TECHNICAL REPORT NO. 299

GraphView Documentation
Version 1.0
©1989
by

Bjarni Birgisson
Gregory E. Shannon

December 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

GraphView Documentation?

Version 1.0

©1989
Bjarni Birgisson
Gregory E. Shannon

Department of Computer Science
Indiana University
Bloomington, Indiana 47405

Technical Report #299

December 1989

0. Introduction

This technical report contains the documentation for GraphView software system
for the NeXT computer. For general discussion and motivation of GraphView,
see Technical report #295 from the Computer Science Department at Indiana
University by Birgisson and Shannon, GraphView: An Extensible Platform for
Manipulating Graphs. The documentation herein includes:

the GraphView Tutorial (page 3),

the GraphView User’s Manual (page 11),

the specifications of the Objective-C classes used in GraphView (page 21),
the specifications of the file format used to store graphs in GraphView
(page 55).

ol o R

This technical report does not contain any documentation on the transformations,
generators, or displayers currently available in GraphView. For the up-to-date
documentation on these aukxiliary programs, contact Greg Shannon at the above
address or shannon@luap.cs.indiana.edu.

TDevelopment of the GraphView software and its documentation herein has
been supported in part by a Hewlett-Packard Faculty Development Fellowship,
NSF grant CCR-89-09535, an Indiana University Summer Faculty Fellowship,
the Office of Research and Graduate Development at Indiana University, and
NSF grant DCR-85-21497.

Copyright © 1989 Trustees of Indiana University, Gregory E. Shannon, and
Bjarni Birgisson. All rights reserved. Permission to copy for private use only.

Tutorial

1. Tutorial
Overview

GraphView is a tool for interactively creating, editing, manipulating, displaying,
and animating graphs and graph algorithms on the NeXT computer. Graphs can
be created directly on the screen, read in from a file, produced by a graph-family
generator, or extracted from a database of graphs. Graphs and various
characteristics can then be displayed, edited, and transformed using a dynamic
external library of transformations written in Objective-C or any other description
language. Any of the graphs can be both printed and stored on disk for later
retrieval.

GraphView enables the user to work on multiple graphs at once, each appearing
in a separate window on the screen. Several display attributes, such as the
display of labels or characteristics, are controlled by the user. Subgraphs are
copied between different graphs or within the same graph using the standard
Copy/Cut/Paste mechanism.

In GraphView, graphs can be arbitrarily manipulated using external programs
which communicate with the main program. These transformation programs can
be written in any suitable programming language capable of communicating with
the main application. In this version, plain ASCII files in a special format are
used to transfer information between the programs. Classes of external
programs include:

1. Regular transformations which operate on a given input graph, returning
one or more graphs as output.

2. Generators, which create new graphs.

3. Displayers, which attempt to lay out a given graph geometrically. <<to be
implemented>>

GraphView automatically keeps track of the history of each graph, i.e. which
external programs and graphs were used to create it. Some other features
described in more detail below include intelligent printing, dynamic display of
characteristics, automatic version numbers, a preference panel for setting
program defaults, automatic labeling of graphs, and scalable views.

Creating a graph

GraphView can be launched from the Workspace, like any other application, by
double-clicking its icon or file name in the browser. It can of course also be
started up from a Terminal or Shell window by typing : G &.

To create an empty graph, select New from the Windows menu or press
command-n. An empty graph window will be displayed on the screen.

Tutorial

We can now create a graph by adding vertices and edges interactively, using the
mouse. To add some vertices, select Add Vertices from the Tools menu and
simply point and click where we want the vertices to appear. To add edges to the
graph, select Add Edge from the Tools menu, point to the source vertex, click
and stretch out a line to the destination vertex while holding down the mouse
button. When the pointer is inside the destination vertex, release the button, and
an edge will be created.

Objects can be moved around by choosing Point from the Tools menu, selecting
the desired objects (by pointing and clicking or dragging out a box) and dragging
them to the desired position. Selected objects can also be Cut/Copied and
optionally pasted into the same or a different graph.

‘Wirndowr

Figure 1. A sample planar graph.

Once a graph has been created as explained above, it can be saved and read
back in, using the standard Save and Open commands in the Windows menu.

Starting a new graph family

When trying out a new algorithm, one generally starts out with one or more
graphs, and then applies transformations leading to a graph sequence or a
family. To start up such a family, select New Graph Family from the Window
menu. To demonstrate how this works, type “~/mygraphs” in the directory field

Tutorial

and “agraph.G” for the parent graph. The program will create any necessary
directories. From here there are three options on how to start up the sequence.

From scratch. This will open up an empty window in which the parent graph can
be created interactively as described above.

Generate. This allows us to select a generator to create some common graphs.
For Example select cbt.X from the browser panel, click on Generate and type the
parameters “5,500,500” (without the quotes) in the parameter field. Cbt.X is a
generator o create compete binary trees of a specified height (5 in our case).
Click the OK button, after a moment, a window should appear showing a binary
tree. The resulting graph is shown in Figure 2 after its window has been
enlarged to make the entire graph visible.

il

s fi
il

0000000000000000

Figure 2. A complete binary tree.

From an existing file. To illustrate this option, go back and bring up the New
family window, change the directory name to “~/planar”, and the parent graph
name to “planar.G”. Click the Existing file button and then OK. Now the
program will show a collection of existing graphs in the default graph directory.
Select the file decomp.G and click OK. Now we have a copy of decomp.G,
named planar.G in a new directory. If the whole graph isn't visible, adjust the size
of the window until it fits. Now we are ready to try out some algorithms.

Applying a transformation.

Tutorial

After starting up the family in the last example, let's use the transformation library
to decompose the graph by repeatedly “deleting” vertices of degree 6 or less.

Before selecting the transformation, select Auxiliary Computations from the
Window menu. This brings up a window for messages from the transformation
programs.

; demoz eps

Figure 3. Selecting a transformation.

Now select Transform from the main menu. The display should look similar to
Figure 3.

The desired transformation is selected by choosing one of the “.X” files in the
browser panel. In our case we select decomp.X. The checkboxes can be clicked
if we don’t want the program to create a new window (in place) and if we want
the transformation to show intermediate steps (show steps). Let's click the show
steps box for this time. If a transformation expects parameters, they are typed
into the box at the bottom of the panel. No parameters are expected for
decomp.X, so make sure the parameter field is empty.

Press <return> or click the OK button to launch the transformation.

Tutorial

After a while the program will bring up a new window and show the results of the
first step of the transformation. It has constructed the first set in the partition, S;.
Vertices in S; are marked with S_1 on the display. The panel with the Continue
button can be dragged out of the way for a better view of the graph. When
ready, click Continue to proceed to the next step. After a few more steps we
should have the final result showing the partition by labeling the vertices by S i
indicating the component to which they belong. Figure 4 at the back of this
document shows the successive steps.

As another example, let's find a maximal independent set in the graph planar.G.
Bring the graph to the front by clicking on its window or selecting it from the
Activate menu. Select a transformation as before, but now choose p_MIS.X
which finds a maximal independent set in a planar graph. P_MIS.X takes no
parameters. After showing intermediate steps, the vertices in the MIS are
identified by “planar_MIS.” The steps in the p_MIS transformation are shown in
Figure 5. Note that the input is not shown since it is identical to the first picture in
Figure 4 and the final result is not shown either, since it is identical to the last
step.

Writing transformations

The current transformation library is written in Objective-C, but could as well be
written in any language capable of reading a regular ASCI| file and representing
the graphs in some way internally. We have created Objective-C classes used
to represent the graphs as a collection of objects. Describing them in detail
would be lengthy but a short example follows.

