TECHNICAL REPORT NO. 301

A New Approach to Procedures with Variable Arity

by
R. Kent Dybvig and Robert Hieb
January 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

A New Approach to Procedures
with Variable Arity-

R. KENT DYBVIG (dyb@iuvaz.cs.indiana.edu)

ROBERT HIEB (hieb@iuvar.cs.indiana.edu)

Indiana University Computer Science Department
Bloomington, IN 47405

Keywords: Lisp, Scheme, procedure call, optional arguments, multiple return values.

Abstract. This article presents a convenient and efficient procedural interface that
allows the definition and use of procedures with optional arguments and indefinite num-
bers of arguments without resorting to the use of a language-dependent data structure
in which to store the arguments. This interface solves many of the problems inherent
in the use of lists in Lisp and Scheme to store indefinite numbers of arguments. Simple -
recursion can be used to consume such arguments without the complexity problems that
are caused by the use of the Lisp procedure applyon argument lists. A natural extension
to the interface to support multiple return values is presented.

1. Introduction

Many programming languages provide primitive procedures that are defined
for variable numbers of arguments. Typically, however, the programmer is
not provided with a convenient way to create new variable-arity procedures.
Although Common Lisp [6] and Scheme [5] both allow the programmer to
define variable-arity procedures, the resulting definitions are often unread-
able or inefficient. Furthermore, the arguments to procedures that accept
an indefinite number of arguments are packaged in a list; this commitment
to a particular data structure reduces the generality of the mechanism and
complicates the semantics of the procedural interface.

There are two broad classes of variable-arity procedures: (1) procedures
that accept an indefinite number of arguments, and (2) procedures that ac-

*This material is based on work supported by the National Science Foundation under
grant number CCR-8803432 and by Sandia National Laboratories under contract number
06-06211. A preliminary version of this article was presented at the 1988 ACM Conference
on Lisp and Functional Programming.

To appear in Lisp and Symbolic Computation: An Internation
Journal.

b R. KENT DYBVIG, ROBERT HIEB

cept a limited but variable number of arguments. The second category can
be further divided into two subclasses: (a) procedures that have optional
arguments with default values, and (b) procedures that perform related
but distinct actions depending upon how many arguments they receive. In.
this article we describe a procedural interface that handles each of these
classes in a convenient and efficient manner, without resorting to storing
the arguments in a language-dependent data structure. We also describe a
natural extension of this interface to handle multiple return values.

In a 1965 paper, Landin calls IswiM “an attempt to deliver Lisp from
its eponymous commitment to lists” [3]. Although the concept of Lisp
without lists seems paradoxical, most Lisp dialects provide alternative data
structures and mechanisms for defining new data structures. It should be
possible, ideally, to create a dialect of Lisp without lists. We feel that
it is an important feature of our proposal, therefore, that the procedural
interface does not depend on the list data structure.

Some languages have gone to the extreme of totally immersing the proce-
dural interface in the data structures of the language. For instance, Hewitt’s
PLASMA supports a mechanism superficially similar to ours, but defines all
procedures to accept one argument. The argument may be an arbitrary list
structure that the target procedure decomposes by pattern matching [2].
However, a more general solution is to proceed in the opposite direction, to
totally divorce the fundamental control structures of a language from data
structures and operations on those data structures. In clarifying the phi-
losophy behind IswiM, Landin states, “Most programming languages are
partly a way of expressing things in terms of other things and partly a basic
set of given things... [IswiM] is a byproduct of an attempt to disentangle
these two aspects... So it is not a language so much as a family of lan-
guages, of which each member is the result of choosing a set of primitives.”

When a data structure becomes part of the procedural interface other
problems arise due to the interaction between operations on the data struc-
ture and the interface. We shall see that the combination of variable-arity
procedures and lists in Lisp is not well designed, and can lead to appar-
ently elegant programs with severe performance problems. Furthermore,
the implementation of the variable-arity interface is restricted, since the
implementor is not always free to choose the most appropriate internal
representation. Divorcing the procedural interface from a concrete internal
representation allows for significant optimizations in common instances.

