ON STORAGE STRUCTURES AND THEIR TRANSFORMATIONS

Peter Scheuermann
Department of Computer Science
State University of New York

Stony Brook, New York 11794

Ben Shneiderman
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNicAL ReporT No. 30
ON STORAGE STRUCTURES AND THEIR TRANSFORMATIONS

PETER SCHEUERMANN
BEN SHNEIDERMAN

June, 1975

On Storage Structures and Their Transformations

Peter Scheuermann
Department of Computer Science
State University of New York
Stony Brook, New York 11794

Ben Shneiderman
Computer Science Department
Indiana University
Bloomington, Indiana 47401

Abstract

A number of operations which are of importance when dealing
with data reorganization and data translation are introduced.
We employ a model based on straightforward mathematical tools to
describe these operations more formally and to provide an insight
to their meaning and application. We recognize that high level
primitive operations are necessary to ensure the correctness of

storage structure representations.

Introduction

Choosing the best storage structure and access strategy for
the implementation of a given logical data structure is an extremely
difficult problem. The current trend in data base management sys-
tem design is to relieve the casual user from the need to this by
providing different levels of interface with the system [6]. The
actual gurden of implementation and encoding detail is placed upon
the Data Base Administrator(s), who is also responsible for the
reorganization, maintenance and back-up of the data base. The main
reason behind this is the desire to achieve a high-level of data
independence [10], so that users' programs are "invariant" under
physical storage transformations.

Reorganization of a given data base occurs baslcally due to two
reasons: desire to improve the performance of the system, usually
estimated in terms of search time and storage cost [7], or the adap-
tation to a new software/hardware environment [3].

This paper addresses aspects of the reorganization problem,
namely the primitive operations involved in the transformation from
one storage structure to another. No attempt 1is made to provide
a complete set of such operations, but rather we point out some
of the complexities inherent in the problem and the implications

for the development of data description and manipulation languages.

LD

Part 1 - Review of the Storage Structure Model

Before we can speak about the operations for dealing with re-
organization of data in physical storage, we need a frame of refer-
ence. We briefly outline the model presented in greater detail
in [5].

We have characterized the mappings of data to physical storage
in terms or standard algebraic tools, namely relations. Two types
of relations can be used recursively to convey the meanings of the

connectivities for arbitrary structures.

A. Pointer Relations

These are defined by the binary relations P(S,T) on the set

of data elements (fields or groups of fields) as follows:
P(S,T) means S = T (read " 8 polnts to T V)
i.e., there is a pointer from S to T . Proceeding recursively:
B A8, Bppuna o) ® B 08,8000 0008 3) B B5(8, 58,0 B> 2

.84 PB(SI’SQ’SB) = P2(Sl,82) & P2(S2,S3) implies there is a
pointer from Sl, to 82 and a pointer from 82 o 83

It is also useful to have another type of pointer relation 12 ,

to indicate pairs of data elements symmetrically connected:
P(S,T) means S + T and T > S

i.e., there is a pointer from S to T and a pointer from T to

S and we similarly generalize:

o~

Pn{Sl,Sa, —-nN Pn—l(sl’sz"“’sn—l) & P2(Sn—l’sn)
Fn{sl,sg,...,sn) has the obvious meaning: there is a pointer from
Sl’ to 82 5 frEm S2 to 83 , from Sn—l to Sn , and vice-
versa.

B. Contiguous Relations

These describe data items which are stored contiguously on the

physical device. 0(81’82) means Sl is stored contiguously to

82 ;5 and similarly:

Cn(S S2,...,Sn) = Cn_l(Sl,...,Sn_l) & 02(8 S.) n > 2

12 n=1°"n

The description can be further refined to distinguish between

Cn sequential and random access tuples:

(i) the first denoted by Cn(Sl,S2,...,Sn) specifies
that in order to access a given item Sj you have to retrieve first
2,...,Sj_l

(ii) while the latter, denoted by Cn(Sl,Sg,...,Sn)

S 48

implies that every item S can be accessed at random.

3
To complete our descriptive mechanism we also need a means of
representing the actual assignment of data to particular physical
devices. For this purpose we introduce an address space function:
AS : D+ I , where AS(d) identifies a given device, or device
extent, 1 , on which the data element d is stored. For example,
if a given data element resides on a disk, then AS(d) = 1 ©repre-

sents an encoding of its actual positioning in terms of device, cyl-

inder, track or block.

To illustrate the concepts described above, suppose that we
deal with hierarchical records, each containing information about
a given vendor, the orders received and the items supplied for each
order.(Figure 1). These records may be mapped to physical storage
using ring structures as illustrated in Figure 2.