We implement a breath-first-search algorithm given in Data Structures and
Algorithms by Aho, Hopcroft and Ullman (page 243). The original algorithm is as
follows:

vertex v -- the source vertex.
queue Q
vertex x y

mark v as visited
engqueue v Q
while Q is not empty
¥ <= front Q
dequeue Q
for each vertex y adjacent to x
if y is not marked
mark y as visited
engueue x Q¢
add (x,y) to the bfs-tree
endif
endfor
endwhile

Tutorial

This could be written as a transformation as follows: (for details see the
documentation on the graph classes).

// some header code omitted
// v is the source vertex;

Q = [List new]; // queue for vertices
[Q addObject: [v select]]; // mark v as visited & enqueue
while ([Q count]) // Q not empty
x = [Q removeObjectAt:0]: // x <- front Q & dequeue
for (el=[x edgeList], i=[el count]; i--;) {

// to get at the adjacent vertices we look at each edge
e=[el objectAt:i];
// for directed graphs, ignore incoming edges
if ([inGraph isDirected] && [e fromVertex] != x)
continue;
// get the vertex on the other end of the edge
y = ([e fromVertex]==x ? [e toVertex] : [e fromVertex]):
if (![y isSelected]) { // is y marked as visited?
[Q addObject: [y select]]; // mark & enqueue y
[inGraph selectObject:e]; // mark the edge as in
[e appendInfo:"bfs bfs-tree"]; // the bfs-tree
} // end if
} // end for
} // end while

This code would be written as single C-function transform(), which then would be
linked up with a general main program to handle the communications with the
GraphView application. For more detailed examples, see the source code for the
transformation libraries.

Tutorial

Figure 4. Steps in applying decompose.

Tutorial

Figure 5. Steps in applying planar_MIS.

10

User’s Manual

2. User’s Manual
Starting GraphView

As previously mentioned, GraphView can be launched from the Workspace, like
any other application, by double-clicking its icon or file name in the browser. It
can of course also be started up from a Terminal or Shell window by typing : G &.

Furthermore, the Workspace manager will automatically launch GraphView, when
any of it's documents are double-clicked. GraphView documents are expected
to have a suffix of “.G” (graphs) or “.X” (transformations).

Since GraphView uses the standard NeXT defaults database, several default
values can be specified from the command line or using the dread/dwrite
commands. However to maintain the integrity of the default data values, it is
preferred that these values are changed through the Preferences panel in the
program only.

Files and Directories

To make file selection easier, GraphView assumes several default directories and
file types. The default directories can all be changed through the Preferences
panel. In this version the following directories are used:

* Graph directory. This is the directory where GraphView assumes it will find
the graph files. The initial default value is ~/Graphs. If files are selected from
another directory using the browser in the Open panel, that directory will
become the default directory next time a file is opened or saved using the
browser. As mentioned above the default directory can also be changed
using the Preferences panel.

« Transformation directory. The initial default value for this directory is
~/Xforms. This is where the transformation programs are expected to be
Same rules apply as to the Graph directory above, it can be changed
temporarily just by choosing a different directory in the browser, or by using
the Preferences panel.

¢ Generator directory. The initial default value for this directory is ~/Generators.
This is where the generator programs are expected to be.

* Displayer directory. <<to be implemented>>
GraphView works with several different file types and uses the following suffixes
to distinguish each type. NOTE: Suffixes shorter than 5 characters and using

lower case letters are reserved by NeXT. The extensions for GraphView will be
registered with NeXT in the near future.

11

User’s Manual

12

* Graph files. These files have the suffix “.G" and contain the graphs, in an
ASCl! file format. See Section 4 for a description of the graph file format. The
graph files are displayed with the “.G" icon in the Workspace manager.

* History files. These files have the suffix “.H” and contain the history for the
graphs, in an ASCII file format. Most graphs have an associated history file
with the same name as the graph file and the “.H" suffix. See Section 4 for a
description of the history file format. These files are to be maintained by the
main Application and/or the transformation programs only. They have no
icon.

* Version files. These files have the suffix “.version” and contain only one
line of the form: “version xxx\n” Where xxx is the current version number.
One version file is kept for each graph family (see below). These files are to
be maintained by the main Application and/or the transformation programs
only. They have no icon.

* External programs. These files have the suffix “.X” and contain the
transformation, generator and displayer programs. These files have an “X”
icon when displayed by the Workspace manager.

Graph families are groups of graph files which have all be created by applying
transformations to descendants of some common parent. A graph family is
started when a graph is created, interactively, using a generator or by other
means and placed in a file graph.G for example. This will be the root in the family
tree and its descendants are automatically named graph_1.G, graph_2.G and so
forth each time a transformation is applied. The version file contains the highest
allocated version number for the family and the history file which is kept for each
graph, describes the path from the root and the transformations that were applied
on the way. See the section on the New Graph Family command in the
Window menu for details on how to start up a new family of graphs.

Graph objects

There are two kinds of objects that make up a graph: vertices and edges.
Associated with each object is a (preferably) unique label and any number of
lines describing the characteristics of that particular object.

Labels are maintained automatically by GraphView and the user should not have
to worry about keeping them unique or in other ways assigning them to objects.
Labels can be changed by the user interactively, should the need rise.

Characteristics are usually set by the transformation programs. An example of a
characteristic would be the color of a vertex or whether an edge is a part of a
particular spanning tree. GraphView provides a convenient mechanism to adjust
which characteristics are displayed at any time.

User’s Manual
The Graph Window

Each graph appears in a separate window (see below). Several display attributes
can be adjusted, both by controls in the window itself and by specifying
appropriate defaults through the Preferences panel. An example of a graph
window is shown in Figure 1.

Scale slider
Characteristics of the currently selected object Display

The selected object’s label cptions

Button for setting characteristics
Figure 1. The Graph Window.

Display options: The display option buttons work as follows:
Directed: By clicking this box, the graph is displayed as a directed graph.

GraphView remembers the strokes used to draw the edges, and displays the
graph accordingly.

13

User’s Manual

14

Show Info: This box can be clicked to turn on or off the display of
characteristics. When this box is checked, the display information in the
Preferences panel determines which characteristics are actually displayed.
NOTE: Having this box checked slows down the display speed considerably for
large graphs.

Grid on: When this box is checked, a rectangular grid overlays the image. The
squares are 40 by 40 points or approximately a square inch.

Edge labels: Checking this box causes labels to be displayed for the edges as
well as for the vertices in the graph. NOTE: This option slows down display
speed somewhat.

Scale slider: By adjusting the scale slider, the graph can be scaled down to 50%
of its default size, thereby bringing more of the graph into view.

Labels: In the Label field, GraphView displays the label of the last selected
object (see below). It can be changed, simply by typing in the desired label and
pressing return in the field, while the object is still selected.

Characteristics: This field displays the characteristics associated with the last
selected object. To change the characteristics, type in the new information and
press the Set Char. button while the object is still selected. The program
assumes characteristics are any number of lines of the following form:

keyword some_text_to_be_displayed

An example of characteristics for a vertex with color blue, belonging to a
connected component number 3 would be:

color blue connected-comp cc-1
Then setting characteristics displayed for vertices in this graph to:

color
connected-comp

would display
blue
cc-1

somewhere close to the vertex in the graph. In theory, any number of
characteristics can be displayed at one time and the strings can be of any length.
Keep in mind though that the display quickly becomes cluttered when too much is
displayed.

User’s Manual

Selecting Objects - Cut/Copy/Paste

Objects in the graph are selected simply by clicking on them or dragging out a
box around the desired objects. The usual shift-click extensions apply for adding
to the current selection. All the objects can be selected using the Select All
option in the Edit menu. NOTE: Selection can only be performed when in Point
mode, see the section on the Tools menu for details.