We begin by describing the syntax and semantics of our new procedural
interface, treating it as an extension to Scheme. We then devote a section
to programming examples; these examples demonstrate the new interface
and show that it leads to elegant solutions for common programming prob-
Jems. We follow this with a discussion about implementation problems and

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY 3

A*-ezpression — (lambda* clause clause ...)
clause — [formals ezpression]
formals — (variable ...) | (variable ... & rest-variable)
procedure-call — (expression expression ...) |

(ezpression ezpression ... & rest-variable)
A*-ezpression | procedure-call | variable

l

erpression
Figure 1: Syntax for A*.

strategies. We then describe how the syntax and semantics of the inter-
face can be extended to allow multiple return values. In the final section
we make some concluding remarks, compare our proposal with other ap-
proaches, and discuss possible extensions to the interface.

2. Syntax and Semantics

Our procedural interface requires the introduction of a new syntactic form,
A*, and extension of the application syntax of Scheme. The grammar in
Figure 1 defines the syntactic rules for A* and the extended application
syntax. Although a complete semantics for Scheme with the extended pro-
cedural interface is outside of the scope of this article, Figure 2 provides a
formal semantics for the subset expressed by the grammar in Figure 1. The
generalization to a semantics with continuations, stores, and the extended
value domain necessitated by a full treatment of Scheme is straightforward.
A description of the syntax and semantics of Scheme can be found in [5].
The significant feature of the semantics for A* is that environments map
variables to sequences of values rather than to single values.

A A* expression with only one clause is comparable to a Scheme A expres-
sion and evaluates to a procedure. When such a procedure is applied, its
formals are bound to the actual parameters, and the corresponding expres-
sion is evaluated in tlie new environment containing these bindings along
with the bindings in effect when the procedure was created. For exam-
ple, (lambda* [(z) z]) defines the identity function. When more than one
clause is present, the first clause whose formal parameters accept the actual
parameters on a given call is applied. Each clause in a A™ expression may be
thought of as a separate procedure. A clause whose formals specification is
of the form (27 ... z,) accepts exactly n actual parameters. A clause whose
formals specification is of the form (zy...z, & r) accepts any number of

4 R. KENT DYBVIG, ROBERT HIEB

actual parameters greater than or equal to n. All parameters in excess of
n are bound to r; r is referred to as a rest variable, and the parameters
bound to r are referred to as rest values. It is an error if no clause accepts
the actual parameters, and the run time system should trap the error and
invoke an appropriate exception handler.

Rest values are accessed by passing them to a procedure using the ex-
tended application syntax. A rest variable can refer to zero or more val-
ues. If r is a rest variable and refers to zero values, then an application
(e1€g...e, &) is equivalent to (ey ez ... e,). In general, if r refers to val-
ues vy ... Um, then (eyez... e, &) is equivalent to (e1€3... €, V1... V).
Rest variables can appear only after an ampersand in the final position
of a procedure call, and only rest variables are permitted to appear after
ampersands.

Since access to the rest values is allowed only through procedure calls,
we can guarantee that rest values are protected against side effects and
that they are passed by procedure calls without allocating new storage
locations. We shall see that this latter feature is necessary to ensure that
the apparent time and space complexity of an algorithm is not altered by
the implementation of the procedural interface.

3. Programming Examples

In this section we provide some simple programming examples to exhibit
the power and elegance of the A* construct. In the process, we compare A*
solutions with those possible in Scheme and Common Lisp.

In Scheme, I/O procedures typically take an optional port argument. The
call (read-char) returns a character from the “current input port,” while the
call (read-char p) reads a character from the port p. Without the ability to
define variable-arity procedures we would either have to provide two proce-
dures, say read-char and pori-read-char, or force the programmer to always
supply the port. Either alternative places a burden on the programmer,
who must deal with extra procedure names or extra procedure arguments.
Using A*, it is straightforward to provide procedures that accept optional
arguments:

(define read-char
(lambda*
[(p) (port-read-char p)]
[() (port-read-char (current-input-port))]))

We can take advantage of optional arguments to combine the Scheme

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY

Syntactic variables:
€ € expressions
z € variables
r € rest-variables
f € formals

Domains:

v € values = values™ — values
€ € values™

p € environments = variables + rest-variables — values*

Semantic functions:

& : expressions — environments — values
M : formals — values™ — booleans

R : environments — formals — values® — environments

Semantic equations:
Elzlp = (pz)l1

El(eer... en)lp = strict(Ele]p)((Elerlp), - - -, (Elenlp))
gE(eﬂl e €p &T‘)Hp:

strict(E[e]p)(((E[ea]p); - - -, (Elenln))§(pr))
E[(lambda*[fi ei1]... [fren])]p =

Ae. M[file = Ele](Rpl file) »

MIfale — Eleal(Rolfle)

error
M(zreeo Tm)or1ss05502) = (m = n)
M[(z1... zm &) {v1,...,0,) = (m < n)

Rpl(z1. .- 2n)l(v1, -+ 5 vn) = p[(v1)/21] - . - [(vn)/2n]
ol . e S 0,0 v o Vs Bdfigninee) =

pl{wr)/@1]- . [(vn) /2] [(Ons1, - -) /7]

* Figure 2: Semantics for A*.

6 : R. KENT DYBVIG, ROBERT HIEB

string-copy and substring procedures. The procedure call (string-copy s)
returns a copy of the string s, and (substring s start end) returns a copy
of the section of s from start to end. Assuming subsiring always returns
a new string, string-copy is redundant, since (string-copy s) is the same
as (substring s 0 (string-length s)). The only reason to have string-copy in
the language is to allow the programmer to avoid providing the additional
arguments. By allowing substring to provide defaults for missing arguments
(as in Common Lisp), string-copy can be omitted from the language:

(define substring
(lambda*
[(s start end)
(let ([s2 (make-string (— end start))])
(do ([0 (+ 5 1)] [i start (+ i 1)])

((=iend) s2)
(string-set! s2 j (string-ref s 1))))]

[(s start) (substring s start (string-length s))]

[(s) (substring s 0 (string-length 5))]))

It is not necessary for substring to assume that the third argument is missing
when only two arguments are provided. We could just as easily define a
version of substring that supplies a default value for the second argument
in that case:

(define substring
(lambda*
[(s start end)
(let ([s2 (make-string (— end start))])
(do ([70 (+ j1)] [¢ start (4 i 1)])

((= i end) s2)
(string-set! s2 j (string-ref s 1))))]

[(s end) (substring s 0 end)]

[(s) (substring s 0 (string-length s))]))

Alternatively, we can prevent confusion by requiring neither or both of the
endpoints:

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY 7

(define substring
(lambda*
[(s start end)
(let ([s2 (make-string (— end start))])
(do ([70 (+ j1)] [i start (+ i 1)])

((= i end) s2)
(string-set! 52 j (string-ref s i))))]

[(s) (substring s 0 (string-length s))]))

A procedure in which the first argument rather than the second argument
can be considered optional is “—” defined as both a unary and binary
procedure:

(define —
(lambda*
[(z y) (binary- z y)]
[(2) (binary- 0 z)]))

It is interesting to compare this with Scheme and Common Lisp versions
of “~”. In Scheme, a procedure must take optional arguments in a list and
destructure the list to obtain their values:

(define —
(lambda (z . !)
(cond
[(null? 1) (binary- 0)]
[(null? (cdr 1)) (binary- z (car 1))]
[else (error — “too many arguments”)])))

Here the list destructuring and explicit error handling make the code dif-
ficult to follow and make generation of efficient code difficult. Although
Common Lisp provides an optional argument mechanism that makes it
unnecessary to package all optional arguments in lists, it does not easily
handle “—”, since its mechanism is oriented toward defaulting trailing argu-
ments. In order to determine whether two arguments have been supplied,
a supplied-predicate parameter as well as an initialization form must be
provided, obscuring the intent and effect of the code:

8 R. KENT DYBVIG, ROBERT HIEB

(defun — (z &optional (y 0 pred))
(if pred
(binary- z y)
(binary- y z)))

We leave it as an exercise for the reader to convert the above versions of
substring to Scheme and Common Lisp. Although Common Lisp handles
the first version in a straightforward manner, solutions to the latter two that
do full error checking are inelegant in both Scheme and Common Lisp.

