree vertices. More importantly, H' has the following two properties. (1) The
number of positive faces of H' is at most half that of H; this face property states the
progress made by a phase. (2) The number of edges and vertices of H' is at most that
of H; this size property is essential for achieving a linear-processor complexity for the
planar directed spanning tree algorithm. Because H has more than one vertex and
is strongly connected, from Theorem 2.3, H has at least one positive cluster and the
simplification can start. In |log 3] simplification phases, H is converted to H" such
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that (1) H” has exactly one positive face and no large-degree vertices and (2) the
number of edges and vertices of H" is at most that of H. Once H" is obtained, the
second stage uses the edge cutting technique to compute a CD-pair T” of spanning
trees for H"”. The third stage converts " back to a CD-pair of spanning trees for
H. The construction employs the duplicate removal technique and the tree rerooting
technique to undo the contractions and expansions used in the simplification phases.
The construction also operates in phases and the construction phases correspond to
the simplification phases in the reverse order. More precisely, a construction phase
converts a CD-pair Y’ of spanning trees for H' back to a CD-pair Y of spanning trees
for H.

As for the complexity of the first stage, the size property of H' ensures that while
H keeps changing in the stage, its size never exceeds the original size at any time.
Thus, for this stage to achieve the complexity stated in Theorem 5.4, it suffices that
each simplification phase takes only logarithmic time and linear processors in the
size of the input graph to the phase. As for the second stage, from the face and size
properties of H' and by Theorem 3.6, this stage stage takes only logarithmic time and
linear processors in the size of H. As for the third stage, this stage is symmetric to the
first stage. Therefore, for this stage to achieve the complexity stated in Theorem 5.4,
it suffices that a construction phase takes only logarithmic time and linear processors
in the size of the input graph to the phase. In sum, if a simplification phase and a
construction phase each take only logarithmic time and linear processors in the size
of their input graphs, then the total complexity for computing a CD-pair of spanning
trees for H is O([log(B + 1)] log m) using O(m) processors.

To finish the proof of Theorem 5.4, it suffices to detail a simplification phase and
a construction phase as follows.

A simplification phase consists of the following four steps. (1) Let H; be con-
structed from H by contracting each biconnected territory into a single vertex. (2)
Let H, be constructed from H; by contracting each positive cluster into a single
vertex. (3) Let H3 be constructed from H, by expanding into a positive face each
contracted positive cluster of H,. (4) Let H' be constructed from H3z by expanding
each large-degree vertex into a negative face. Notice that the last three steps are
exactly the same as the steps in the reduction from G to H. Also, H is a strongly
connected embedded planar digraph and has no large-degree vertices. The following
lemmas show that H’ satisfies the face and size properties and can be computed in
logarithmic time using linear processors in the size of H.

LEMMA 5.5. The number of positive faces of H' is at most half that of H.

Proof. By Lemma 5.2, the number of positive faces in H' is equal to the number
of positive clusters in Hy. By Theorem 3.9, the number of positive clusters in Hy is
at most half the number of positive faces in H. In sum, the number of positive faces
of H' is at most half that of H. O

LeMMA 5.6. |Ha| < || < |H| and |H| < [Ha| < |H'| < |H].

Proof. Because vertex contraction cannot increase the size, |Hy| < |H;| < |H| is
true. Because vertex expansion cannot decrease the size, |[Ha| < |H3| < |H'| is also
true. The remaining inequality |H'| < |H| is shown as follows. A vertex in H, can be
expanded at most once either in the third step or in the fourth step. Thus, H' is in
effect expanded from Hy. On the other hand, H» is in effect contracted from H. Let u
be a vertex of H that is expanded in H’. Let U be the connected vertex subset of H
that is contracted into u. The next step of proof is to establish that U is biconnected
in H. There are two cases based on which step expands u. Case 1. If u is expanded in
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the third step, then because contracting the territories destroys all positive faces of
H, the vertex u is contracted from a positive cluster of H; that contains contracted
biconnected territories of H. From the small degree of H, the set U is biconnected in
H. Case 2. If u is expanded in the fourth step, then because H has no large-degree
vertex, U is a biconnected territory of H and thus is biconnected. The last step of
proof is to use the biconnectivity to estimate the size change from H to H'. Let D,
and D, be the sets of edges in H with, respectively, both ends and only one end in U.
From the small degree of H and the biconnectivity of U, the inequalities |D,| < |Dy|
and |D,| < |U| can be shown by examining the boundary of the subgraph induced
by U. These two inequalities are now used to estimate the size change from H to H’
concerning U. The contraction of U loses U and Dj, gains a super vertex, and keeps
D,. Thus, in the contraction stage the net loss is |[U| + |Ds| — 1. The expansion of
u keeps D,, loses u, and gains |D,| new edges and |D,| new vertices. Thus, in the
expansion stage, the net gain is |D,| + |D,| — 1. Thus, from in the conversion from
H to H', the net gain concerning U is |D,| + |Do| — |U| — |Ds|, which is less than or
equal to zeo. Consequently, |H’| < |H|. O

LEMMA 5.7. H' ean be constructed in O(logm) using O(m) processors.

Proof. In a simplification phase, the complexity for the first step follows Theorem
3.7. The complexity for the other three steps follows Lemma 5.3 and the inequality
|H| < |H|. O

A construction phase iteratively converts T’ into T in the following directions:
H' — H3, H3 — Hy, H, — Hy, H;y — H. The construction for the first three direc-
tions is as described in the tree construction from H back to G. The construction for
H; — H follows Theorem 4.6. The next lemma gives the complexity of a construction
phase and thus provides the last piece in the proof Theorem 5.4.

LeEMMA 5.8. The construction of T from T runs in O(logm) time and O(m).

Proof. In a construction phase, the complexity for the first three directions follows
Lemma 5.3 and the inequality |H;| < |H|. The complexity of the fourth direction
follows Theorem 4.6. 0O

6. Open problems. This paper has shown that for a strongly connected em-
bedded planar digraph with n vertices, a directed spanning tree rooted at a speci-
fied vertex can be computed in O(log?n) time using O(n) processors. This result
complements the linear-processor NC algorithm by Kao for computing the strongly
connected components of a planar digraph [10]. There are several fundamental prob-
lems left open in this paper. Probably the most important one is to compute planar
breadth-first search efficiently. Currently the best algorithm for this problem is by
Pan and Reif [15]. Their algorithm computes the shortest paths in O(log® n) using
O(n'3/logn) processors. The algorithm is based on matrix operations and uses an
almost optimal randomized algorithm for planar separators by Gazit and Miller [7]. It
would be of significant impact to reduce to linear the processor complexity of planar
breadth-first search.
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