Once objects have been selected they can be moved by clicking and dragging
them to the new position, or cut and/or copied using the standard operations from
the Edit menu and then pasted into any graph. GraphView automatically assigns
new unique labels, in the same internal order, when pasting a subgraph.

Due to the special characteristics of graphs, the following should be noted about
copying, cutting and pasting. An edge can only be copied and pasted if both of
it's adjacent vertices are copied/pasted with it. When a vertex is cut from a
graph, all its adjacent edges will be cut also, whether they are selected or not.

The Main Menu

GraphView’s main menu contains the commands described below. Many of
these commands display submenus related to specific areas of functionality.
These submenus and the commands they contain are described in the sections
that follow.

Info
The Info command displays information about GraphView, including the version
number and copyright information.

Window

The Window command displays a menu that contains commands for performing
operations on graph windows and activating several additional windows. These
commands include opening and closing windows, and saving changes made to
graph windows.

Edit
The Edit command displays a menu that contains the standard Cut/Copy and
Paste commands.

Print
The Print command displays the standard Print panel, which can then be used to
print the contents of the currently active window.

Activate
This command displays a menu of the open graph windows. A window chosen
from this list moves to the front and becomes the currently active window.

15

User’s Manual

16

Tools
This command brings up a submenu with several commands that can be applied
to the currently active window.

Transform

The Transform command is used to invoke an external transformation. All the
available transformations are expected to be located in the default transformation
directory (see Files and Directories above). All transformations operate on the
currently active graph (the one in the top window). To launch a transformation,
select it from the browser panel just as any other file, type in the necessary
parameters and hit return or click the OK button. There are two options available
when starting a transformation. By checking the boxes labeled in place and
show steps you can tell GraphView to run the transformation in the current
window and show intermediate results respectively. For details on how to write
transformation programs, see appendix B.

Preferences

This command displays a panel from which the programs default values can be
changed, either permanently or for a single session. Most of the options are self-
explained. Only a few are mentioned here.

Logfile open: This option decides whether the contents of the Auxiliary
Computations window are saved to a file. If it is on, a file named MMDD-
HHMM.log, where MM, DD, HH and MM are month, day, hour and minute
respectively, is created in the Graph directory and the contents of the Auxiliary
Computations window are echoed to that file.

Unique labels on paste: When this box is checked GraphView makes sure that
labels are kept unique on a paste. In other words, it allocates new labels to the
just-pasted subgraph.

Window inheritance on: If this box is checked, the default display attributes are
overridden, such that a transformed graph will have exactly the same attributes
as its parent.

Intelligent printing: Choosing this option, allows GraphView to decide the
orientation (portrait/landscape) of printed graphs, depending on the geometry of
each graph, thereby overriding the setting in the Page Layout window.

User’s Manual

Figure 2. The Preferences Panel.

Hide

The Hide command hides the GraphView program. Windows and menus
temporarily disappear from the Workspace. To activate the program, double-click
its icon and the windows and menus reappear in their previous locations.

Quit

The Quit command stops the program. NOTE: it does not check to see if all files
have been saved.

17

User’s Manual

18

The Window Menu

Open

The Open command prompts for a graph file, reads it in and displays it in a graph
window. The file is specified by typing the file name or path name in the text field
of the panel that appears when this command is selected. Alternatively, one or
more files can be selected (using the standard shift-click) extension if necessary
and opened by double-clicking any of them. Another way to open a graph file is to
simply double-click it in the Workspace browser. The Workspace manager will
send the necessary messages to Graphview and launch it if needed.

New

The New command opens an empty graph window titled “Untitledxx”, where xx is
a running number. This window can be used to create a new graph. When the
file is saved, GraphView prompts for a file name.

New Graph Family

When this command is selected, a panel is displayed, allowing you to specify the
directory that is to contain the new family and the name of the parent graph.
GraphView will create all necessary directories if they don't exist. The parent
graph can then be created in one of three ways:

1. From scratch. An empty window is displayed. Design the parent graph
interactively, as described above.

2. From an existing file. Select a file form an open panel to start the family.

3. Generate. This will invoke an external generator program to generate the
parent graph. The generator to be used is selected from a browser panel
just like a transformation (see Transform above).

Save

The Save command writes the contents of the current window to a file. If the
window is titled “Untitledxx”, a panel appears asking for a name for the new file.
After the file is saved, it remains in the window.

Save As

The Save As command saves the contents of a window you've created with the
New command (see above), or saves an existing graph under a new name or to
a new directory. When you choose Save As, a panel appears asking you to enter
the new name for the graph. Type the new file name (or a complete path name, if
you want to specify a different directory), and press Return. After you use the
Save As command, the contents of the window are associated with the new
graph name. If you use the Save As command to save an existing graph under a
new name, the old version continues to exist on the disk under its old name.

Close
Closes the currently active window. If this is a graph window, GraphView does
not check whether any unsaved changes will be lost.

User’s Manual

Page Layout

The Page Layout command displays the standard Page Layout panel, which lets
you choose among various paper sizes, scaling factors, and orientations for text
printed from the main window. NOTE: The chosen setting for Landscape/Portrait
printing does only affect graphs printed with the intelligent printing option off. See
the Preferences panel for details.

Graph Attributes

This command brings up a panel showing the file name and the directory of the
current graph, as well as its history and characteristics displayed for its objects.
The history can be cleared and the version numbers reset by clicking the
appropriate button. To change the characteristics displayed for the graph’s
objects, simply type in the keywords identifying the characteristics, e.g. “color,”
separated by spaces newlines or tabs and click the Set button.

Auxiliary Computations.

Selecting this command brings up a window which the transformation programs
can write to. things are set up in such a way that by simply writing to stdout or
stderr, and doing an fflush afterwards, the transformation programs can send
informative messages back to GraphView. These messages are displayed in the
auxiliary computations window. If the logfile option is on in the Preferences
panel, the messages are also echoed to a logfile. The window can be emptied by
clicking the Empty window button.

Graph Characteristics

Each graph can have certain characteristics associated with it. This can be any
amount of text which is appended to a text field in a special window when a
graph is opened. This command activates the window displaying these
characteristics. Graph characteristics are currently set and modified by the
transformation programs only. they cannot be changed or set directly through
GraphView. The window can be emptied by clicking the Empty window button.

The Edit Menu

The Edit menu provides the standard editing commands Cut, Copy, Paste, and
Select All.

Cut, Copy, Paste
These commands let you delete, copy, or move objects, either within a window or
between windows. Each of these commands applies to the key window.

The Cut and Copy commands place a copy of the selected objects onto the
pasteboard. From the pasteboard, the objects can be repeatedly pasted with the
Paste command. The pasteboard holds only one selection at a time: each new
Cut or Copy operation overwrites the previous contents of the pasteboard.

19

User’s Manual

20

NOTE: When working in a text field, for example when editing the characteristics
of a selected object, these commands apply to the text in that field rather than the
graph in the window. By clicking the graph, it will again become the recipient of
the messages sent by these commands.

Select All
The Select All command selects all objects in the currently active window.

The Tools Menu

The Tools menu contains several commands used when creating or editing a
graph interactively.

Add Vertex

When editing graphs interactively, GraphView has three basic modes. Add
Vertex and the next two commands, Add Edge, and Point switch between
modes. After selecting this command, vertices can be added to the graph by
pointing to the desired position and clicking. It is possible to move the vertex
around to a new position while holding down the mouse button, since the vertex
isn't created until the button is released. GraphView automatically assigns a new
label to the vertex but the characteristic field is initially blank.