So far our examples have not dealt with procedures that accept indefi-
nitely many arguments. Consider the following definition for “+;

(define +
(lambda*®
) 0]
((z & r) (binary+ z (+ & r))]))

Here we define (+) to be zero, and let the zero-argument clause be the base
case. The second clause takes care of additional arguments by setting up a
simple recursion; since each call to “+” decreases the number of arguments
by one, the base case must eventually be reached.

It is not necessary that the base case be a zero-argument clause. For
“+7, we can define a tail-recursive version that uses a two-argument clause
as the base case, while still supporting zero and one argument calls:

(define +
(lambda*
[() 0]
[(z)]
[(z y) (binary+ z y)]
[(zy & r) (+ (binary+ z y) & M)

L

The usefulness of rest values depends on an efficient implementation. If
the rest values are moved on each recursive call, an algorithm that appears
to be linear with respect to the number of arguments is actually quadratic.
The following Scheme definition for “+” illustrates this problem:

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY 9

(define +
(lambda !
(if (null? 1)
0

(binary+ (car 1) (apply + (cdr 1))))))

Again the list destructuring interferes with clarity, but there is also a serious
performance problem caused by the use of apply to recursively sum the
list. The call-by-value semantics of Scheme demands that a fresh list be
provided on each procedure call with a rest-list interface. This ensures that
side effects to an existing list do not affect the arguments to a procedure.
Although a compiler may be able to prove in simple cases that it is safe
to use the same list across calls, an implementation cannot guarantee such
behavior in general, and different implementations of the same language
will vary widely in their handling of such optimizations. Consequently, an
algorithm that appears to be linear with respect to the number of arguments
is likely to be quadratic in some or all implementations. However, since
algorithms like the one above are more elegant than those that contain inner
recursions to explicitly reduce a list without the aid of apply, and since the
copying problem is not likely to occur to most programmers, the end result
is likely to be elegant programs with inexplicably poor performance.

The final example of this section uses A* to create a guarded memory

cell:

(define make-cell
(lambda (initial-value guard)
(let ([contents (guard initial-value)])
(lambda*
[() contents]
[(new-value) (set! contents (guard new-value)))))))

The definition of make-cell relies on the first-class status of procedures in
Scheme. An invocation of make-cell returns a procedure with a private
variable, contents. When this procedure is invoked with no arguments
it returns the value of the private variable; when it is invoked with one
argument it assigns the variable to a new value. The guard procedure may
be used to coerce the new value to a value appropriate for the memory cell,
or it may be used to signal an error if the new value is not appropriate.
The curious aspect of this use of A* is that the new-value argument does
not have a default value. Instead, two different but related actions are
performed depending upon the number of arguments.

10 R. KENT DYBVIG, ROBERT HIEB

4. Implementation

The difficulty of and methods for implementing A* depend upon the char-
acteristics of the language as a whole, especially its rules for the scope and
extent of variable bindings. Certain features of Scheme make an efficient
implementation difficult to achieve in general. The indefinite extent of vari-
able bindings and the lack of strong typing for procedures both negatively
impact efficiency. However, the A* construct can be made at least as effi-
cient as the standard Scheme and Common Lisp interfaces. Furthermore,
an implementation can detect many circumstances where more efficient
strategies are possible. We can at least guarantee that (1) storage for rest
values is allocated on the stack whenever the compiler can detect that they
have dynamic extent, (2) the expense of choosing among A* clauses is borne
only by procedures with multiple clauses, and (3) the expense of handling
rest values is borne only by procedures expecting to receive rest values. The
expense of choosing among A* clauses and of handling rest values is rarely
significant, and whenever the compiler knows the interface of the called
procedure at the point of call, as with calls to locally-defined procedures,
these expenses are often avoided entirely. For traditional languages such as
Pascal, where all variables have dynamic extent and procedure interfaces
are always known, the more efficient strategies are always applicable.

There are two constraints that all implementations must obey. The first
is that rest values must be protected against side effects, since a rest vari-
able may occur in more than one procedure call. For instance, we might
have both (g & r) and (f& r) for some rest variable r. Suppose f is
(lambda* [(z & s) e]), and e assigns z. This side effect cannot be allowed
to affect the values g receives. This problem is easily solved by copying the
values for non-rest variables into their own storage locations; this copying
can be avoided for variables that are never modified.