In our formalism this corresponds to:

Pn+2(V,Ol,02,03,...,On,V) &

{p T 58 T[T ® Dot}

ki+2(013111’112’113"“’ ik,

In addition, the implementor has decided to store the root seg-
ments (vendor) and the order segments on device extent 1, and the
leaf segments (items) on device extent 2:

AS(V) = 1,{As(0y) = 114 = lysscan}t 5

{AS(I;5) = 2[5 = 1,...5ky)

Part 2 - High Level Primitive Operations

Our goal is to define more formally the meaningful operations
for transforming one storage representation into another. Their
use 1s either in reducing the storage cost or in improving the access
time for certain transactions performed on the data base. Some of
the operations mentioned here are encountered in other papers deal-
ing with the subject [6,9], while the others have been used in an

ad hoc fashion by many implementors.

A. Fusion and Fission

The conversion from a linked list allocation strategy to a se-
quential contiguous allocation strategy is called fusion (Figure 3).
The inverse operation is called fission.

In our formalism, we define the FUSION operation as follows:

Pn(Dl,...,Dn)
FUSION {}
Cn(Dl’ . ,Dn)
where we have adopted the abbreviation: P_ =P or P and

This transformation is performed when dealing with records which
have a fixed number of fields or segments. However, we have not
yet conveyed the complete meaning of the accessing mechanism for the

D elements in the new contiguous relation. This must be done if

T
the system is to keep track of all search paths. We can see easily
that if the physical device in question is a tape, only a sequen-

tial Crl can be created. Thus it is necessary to do some "device

e

type checking" to eliminate inconsistent representations (here is

where the address space function appears on the scene).

B. Extract and Embed

The next transformation, extract, allows us to convert a list
structure into a pointer array, as illustrated in Figure 4. After
extracting the pointers from the list elements, the first element
(sometimes referred to as header or owner) contains pointers to
each member or detail element.

Note that the extract operation saves no space, but simplifies
processing for the cases in which no complete traversal of the ori-

ginal list is required. Formally we write:

Boiq (DBl vvmnll)
EXTRACT

{§2{DO,D1)[1 < 4 ¥ nl

The inverse of this operation is embedding. As harmless as
it seems this transformation involves an unseen complexity. One
of the desirable features of a "concrete" storage structure is to
preserve all the properties of the more abstract data structure [27
However, when dealing with the encoding of an information space
in storage, a number of superimposed levels of representation are
present. The user has one "view" of the logical information, and
the implementor imposes on this his own access paths and encoding
scheme. When the structure of the user's view is preserved at the
encoding level, we can say that the mapping is a type-isomorphism

to use a term coined by Childs [1], and it is not difficult to see

-7-

that the actual requirements of the data-manipulation programs are
simplified in this case. For example, going back to Figure ' I

)

the user visualizes his/her records as composed of a segment (DO
containing some fixed information about a given employee, and a
number of segments (Di) containing information about different
jobs held in a company, the pointer array implementation reflects
exactly this situation, namely that the Di's are disjoint [5].

However the embedded structure does not preserve this property,

and extra processing is required.

C. Split and Combine

When records have some long, infrequenély accessed fields, it
may be more efficient to separate these fields out, store them sep-
arately, and access them only when needed. For example, in a col-
lection of art object descriptions, the infrequently accessed bio-
graphical information on the artist can be maintained separately,
thereby reducing the average transfer time for the records. Figure
5a shows this type of "splitting" and the inverse operation, "com-

bining". We define the SPLIT1 operation as:

Pn(C "’02(Dnl’Dn2))

2(D175D95)5-
SPLIT1

P (Dyqs+-esDpy) & {P,y(Dy15D55)[1 = 4 < n}

and after the operation:

U}

n}

1A
[
1A

{A8(Dy4) = I1]2

Ui

n}

1M
[N
1A

{as(p,,) = I2]1

where Il and I2 are indexes of separate address spaces.

A second type of splitting is shown in Figure 5b and can be

described as:

€ (Cy(Dy15Dq5) 5.0+ 5C5(Dp 75D 5))
SPLIT?

P2(Cn(Dll""’Dnl)’cn(Dl2""’Dn2))

and after the operation:

n}

I1]1

IA
[N
1A

{AS(Dil)

n}

IA
[N
IA

{As(Dy,) = I2|1

where Il and I2 are the indexes of separate address spaces.
Of course, the data elements, the D's, may have a complex substruc-

ture of their own.