Add Edge

This command allows edges to be added to a graph. To add an edge, click on
the source vertex and while holding down the mouse button, drag towards the
destination vertex, releasing the button with the mouse pointer within the radius of
the destination vertex. GraphView assigns labels to edges automatically.

Point
This command allows objects in the graph to be selected. GraphView has to be
in this mode for selection to work. See the section Selecting Objects for details.

Compress Labels

After deleting vertices and edges, the label sequence in the graph will have
unused gaps. This command compresses the label sequence for both edges and
vertices, leaving no gaps and still maintaining the internal ordering of the labels.

Reverse Edges
This command only has effect in directed graphs. It allows the direction of all
Selected edges to be reversed.

Class Specifications

3. Objective C Class Specifications

This section contains the class specifications for GraphView: Vertex, page 21;
Edge, page 25; Graph, page 31; GraphObject, page 39; GraphView, page 43.

3.5. Vertex

INHERITS FROM GraphObject :Object
REQUIRES HEADER FILES Vertex.h, <objc/List.h>
DEFINED IN GraphView

CLASS DESCRIPTION

Vertex objects are one of the two main classes composing a graph.
Associated with each vertex is a list of edge objects and a coordinate,
representing its geometrical position in the graph. The edgelist contains
both incoming and outgoing edges. Only one copy is kept of a single edge,
which means that each edge occurs in exactly two lists, the one of its
source vertex and its destination vertex. Care must be taken when
modifying the edgelists directly to properly update both lists.

NOTE: Although a graph may be undirected, it is stored in the same way as
a directed graph. To find whether an edge is an outgoing or incoming edge,
the result of the fromVertex method of the edge class can be compared to
the vertex in question.

INSTANCE VARIABLES

Inherited from Object struct _SHARED *isa;
Inherited from GraphObject int seql;
int seqz;
BOOL selected;
int charlen;
char *C;
char label[3];
Declared in Vertex id edgelist;
NXPoint pos;
edgelist The list of edges. See the List class for details.
pos The geometrical position of the vertex (center) in
the graph.

21

Class Specifications: Vertex

METHOD TYPES
Creating and freeing a Vertex + newVertexAt:label:info:edges:

- remove
Writing the Vertex to a file - writeVertexTo:
Managing the edgelist - sortEdgelList

- edgelList

- getEdgeTo:
Geometric methods - location

- bounds:

- isHit:

- moveTo:

- moveBy:
Drawing - drawlnRect:
Querying the object type - type

FACTORY METHODS

newVertexAt:label:info:edges:
+ newVertexAt:(NXPoint *)p label:(char *)/ info:(char *)c edges:(int)ec
Creates a new instance of Vertex, positioned at p, with label / and
characteristics ¢ (may be NULL). If an estimate is known of how many
edges will be connected to the vertex, that number should be given as ec; if
this is not known ec should be 0.

INSTANCE METHODS

bounds

— (NXRect *)bounds

Returns a pointer to an NXRect structure containing a rectangle that
encloses the vertex.

22

Class Specifications: Vertex
drawlnRect:
— drawlnRect: (NXRect *)aRect
Checks if the bounds of the receiver intersect aRectif so the vertex is drawn
along with its outgoing edges. Only outgoing edges are drawn to prevent
the same edge from being drawn twice. If aRect is NULL the vertex is
drawn without checking. <<There is no method for drawing only the vertex,
without the edges. It can easily be added if needed>>
edgelList
— edgelList
Returns the List object containing the connected edges.
getEdgeTo:
— getEdgeto:vertex
This method searches the edgelist for an edge between the receiver and
vertex. If no edge exists, nil is returned. This method only looks for an
edge from the receiver to vertex—not the other way.
isHit:
— (BOOL)isHit:(NXPoint *)aPoint
Returns YES if aPoint hits the vertex, NO otherwise.
location

— (NXPoint *)location

Returns a pointer to an NXPoint structure containing the coordinate of the
center of the vertex.

moveBy:
— moveBy:(NXCoord)dx :(NXCoord)dy
Adds dx and dy to the x and y coordinates of the vertex .

See also: moveTo:

23

Class Specifications: Vertex

24

moveTo:
— moveTo:(NXPoint *)aPoint
Sets the position of the vertex to aPoint.
See also: moveBy::

remove

- remove

Frees all storage allocated to the vertex and all its edges. Also removes the
edges from the edgelists of the adjacent vertices. Note that the vertex is not
removed from the vertex list of the graph. See the Graph class for details.

sortEdgeList
— sortEdgeList

Sorts the edgelist so that it reflects clockwise ordering of the edges around
the vertex. Note that the edgelist is not necessarily kept in sorted order at
all times.

type
- type
Returns the constant G_ VERTEX.

writeVertexTo:
—-writeVertexTo:(NXStream *)stream

Writes the information associated with the vertex to the stream stream in the
format required by .G files.

See also: The I/0 methods for the Graph and Edge classes.

3.1. Edge
INHERITS FROM

REQUIRES HEADER FILES

DEFINED IN

CLASS DESCRIPTION

Class Specifications: Edge

GraphObiject : Object

Edge.h

GraphView

Edges are one of the two main classes making up a graph. An edge
consists of an ordered pair of vertices, the source and destination vertex
and a reference to the graph containing it. Edges are stored the same way
in directed and undirected graphs, and the direction of the vertex is
determined by the way the user enters it in the graph. (This can be changed

using the reverse method in directed graphs.)

INSTANCE VARIABLES

Inherited from Object

struct _SHARED

Inherited from GraphObject int

Declared in Edge

graph

fromv,tov

int
BOOL
int
char
char

id
id
id

&

isa;

seqi;
seqz2;
selected;
charlen;
*C;
label[3];

graph;
fromv;
tov;

The graph containing the edge. It is necessary for
the edge to find out whether the graph is directed

or not when drawing.

The source and destination vertex respectively.

25

Class Specifications: Edge

METHOD TYPES
Creating and freeing an Edge + newEdgeFrom:to:inGraph:
label:info:
- remove
Writing the Edge to a file - writeEdgeto:
- writeEdgefrom
Accessing the vertices - fromVertex
- toVertex
- setFromVertex:
- setToVertex:
- isFrom:to:
Geometric methods - bounds:
- isHit:
- intersectsRect:
- angle
- angleWithRespectTo:
Drawing - drawinRect:
Reversing the edge - reverse
Querying the object type - type
FACTORY METHODS

newEdgeFrom:to:inGraph:label:info:edges:

+ newEdgeFrom:source to:destination inGraph:graph
label:(char *)/ info:(char *)c

Creates a new instance of Edge, from source to destination, with label / and
characteristics ¢ (may be NULL). The edge is in graph.

INSTANCE METHODS
angle
- (float)angle

Returns the angle in degrees with respect to the source vertex. Angle 0 is at
"3 o'clock" when looking at the vertex on the screen. This is a cover method

26

Class Specifications: Edge

for angleWithRespectTo:.

See also: angleWithRespectTo:
angleWithRespectTo:

- (float)angleWithRespectTo:vertex

Returns the angle in degrees with respect to the given vertex; 0 degrees is 3
o'clock. Vertex must be the source or destination edge of the receiver.

See also: angle
bounds
~ (NXRect *)bounds

Returns a pointer to an NXRect structure containing a rectangle that
encloses the edge.

drawinRect:
— drawlnRect: (NXRect *)aRect

Checks if the edge intersects aRect, if so the edge is drawn. If aRect is
NULL the vertex is drawn without checking.

fromVertex

— fromVertex

Returns the source vertex.