The second constraint is that procedure calls must not copy rest values
unless there is no possibility that the procedure call is either directly or
indirectly recursive. This constraint is more subtle since it is related to
the complexity rather than to the correctness of the computation. The
discussion of “+” in Section 3 illustrates how unrestricted copying of rest
values can turn an apparently linear algorithm into a quadratic one.

A simple implementation can be derived directly from the semantics pre-
sented in Figure 2 by treating value sequences as heap-allocated linked lists.
If the portion of the value list referenced by a rest variable is not copied
when passed on procedure call, and all assignable formal parameters are
given fresh locations when a procedure is invoked, both of the above con-
straints are satisfied. Although such an implementation would be suitable
for an interpreter, many modern implementations of Lisp-like lan guages use

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY 11

a stack for passing parameters to save the expense of heap storage alloca-
tion and reclamation. Even in the presence of rest variables, a stack can
still be used in many easily recognizable cases. Allocating the value list on
the stack when the parameters do not have indefinite extent prevents the
heap management overhead. Procedure calls can be further expedited by
arranging parameters properly at the point of call, so that non-rest values
are put directly in place on the stack. When it is known that the sequence
of values associated with a rest variable has dynamic extent and is mono-
tonically non-increasing in length across procedure calls, the sequence can
be treated as a stack-allocated vector, resulting in further savings of storage
space and access time.

The major challenge to an efficient implementation is handling calls to
unknown procedures. The simplest solution is to force procedures that
may be unknown to some caller to always accept heap-allocated linked
parameter lists. A better solution is to provide two entry points for such
procedures, one for procedure calls that do not pass along a rest list and
one for calls that do. Procedures that expect their parameters on the stack
are provided with an extra entry point that calls a library routine to unfold
a parameter list onto the stack. Procedures that expect their parameters
in a linked list are provided with an extra entry point that calls a library
routine to move parameters from the stack into a linked list. This copying
will be done at most once for a given parameter list if procedures that pass
rest values to unknown procedures maintain the values as a linked list,

5. Multiple Return Values

The section on multiple return values in Common LISP: The Language [6]
begins, “Normally, multiple values are not used.” Although this may be
because multiple values are not often useful, a further reason might be that
none of the ordinary Lisp constructs are easily adapted for receiving mul-
tiple values. Fortunately, the A* interface adapts easily to multiple return
values. Two capabilities are necessary: the capability to receive multiple
values and the capability to return multiple values. For the receipt of mul-
tiple values we extend the syntax of procedure calls to allow an arbitrary
expression evaluating to zero or more values to follow the ampersand. In
Common Lisp, a special primitive values is used to signal the return of mul-
tiple values. Although such a primitive could be adopted here, we think
it more natural to extend A* expressions to allow them to directly return
multiple values. We do this by allowing the body of a clause in a A* expres-
sion to consist of zero or more expressions; the values of all the expressions
are returned as the result of an invocation of the procedure. In addition,
a clause body is permitted to contain an ampersand in the penultimate

12 R. KENT DYBVIG, ROBERT HIEB

A*-ezpression — (lambda* clause clause ...)
clause — [formals body]
formals — (variable ...) | (variable ... & variable)
procedure-call — (ezpression body)
body — expression ... | expression ... & expression
ezpression — A*-expression | procedure-call | variable

Figure 3: Syntax for A* with multiple return values.

position; the expression following the ampersand may evaluate to zero or
more values. The modified syntactic rules are shown in Figure 3. A formal
semantics for the modified language appears in Figure 4. The most signif-
icant change is the evaluation of expressions to sequences of values rather
than to single values.

It is straightforward to simulate Common Lisp’s values form, which is
just the multiple value identity function:

(define values (lambda* [(& r) & r]))

We can also define a simple procedure to force the return of the first value
from an expression that returns one or more values:

(define first (lambda* [(z & r) z]))

So we can write, for instance, (p (first & e)), where pis an expression that
evaluates to a procedure of one argument and e is an expression evaluating
to one or more values.