D. Factor and Distribute

The factoring operation, first defined in connection with the
DIAM model [6], has the purpose of minimizing storage utilization
by eliminating redundancy. Going back to the hierarchical records
defined in Figure 1, let us consider the case when all the segments
contain the same value, DIﬁ , in one of the fields. Obviously,
that value can be "factored" out and stored in the header. Similarly,
if any k-level segments contain a common value, it can be factored
to the common ancestor, a k-1 level segment. We illustrate this

factoring operation in Figure 6 and define it as:

Pk+1(RO,Rl,...,Rk)

FACTOR (i)

P£+l(Ré’Ri""’Rﬁ)

where
RO = Cn(D
Ri = Cm(El’ LI ’Em)
1 <1
and in the target structure
7 = 1 1
Rh = Chep (D

! =
O o P

120"

1
5D

g Bt
> m—

1)

1)

i s

Part 3 - Conclusions

No attempt has been made to provide a complete set of operations
meaningful to the problem of data reorganization. While the actual
transformations from one storage scheme to another could be performed
with only a small set of low level primitive transformations [9],
no guarantees could be given to ensure the preservation of the more
abstract properties of the data. An analogy could be drawn to as-
sembly language operations which give us a great deal of freedom,
but do not allow type checking or a protective mechanism. The need
for more powerful programming languages for data base systems has
been stressed only recently [4]. Data manipulation languages which
support reorganization operations should have the capability to handle
different levels of abstraction, especially if the system has to
keep track of all the search paths and eventually has to automati-
cally generate code for the new storage schemes.

The goal of this paper is to suggest the kind of operations
that would be meaningful for data translation at an intermediate
implementor-oriented level. As such, the operations are below the
level proposed in [8] which uses a high level construct, the form,
as a basis for the operations. QOur operations are a step above
the low level generalized data translator-oriented operations pro-
posed in [11].

We hope to pursue more precise definitions of these operations
and will investigate the possibility of establishing a "complete"
set of translation operations. Other research directions include
the study of the "correctness" of the translation and efficient

implementation of the operations.

o

References

1. Childs, D.L. Extended set theory: a formalism for the design,
implementation and operation of information systems. Unpublished
paper.

2. Hoare, C.A.R. Proof of correctness of data representations.
Acta Informatica 1 (1972), 271-281.

3. Fry, J.P., and Jins, D.W. Towards a formulation and definition
of data reorganization. Proceedings of the ACM SIGFIDET Con-
ference (1974).

4, Minsky, N. On interaction with data bases. Proceedings of the
ACM SIGFIDET Conference (1974).

5. Scheuermann, P., and Heller, J. A view of logical data organi-
zation and its mapping to physical storage. Proceedings of
the Third Texas Conference on Computing Systems (1974).

6. Senko, M.E.; Altman, E.C.; Astrahan, M.M.; and Fehder, P.L.
Data structures and accessing in data-base systems. IBM Sys-
tens Journal 12, 1 (1973).

7. Shneiderman, B. Optimum data base reorganization points. Comm.
ACM 16, 6 (June, 1973).

8. Shu, N.C.; Housel, B.C.; and Lum, V.Y. CONVERT: a high level
translation definition language for data conversion. IBM Re-
search Report RJ1515.

9. Smith, D. Alternative approaches to the description of the en-
coding of factored information. SDDTTG Working Paper (1974).

10. Stonebraker, M. Functional view of data independence. Proceed-
ings of the ACM SIGFIDET Conference (1974).

g Hon ==

11. Stored data definition and translation task group report.
Draft (April, 1975). To appear.

Typed by Christopher Charles

VENDOR NAME......
SEGMENT ADDRESS...
ORDER ORDER NO.. ORDER ORDER NO.. | ...ORDER 0D 0 Qe &
1 DUE..+vssss 2 DUE.vosoes N SRR e SR
BHIPY & o w00 SHIPceksws
QLY & « - QLY s + i QTY o s s
PRICE. . PRICE. . PRICE. .
ITEM 1 ITEM 2 ITEM K,

Figure 1 - Logical view of VENDOR/ORDER/ITEMS RECORDS

=

s

ORDER N | /
‘/ -~
N\

VENDOR ORDER 3

ORDER 1 —J| ORDER 2

Figure 2 - Physical implementation of VENDOR/ORDER/ITEMS

RECORDS

Dy By
< FUSION D,
DN N
Q : FISSION
=y
(\ Dn Dﬂ.
Figure 3
el
EXTRACT
Dy :i> e g ////////"
G w1
D, _::> “\\\\\\\\“
(EMBED
e
L5

Figure 4

L1

D12 :>

Figure b5a

Doy Dy ::
Dn1 Dy
Py D12
Doy | Dao
Dnl Dn2

Figure 5b

SPLIT1

=

COMBINE1

L T

SPLIT2

I

COMBINE?

e —

Lo i (SRR R
o1 Dys
Dnl [Dn2
D11 ——m P12
Doyt Doy
Dnl Dn2

I G

P, p
| E15 o —m oo — gl B1x - | Emk
FACTOR DISTRIBUTE
| T 1
Enc1,2 koo —o Bik En-1,k

Figure 6