See also: toVertex, setFromVertex:, setToVertex:
intersectsRect:

— (BOOL)intersectsRect:(NXRect *)aRect

Returns YES if the edge intersects aRect, NO otherwise.
isFrom:to:

— (BOOL)isFrom:svertex to:dvertex

Returns YES if the edge is from svertex to dvertex, NO otherwise.

27

Class Specifications: Edge

28

isHit:
— (BOOL)isHit:(NXPoint *)aPoint
Returns YES if aPoint hits the edge or is "close" to it, NO otherwise. For
now this method is implemented using the PostScript instroke operator to
handle curved edges properly. <<this is too slow for large graphs and will
be changed>>

remove

- remove

Frees all storage allocated to the edge and removes it from the edgelists of
both vertices.

See also: remove (Vertex)
reverse

— reverse

Swaps the source and destination vertices.
setFromVertex:

—-setFromVertex:v

Sets the source vertex to v.

See also: toVertex, fromVertex:, setToVertex:
setToVertex:

-setToVertex:v

Sets the destination vertex to v.

See also: toVertex, fromVertex:, setFromVertex:

Class Specifications: Edge
toVertex
- toVertex
Returns the destination vertex.

See also: fromVertex, setFromVertex:, setToVertex:
type

— type

Returns the constant G_EDGE.
writeEdgefrom:

-writeEdgefrom:(NXStream *)stream

Writes the information associated with the edge to the stream stream in the
format required by the edgefrom line in .G files.

See also: writeEdgeto: and the 1/0 methods for the Graph and Vertex
classes.

writeEdgeto:
—writeEdgeto:(NXStream *)stream

Wirites the information associated with the edge to the stream stream in the
format required by the edgeto line in .G files.

See also: writeEdgefrom: and the /O methods for the Graph and Vertex
classes.

29

Class Specifications: Edge

30

3.2. Graph

INHERITS FROM

Object

REQUIRES HEADER FILES Graph.h

DEFINED IN

CLASS DESCRIPTION

GraphView

Class Specifications: Graph

A graph is implemented as a list of vertices which each has a list of edges.
See the description for those classes for details. Besides the vertex list, the
graph contains two lists of selected objects, one for vertices and one for

edges.

It also stores information about the graph type (directed or

undirected) and the characteristics associated with the graph.

INSTANCE VARIABLES
Inherited from Object

Declared in Graph

showlnfo

Gtype

vList

sele,selv

struct SHARED

BOOL
int

id

id

id

id

id

id
char
char

x

isa;

showlnfo;
Gtype;

vList;

sele;

selv;
infoObject;
charEdges;
charVertices;
Elabel[2];
Vlabel[2];

Records whether extra information such as edge
labels are to be shown when drawing the graph.

the default is NO.

Records the graph type 1
The constants G_DIRECTED and

undirected.

means directed 0

G_UNDIRECTED should be used when referring

to the graph type.

The vertex list for the graph. It is not kept in any

particular order.

Lists of selected edges and vertices respectively.

31

Class Specifications: Graph

infoObject

charEdges,charVertices

Elabel,Vlabel

METHOD TYPES

Creating and freeing a Graph

I/O methods

Managing characteristics

Managing the display of

characteristics

Adding objects

Accessing objects

Managing the state

Managing the selection

32

A GraphObject (see its class description for
details) used only to keep the characteristics
associated with the graph.

GraphObjects used to store the characteristics
displayed for the edges and vertices of the graph
respectively.

Contain the highest label allocated to edges and
vertices in the graph. Pasting from other graphs
does not affect these variables but reading from
files does.

+ newGtype:
- free

- readGraphFromFile:
- writeGraphToFile:

- setGraphlnfo:
- getGraphinfo

- setDispCharEdges:
- setDispCharVertices:
- getDispCharEdges
- getDispCharVertices

- addVertex:

- addEdgeFrom:to:
- insertVertex:

- insertEdge:

- getVertexAt:
- getEdgeAt:
- vertexList

- setDirected:

- isDirected

- setShowlnfo:
- isiInfoShown

- selectedVertices
- selectedEdges

Class Specifications: Graph

- unselectAll

- unselectObject:

- selectObject:

- getSelectedBounds:

- addToSelection:

- removeSelection

- readSelectionFrom:andGenerate:
- writeSelectionTo:

FACTORY METHODS
newGtype:
+ newGtype:(int) type

Creates a new instance of graph, with Gtype set to type. ShowInfo is set to
NO. The selection lists are empty and the graph has no characteristics.

INSTANCE METHODS
addEdgeFrom:to:
— addEdgeFrom:svertex to:dvertex

Creates a new instance of edge form svertex to dvertex with the next
unallocated label and no characteristics.

See also: insertEdge:
addToSelection:
— addToSelection:(NXRect *)aRect

Adds to the current selection all objects, edges and/or vertices which
intersect aRect.

addVertex:
— addVertex: (NXPoint *)aPoint

Creates a new instance of vertex at aPoint with the next unallocated label
and no characteristics.

See also: insertVertex:

33

Class Specifications: Graph

free

— free

Releases all storage allocated to the graph and its objects.
getDispCharEdges

— (char *)getDispCharEdges

Returns pointer to a string of characteristics to be displayed for the graph’s
edges. This will be a string of space-, tab-, or newline-separated keywords.

See also: setDispCharVertices:, setDispCharEdges:,
getDispCharVertices.

getDispCharVertices
— (char *)getDispCharVertices

Returns pointer to a string of characteristics to be displayed for the graph’s
edges. This will be a string of space, tab or newline separated keywords.

See also: setDispCharVertices:, setDispCharEdges:,
getDispCharEdges.

getEdgeAt:
— getEdgeAt: (NXPoint *)aPoint

Searches the edgelists of all the vertices for an edge that is hit by aPoint
and returns it if found. Otherwise returns nil.

getGraphinfo
— (char *)getGraphinfo

Returns a pointer to the characteristics associates with the graph (may be
NULL).

See also: setGraphinfo:, getinfo (GraphObject).

getVertexAt:
— getVertexAt: (NXPoint *)aPoint

Searches for a vertex hit by aPoint and returns it if found. Nil otherwise.

34

Class Specifications: Graph
getSelectedBounds:
- (BOOL)getSelectedBounds:(NXRect *)aRect
Calculates a rectangle enclosing all the selected objects in the graph and
puts it in the structure pointed to by aRect. Returns YES if the rectangle is
non-empty and NO otherwise.
insertVertex:
— insertVertex:vertex
Inserts the already created object vertex into the graph.
See also: addVertex:
isDirected
- (BOOL)isDirected
Returns YES if the graph is directed, NO otherwise.
See also: setDirected:
isinfoShown
- (BOOL)isinfoShown
Returns YES if the showInfo flag is set, NO otherwise.
See also: setShowinfo:
readGraphFromFile:
— (BOOL)readGraphFromFile:(NXStream *)stream
Reads the graph from an already opened file stream. The graph has to be
created with newGtype: and must be empty before this method can be

applied. << This could be an easy way to create the union of two graphs .>>

See also: writeGraphToFile:.

35

Class Specifications: Graph
readSelectionFrom:

- (BOOL) readSelectionFrom:(NXStream *)stream
andGenerate:(BOOL)flag

Reads in a description of vertices and edges and adds to the graph. The
objects read are made the currently selected objects. Used to read from
the pasteboard as a response to a paste operation. If flag is YES new
labels are generated for the objects read and the Elabel and Viabel
variables updated accordingly.
NOTE: The file format required for this method is the same as used by
writeSelectionTo: but a bit different than the format for .G files to speed up
cutting and pasting.
See also: writeSelectionTo:
removeSelection
- removeSelection
Removes all selected objects from the graph and frees that storage.
selectedEdges
— selectedEdges
Returns the list of selected edges.
See also: selectedVertices
selectedVertices
- selectedVertices
Returns the list of selected vertices.
See also: selectedEdges
selectObject:

— selectObject:o

Adds the object o, which can either be a vertex or an edge to the current
selection and marks it as selected.