The effects of multiple return values are far reaching, and important
semantic issues must be resolved when they are added to a language. One
sich issue is what to do about expressions that do not evaluate to a single
value in single-value contexts—in the above syntax, all expression contexts
that do not immediately follow an ampersand. The approach adopted by
Common Lisp is to ignore extra return values, as with first above, and to
supply a default value when no value is returned. However, this approach
hides rather than exposes errors. Since it is easy to force the return of
a single value when necessary, we prefer to make unexpected or missing
values an error. There are other contexts where single values are ordinarily
required. In Scheme, conditional and assignment statements are the other

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY

Syntactic variables:
e € expressions
b € bodies
z € variables
f € formals

Domains:
v € values = values® — values*
€ € values®
p € environments = variables — values®

Semantic functions:
€ : expressions — environments — values*
M : formals — values* — booleans
R : environments — formals — values® — environments
A : bodies — environments — values®

Semantic equations:
Elzlp = pz
El(eb)]p = strict(single(E[e]p)) X [b]p
El(lambda*[fib1]. .. [faba])]p =
Ae. M[file — X[b:](Rplfie) ,

M[fnle — X[ba](Rpl fale) ,
X[ei ... e]p = (single(Efed]p), .. ., single(Efen]p))
(FH:S]_ . 8ﬂ&€n+1ﬂp =

({single(&er]p), . .., single(E[en]p))) § (Elensi]p)

M(21 - - 2)}{V1y5 505 a) = (= n)
M[(z1--- m & Tmy1)[(v1,-..,00) = (M < n)
Rol(#1--. 2|01, -, tn) = pl(0) /23] [{2) /2]
Rel(z1-.. 2n & zny 1) (v1, .- - Vny Ung1,...) =

P[(”l)/xl] cee [(vn>/xn][(vn+la .- °)/$n+1]

single = Ae.(#e=1) — €| 1, error

Figure 4: Semantics for A* with multiple return values

13

14 R. KENT DYBVIG, ROBERT HIEB

major contexts that must be considered. For conditionals, it is reasonable to
insist that the test expression evaluate to a single value, and let the context
of the conditional determine the context of the branches. Little power is
lost by restricting assignments to single-valued expressions. However, since
variables can refer to multiple values, it is reasonable to allow multi-valued
assignments.

Although adding multiple return values to a language does complicate
the implementation of the procedural interface, it is possible to place the
burden of such complications on procedure calls expecting multiple values
and on procedures returning multiple values without adversely affecting
simpler procedure calls. Avoiding repeated movement of the multiple val-
ues is necessary to avoid introducing complexity problems similar to those
mentioned in Section 3. As a result, heap storage is necessary in some cases
even in a language in which variable bindings do not have indefinite extent,
since the sequence of values itself may have indefinite extent.

6. Conclusions

Scheme and Common Lisp provide procedural interfaces that make it possi-
ble to define variable-arity procedures. They are similar in that procedures
accepting indefinitely many arguments receive these arguments in a list.
Both languages provide an apply function, which applies a function to the
contents of a list, but using apply with lists can not be considered equiva-
ient to using a rest variable in a procedure call. The problem is that list
structures can be modified, so the only way to ensure that a procedure’s
arguments are safe is to provide it with a fresh list on each call or to prove
that the existing list is never modified. Consequently Scheme and Com-
mon Lisp cannot guarantee that the use of apply and lists of arguments will
not result in complexity problems. This situation is analogous to Scheme’s
requirement that tail recursion be performed with no net growth of the
control stack, so that iteration may be expressed as tail recursion. In both
cases, it is not sufficient that a compiler can provide the optimization;
in order for the feature to be generally useful, the compiler must provide
the optimization. Furthermore, just as proper treatment of tail-recursion
makes it unnecessary to include other primitive iterative control structures
in a language, proper treatment of the rest variable interface eliminates the
need to include primitive data structures and procedures in the language
simply to support the procedural interface.