See also: unselectObject:, unselectAll

36

Class Specifications: Graph
setDirected:
— setDirected:(BOOL)flag
Sets the graph type to directed if flagis YES or undirected if flagis NO.
See also: isDirected
setDispCharEdges:
— setDispCharEdges:(char *)aString

Sets aString as the string that determines which characteristics are
displayed for the edges of the graph.

See also: setDispCharVertices:, getDispCharEdges,
getDispCharVertices.

setDispCharVertices:
— getDispCharVertices:(char *)aString

Sets aString as the string that determines which characteristics are
displayed for the vertices of the graph.

See also: setDispCharEdges:, getDispCharEdges,
getDispCharVertices.

setGraphinfo:
- setGraphlinfo:(char *)characteristics
Associates characteristics with the graph.

See also: getGraphlinfo, setinfo (GraphObject)

setShowinfo:
- setShowinfo:(BOOL)flag

Sets the showInfo flag to flag which should be YES or NO.

See also: isinfoShown

37

Class Specifications: Graph

38

unselectAll

— unselectAll

Empties the current selection and marks the objects as unselected but does
not remove them from the graph.

See also: selectObject:, unselectObject:

unselectObject:

- unselectObject:o

Removes the object o, which can either be a vertex or an edge from the
current selection and marks it as unselected.

See also: selectObject:, unselectAll

vertexList

— vertexList

Returns the list of vertices.

writeSelectionTo:

— writeSelectionTo:(NXStream *)stream

Writes the current selection to the file stream in a format suitable for
readSelectionFrom: This format is different for the one used by .G files
and is used for writes to the pasteboard as a response to cut and/or copy
requests. The edgelists are not sorted before the write is performed.

See also: readSelectionFrom:

writeGraphToFile:

—(BOOL)writeGraphToFile:(NXStream *)stream

Writes the graph to an already open file stream in a .G file format which can
be read by readGraphFromFile:. This method guarantees that the
edgelists will be sorted, reflecting a counterclockwise ordering around the
edges in the file and after the method is applied. The graph is not freed.
YES is returned if the method succeeds and NO if an I/O error occurred.

See also: readGraphFromFile:, sortEdgeList (Vertex).

3.3. GraphObject

INHERITS FROM

Class Specifications: GraphObject

Object

REQUIRES HEADER FILES GraphObject.h

DEFINED IN

CLASS DESCRIPTION

GraphView

GraphObijects are used as a common class for the implementation of both
edges and vertices in a graph. They provide features common to both types
of graph objects, such as selection, labels, characteristics etc.

INSTANCE VARIABLES
Inherited from Object

Declared in GraphObject

seql,seqg2,seq3

selected

charlen

label

struct_SHARED “*isa;

int seql;

int seqz2;
BOOL selected;
int charlen;
char -

char label[3];

These are temporary variables which can be used
to store a particular state of the object. Seq1 and
seq2 are used when saving and reading a graph
to/from a file to store information about
connectivity.

The current state of the selection.

Length of the characteristics associated with the
object.

A pointer to the characteristics. May be NULL if
no characteristics are currently associated with
the object.

A string containing the object’s label.

39

Class Specifications: GraphObject

40

METHOD TYPES
Creating and freeing a GraphObiject
+ new
- free
Managing the Selection - select
- unselect
- isSelected
Managing the temp. variables - setSeqi:
- setSeq2:
- setSeq3:
- getSeqt
- getSeq2
- getSeq3
Handling labels - setLabel:
- getLabel
Handling characteristics - appendInfo:
- setinfo:
- getinfo
Querying the object type - type
FACTORY METHODS
new
+ new

Creates a new instance of GraphObject. The object is unselected, the label
is "" and ¢ and charlen are NULL and 0 respectively.

INSTANCE METHODS
appendinfo:
— appendinfo:(char *)aLine

Appends alLine to the characteristics already associated with the object.
Storage is allocated and the string copied. The charlen variable is reset.

See also: getinfo, setinfo:

Class Specifications: GraphObject

free
- free
Releases all storage allocated for the object.
getinfo
— (char *)getinfo
Returns a pointer to characteristics for the object, pointer maybe be NULL.
See also: setinfo:, appendinfo:
getlLabel
— (char *)getLabel
Returns a pointer to the label associated with the object.
See also: setlLabel:
getSeq1, getSeq2, getSeq3
- (int)getSeq1
Returns the temporary state variable seq1. Similar for seq2 and seq3.

See also: setSeq1:

isSelected
— (BOOL)isSelected
Returns YES if the object has been selected, NO otherwise.
See also: select, unselect

select
— select
Marks the object as selected.

See also: isSelected, unselect

41

Class Specifications: GraphObject

42

setinfo:
- setinfo:(char *)characteristics

Associates characteristics with the object. Storage is allocated and the
string copied. The charlen variable is set to reflect the new length.

See also: getinfo, appendinfo:
setLabel:
— setinfo:(char *)/abel
Sets the objects label to /abel.
See also: getLabel
setSeq1:, setSeq2:, setSeq3:
— setSeq1:(int) J
Sets the corresponding temporary variable to i.
See also: getSeq1
unselect
— unselect
Marks the object as unselected.
See also: isSelected, select
type
- type

Returns G_UNKNOWN. This method is meant to be overridden by the
subclasses implementing vertices and edges.

Class Specifications: GraphView

3.4. GraphView

INHERITS FROM View : Responder : Object
REQUIRES HEADER FILES GraphView.h
DEFINED IN GraphView

CLASS DESCRIPTION

A GraphView is a subclass of a View providing display, printing and
interactive editing capabilities for the basic Graph class. It accepts methods
from various components of the interface. To include this class in an
application, add it to the project file through the Interface Builder and create
a Custom View (of type GraphView) in a window. Other components of the
interface can then be set up to send messages to the view as needed.

For each instance of a GraphView there is an underlying graph which is an
instance of the Graph class and "governed" by the GraphView.

To speed up the display of the graph, an off-screen window is used for
caching. The image can then be composited from this window onto the
screen for displaying.

NOTE: Many of the methods described below are sent by user interface
objects. Sometimes the GraphView class takes advantage of this and
explicitly queries the sender of the method for an argument value. This
causes some methods to be dependent on a certain class of sending
objects. If this is not mentioned in the description, the sender is ignored and
can be any object capable of sending a message.

INSTANCE VARIABLES

Inherited from Object struct _SHARED “isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct__vFlags vFlags;

43

Class Specifications: GraphView

44

Declared in GraphView

grid

showlnfo

edgelabels

infoField

labelField

typeSwitch

graph

mode

scaleFactor
cacheWindow

cacheing

BOOL grid;

BOOL showlnfo;
BOOL edgelabels;
id infoField;

id labelField;
id typeSwitch;
id graph;

int mode;

float scaleFactor;
id cacheWindow;
BOOL cacheing;

Is the grid to be displayed or not.

Should we display characteristics for graph
objects, i.e. vertices and edges.

Are labels to be displayed for edges as well as
vertices.

Outlet. A ScrollText object for displaying selected
objects’ characteristics. <<specific for GV>>

Outlet. A form for displaying labels of selected
objects. <<specific for GV>>

Outlet. A button (checkbox) for indicating whether
the graph is directed or not. <<specific for GV>>

The graph itself. See the Graph class for details.

Decides the mode of the GraphView class. See
setPointMode: below for details.

The current scaling factor of the graph.
An off-screen window for caching.

Set to indicate that the graph is to be drawn to the
cache and not to the screen.

METHOD TYPES

Class Specifications: GraphView

Creating and freeing a GraphView + newViewWithFrame:

Setting outlets

Responding to events

Drawing

Printing

I/O methods

Target/Action methods

Private methods

free
setinfoField:
setLabelField:
setTypeSwitch:

mouseDown:

acceptsFirstResponder:

- drawSelf:

-

cacheRect:andDisplay:
cacheObject:

printGraph:
beginSetup

readGraphFromFile:
writeGraphToFile:
revertTo:

showlInfo:
edgelabels:
gridOn:
scale:

cut:

copy:

paste:
updatelnfo:

- updatelLabel:

setPointMode:
reverse:
setType:
selectAll:
compress:

getGraphinfo
getDispCharEdges
getDispCharVertices
setDispCharEdges:
setDispCharVertices:

selectObject:shift:
unselect

45

Class Specifications: GraphView

46

FACTORY METHODS

newViewWithFrame:
+ newViewWithFrame:(NXRect *)aRect
Creates a new instance of GraphView, with a bounds rectangle defined by
aRect. The cachewindow is created and the display attributes set to default

values: {POINT-mode, no grid, no edgelabels, no characteristics shown,
scalefactor=1}.

INSTANCE METHODS
acceptsFirstResponder
— (BOOL) acceptsFirstResponder

Returns YES, indicating that the GraphView is always willing to become the
FirstResponder.

beginSetup
— beginSetup

Overridden method which does the necessary initialization of PostScript
variables before printing.

cacheObject:

— cacheObject:object

Draws the object specified in the cachewindow only.
cacheRect:andDisplay:

— cacheRect:(NXRect *)aRect andDisplay:(BOOL)flag

Draws all objects which bounding rectangles intersect the rectangle

specified by aRect. If flagis YES the new image is also composited to the
screen.

Class Specifications: GraphView
compress:
— compress:sender

This method can be sent by any object and causes the labels of edges and
vertices to be compressed. Labels are specified as one or two characters
and the following sequence isused. A,B...Z,a...2,0...9, AA, AB ... AZ,

Aa ... 99 giving (26+26+10)2 unique labels. Compression maintains the
ordering of objects according to labels using the ordering scheme defined
above, i.e. if the label of vertex v precedes the label of vertex u before
compression, it will also do so afterwards.

copy:
— copy:sender
This method is normally sent by the copy item of the Edit menu. It copies all
selected graph objects to the pasteboard. Note that an edge can only be
copied if both adjacent vertices are selected. Also when a vertex is copied,
none of its incident edges will be copied unless both the edge and the vertex
on the other end of the edge is selected.

See also: cut:, paste:

cut:
— cut:sender

This method is usually sent by the Cut item of the Edit menu. It performs
the copy: method and then deletes all selected objects (whether they were
actually copied or not) and objects that might "depend" on the selected
objects. Note that cutting a vertex implies deleting all its incident edges
also, even though they are not selected, since they depend on the selected
vertex.

See also: copy:, paste:

47

Class Specifications: GraphView

48

drawSelf::

— drawSelf:(NXRect *)aRect:(int)nRects

Overridden method which draws a portion of the graph indicated by aRect.
If the instance variable cacheing is set to YES, this method will draw to the
cache otherwise the image will be composited from the cache onto the
screen. This mechanism allows us to avoid actually redrawing each part of
the graph when scrolling and resizing windows since the graph is actually
stored completely in an off-screen cache and needs only to be composited
to the screen. Composition is obviously much faster than redrawing, since
the hierarchy of the graph doesn’t have to be traversed each time.

NOTE: The complete image isn’'t actually stored in the cache. Edge labels
and characteristics shown on the display are drawn after the compositing
has been done. This results in saving time when switching the display of
these items on and off, but again we lose some time when scrolling, resizing
etc. with the display of these attributes turned on.

edgelabels:

- edgelLabels:sender

This methods queries the sender by sending an intValue message to it,
using the result to decide whether edge labels are to be displayed or not. In
the GraphView application this message is sent by a checkbox button. A
value of zero means that edge labels are not to be displayed; any other
value will cause labels to be displayed.

free

— free

Sends a free message to the underlying graph and frees up all other data
structures and memory used by the receiver, including the cachewindow.

See also free (for the Graph class).

Class Specifications: GraphView

getDispCharEdges
— (char *)getDispCharEdges
In the GraphView application the user can dynamically specify which
characteristics are to be displayed for the graphs edges and vertices. This
is @ cover method for the a method with the same name in the Graph class.
See the documentation on that class for details.

See also getDispCharVertices, setDispCharEdges:,
setDispCharVertices, (the same methods in the Graph class).

getDispCharVertices
— (char *)getDispCharVertices
See getDispCharEdges above.
getGraphinfo
— (char *)getGraphinfo

Cover method for the same method of the Graph class. See the
documentation for that class for details.

gridOn:
- gridOn:sender

This methods queries the sender by sending an intValue message to it,
using the result to decide whether a grid is to be displayed or not. In the
GraphView application this message is sent by a checkbox button. A value
of zero means that a grid is not to be displayed; any other value will cause a
grid to be displayed.

mouseDown:
— mouseDown:(NXEvent *)theEvent

Overridden method which handles mouse-generated events. The actions
performed depend on the current pointmode. Three modes are possible:
when in POINT-mode, the user can point to and select an object by clicking
the left mouse button. To unselect an already selected object, the user can
press the shift key when clicking. Objects can also be selected in this mode
by dragging out a box around them. Furthermore selected objects can be
moved around at will by clicking and dragging in the usual way.

49

Class Specifications: GraphView

50

ADDVERTEX-mode allows the user to click anywhere (within the frame of
the view) and a vertex will be created and assigned an unused label.
ADDEDGE-mode allows the user to add edges to the graph by clicking on
the source vertex and dragging a "rubber band" to the destination vertex.
The edge will be created when the mouse button is released within the
bounds of a vertex.

See also setPointMode:

paste:

— paste:sender

This method is sent by the paste item in the Edit menu. It copies the
contents of the pasteboard into the graph attached to the receiver. The
subgraph that is pasted will become the selected part of the underlying
graph. It will have the same geometric configuration that it had in the graph
it was copied or cut from except coordinates of all vertices copied are
translated by a constant amount to avoid coinciding with the destination
image if the user is cutting and pasting within the same graph.

printGraph:

— printGraph:sender

This method is sent by a menu item in the GraphView application. It scales
the graph so that it will fit onto the currently selected page size and calls
printPSCode:. If the intelligent print option is on (set through the
preferences panel) the method will select landscape or portrait printing
according to the geometric layout of the graph.

readGraphFromFile:

- (BOOL)readGraphFromFile:(NXStream *)aStream

Reads in a graph specification from aStream, caches the image and
displays the graph. The button used for directed/undirected is set according
to the type of the graph read in. If the graph is successfully read in, the
method returns YES, otherwise NO is returned.