Common Lisp provides additional mechanisms to make defining proce-
dures that take optional arguments with default values more convenient.
However, in cases for which there are no default values or for which an op-
tional parameter appears before a required parameter, the Common Lisp

A NEW APPROACH TO PROCEDURES WITH VARIABLE ARITY 15

optional interface becomes clumsy. We find A* expressions both simpler
and more elegant in many cases.

Bellot and Jay provide a combinator-based semantics for the equivalent
of the lambda calculus extended to allow variable-arity functions [1]. They
support “rest” arguments by extending the syntax and semantics of the
lambda calculus to handle variable-arity functions directly. They also avoid
commitment to a data structure for passing extra arguments. They do not
suggest the use of multiple clauses as a way to provide optional arguments
and access to rest values, and they do not address the potential complexity
problem caused by copying rest values.

It is tempting to view A* as providing a limited sort of pattern match-
ing and argument destructuring, such as provided by ML [4]. However,
A* is intended to provide a representation-independent way to manipulate
indefinite numbers of arguments without regard to the structure of the
arguments themselves. In contrast, ML supports the definition of proce-
dures with fixed numbers of arguments (via currying), allowing pattern
matching based on the structure of the arguments to be used in choosing
among alternative procedure bodies. Our mechanism is orthogonal to the
notion of pattern matching, though A* might provide a natural basis for an
ML-like pattern-lambda that supports both variable-arity procedures and
pattern-matching.

The apparent utility of rest variables would be increased by allowing
ampersands and rest variables to appear anywhere in a formal parameter
specification or procedure cail. For example, we might wish to extend cons
to accept an indefinite number of arguments (Common Lisp list*) with the
following tail-recursive definition:

(define cons
(lambda*
[(z) =] _
[(& r z y) (cons & r (binary-cons z y))]))

In this definition, r refers to all the arguments except for the last two, and
it appears before rather than after the other argument in the recursive call
to cons. Although this extended interface does make solutions to some
programming problems simpler, efficiency problems inherent in the inter-
face are not easily resolved. In particular, a straightforward generalization
of the implementation techniques discussed in Section 4 would not allow
us to make the same guarantees about the time and space complexity of
procedures using the extended interface as we can make about procedures
using the more restricted interface.

16 R. KENT DYBVIG, ROBERT HIEB

We have chosen to emphasize variable-arity procedures over multiple re-
turn values. One reason is that, although the capability to return multiple
values using A™ depends upon variable-arity procedures, variable-arity pro-
cedures are independent of multiple return values. Consequently, it is rea-
sonable to support variable-arity procedures without supporting multiple
return values. Furthermore, a programmer who does not wish to use aggre-
gate structures to return multiple values can use continuation-passing-style
programming techniques to “return” multiple values in a language that
allows procedures to be treated as first class objects. Since multiple re-
turn values have such far reaching effects on the syntax, semantics, and
implementation of a language, and since there are other means of achieving
similar results, it is not clear that the benefits of multiple return values
outweigh the costs.

Acknowledgements: The authors would like to thank Matthias Felleisen,
Dan Friedman, Chris Haynes, Stan Jefferson, Bruce Duba, David Wise, and
the anonymous reviewers for their helpful comments on earlier versions of
this article. The examples were typeset with Carl Bruggeman’s Scheme

TEXer.

References

[1] Bellot, P. and Jay, V. A theory for natural modelisation and implemen-
tation of functions with variable arity. In Proceedings of the 1987 Conference
on Functional Programming and Computer Architecture, Kahn, G., editor,
Lecture Notes in Computer Science No. 274 (September 1987) 212-233.

(2] Hewitt, C. E. and Smith, B. Towards a programming apprentice. IEEE
Transactions on Software Engineering, SE-1, 1 (March 1975) 26-45.

[3] Landin, P. J. The next 700 programming languages. Communications
of the ACM, 9, 3 (March 1966) 157-166.

(4] Milner. R. A proposal for Standard ML. Conference Record of the 1984
ACM Symposium on LISP and Functional Programming (August 1984)
184-197. '

[5] Rees, J. A. and C]jnger, W. (Ed.), The revised® report on the algorith-
mic language scheme. SIGPLAN Notices, 21, 12 (December 1986) 37-79.

[6] Steele, G. L. Jr. Common Lisp: The Language. Digital Press (1984).