See also: setTypeSwitch:, readGraphFromFile: (the Graph class),
writeGraphToFile:, revertTo:

Class Specifications: GraphView
reverse:
— reverse:sender

This method is only applicable if the underlying graph is directed. It
reverses the direction of all selected edges and re-caches and displays the
underlying graph.

revertTo:
- (BOOL)revertTo:(NXStream *)aStream
Replaces the underlying graph with a graph from the stream represented by
aStream. The new graph is cached and displayed. If for some reason the
graph can’'t be read in, the old graph is left as it was and NO is returned. If
the graph is successfully read in, YES is returned. This method uses
readGraphFromFile: to perform the read.
See also: readGraphFromFile:

scale:
— scale:sender
The sender is assumed to be an object responding to a floatValue
message. In the GraphView application this message is sent by a slider
object. The result of the floatValue message should be a float in the range
of 0.0 to 1.0 representing a common scale factor for both x and y directions
(values > 1.0 will also work but give unpleasing results). The scalefactor is
stored in the instance variable scalefactor. The new image is cached and
displayed.

selectAll:
— selectAll:sender

Every object in the underlying graph is selected and the image recached
and displayed.

See also: selectObject:shift:, unselect

51

Class Specifications: GraphView

52

selectObject:shift:
— selectObject:object shift:(BOOL)flag

Selects or unselects object, according to the state of the shift key indicated
by flag. If flag is YES and object is already selected, it is unselected. If
object is not selected, it is made the only selected object if flag is NO, but
added to the current selection if flag is YES. Furthermore, the label and
characteristics of the newly selected object are displayed in the fields
represented by the instance variables infoField and labelField.

See Also: setinfoField:, setLabelField:

setDispCharEdges:
- setDispCharEdges:(char *)charspec
See getDispCharEdges above.
setDispCharVertices:
— setDispCharVertices:(char *)charspec
See getDispCharEdges above.
setinfoField:
— setinfoField:anObject

Outlet assignment method. Sets the instance variable infoField to anObject.
Infofield is a ScrollText object used to display the characteristics of the most
recently selected object.

setLabelField:
- setLabelField:anObject

Outlet assignment method. Sets the instance variable /abelField to

anObject. LabelFieldis a Form object used to display the label of the most
recently selected object.

Class Specifications: GraphView

setPointMode:
— setPointMode:sender

In the GraphView application the sender of this message is the Tools menu.
[sender selectedRow] is used to find out which cell sent the message. Row
0 means ADDVERTEX, row 1 ADDEDGE and row 2 POINT. <<This is bad
style and should be replaced by three separate methods.>> The mode
instance variable is set accordingly.

See also: mouseDown:
setType:
- setType:sender

The sender is queried for an intValue which is used to determine whether
the underlying graph should be displayed as directed or not. In the
GraphView application this message is sent by a checkbox button. A value
of zero means that the graph is to be displayed as undirected; any other
value will cause the graph to be displayed as directed.

setTypeSwitch:
— setTypeSwitch:anObject

Outlet assignment method. Sets the instance variable typeSwitch to
anObject. TypeSwitch is a checkbox type Button object used to indicate the
mode of the current graph (directed/undirected).

showinfo:
— showlnfo:sender

The sender is queried for an intValue which is used to determine whether
the underlying graph should be displayed with characteristics or not. In the
GraphView application this message is sent by a checkbox button. A value
of zero means that the graph is not to be displayed with characteristics; any
other value will cause characteristics to be displayed.

NOTE: To the particular characteristics that are actually displayed are
determined by the values passed to setDispCharVertices: and
setDispCharEdges:.

See also: setDispCharVertices:, setDispCharEdges:, and corresponding
methods in the Graph class.

53

Class Specifications: GraphView

54

unselect

— unselect

Private method. Unselects all objects in the underlying graph. Recaches
and displays the graph if necessary.

See also: selectObject:shift:, selectAll:

updateinfo:

— updatelnfo:sender

The receipt of this message causes the GraphView to update the
characteristics of the currently selected object (there has to be exactly one
object selected) with the contents of the ScrollText represented by the
infoField instance variable. The object in question is redrawn.

See also: setinfo: (the GraphObject class)

updateLabel:

— updatelLabel:sender

This message should be sent by a Form object or one that responds to a
stringValue message. The label of the currently selected object is updated
with the result of [sender stringValue] and the object redrawn. If the new
label is not unique in the graph an error panel is displayed.

See also: updatelLabelFor:with: (in the Graph class)

writeGraphToFile:

— (BOOL)writeGraphToFile:(NXStream *)aStream

Cover method for corresponding method in the Graph class.

File Specifications
4. File Formats Used by GraphView

Graph files

Graph files are used for storing graphs on disk as well as communicating with the
transformation programs. The “.G” suffix used to identify graph files and they
also have a special icon, displaying a G, in the Workspace Manager’s browser.

In the description below, keywords recognized by GraphView are in bold face
required parameters are written in <angle brackets> and optional parameters in
{curly brackets). Comments can be inserted in graph files following a
semicolon on a separate line. Below, comments are inserted for clarification only.

;»» A graph file should start with three lines describing the type of

;»; the graph, the number of vertices and the number of edges. Each
. edge is counted once as an incoming edge to a vertex and once
;»» as an outgoing edge so the entry for the number of edges is

;»; really twice the number of visible edges in the graph.

»» <graphtype> is either d or D for directed or u (U) for undirected
atype <graphtype>

nvertices <integer>

nedges <integer>

;5 The next entry describes the characteristics associated with
;5 the graph itself.

characteristics

{any text (no comments) }

endtext

;»» The next two entries are lists of keywords separated by white
;» Space, describing the characteristics to be displayed for edges
;»» and vertices, respectively

characteristics-disp-edges

{keywords (no comments) }

endtext

characteristics-disp-vertices

{keywords (no comments) }
endtext

55

File Specifications

;»» The remainder of the file consists of entries for each
;»» vertex in the graph. Following each vertex entry, are
;»» entries for all edges connected to the vertex.

5y <vertex#> unique number in the range 0..nvertices-1.

5y <#edges> number of edge entries following.

5, <label> one or two characters from the set [A-Za-z0-9].
i <x-loc> floating point number denoting the x coordinate.
iy <y-loc> floating point number denoting the y coordinate.
iy <selected> 1 if the vertex is selected, 0 otherwise.

vertex:<vertex#>:<#edges>:<label>:<x-loc>:<y-loc>:<selected>
{characteristics, any text (no comments) }
endtext

;»» There are two different types of edge entries. Each visible edge
;» has an edgeto and an edgefrom entry. For an incoming

;»» edge there is an edgefrom entry. These entries contain only

;»» information about connectivity. Labels, characteristics etc.

;;» are contained in the edgeto entries.

 <edge#> unique number in the range of 0..nedges-1 for
N this entry.

i <edge-to#> the number of the other part of this edge (an
e edgeto entry)

i <vertex#> The number of the source vertex.

edgefrom:<edge#>:<edge-to#>:<vertex#>

;;; edgeto entries are contain the actual information associated

;s with the edge

5y <edge#> unique number in the range of 0..nedges-1 for
39 this entry.

. <edge-from#> the number of the other part of this edge (an
e edgeto entry)

e <vertex#> The number of the destination vertex.
5 <label> one or two characters from the set [A-Za-z0-9].
i <selected> 1 if the edge is selected 0 otherwise.

edgeto:<edge#>:<edge-from#>:<vertex#>:<label>:<selected>
{characteristics, any text (no comments) }
endtext

NOTE: GraphView guarantees that the edges adjacent to a vertex will be written
in order, reflecting the embedding of the edges around the vertex. This applies
also to transformation programs, that write their output files using the /O methods
for the basic graph class. Currently this order is clockwise around the vertex,
starting from the “three o’clock” position.

56

File Specifications
History files

History files are used to store the creation history of each graph. They are
created and maintained automatically by the GraphView application. History files
have the same name as the corresponding graph file, but a “.H” suffix instead of
“.G”. Each file consists of a sequence of lines of the form:

<parent graph> <name of transformation> <optional parameters>

An example would be:

/u/me/Graphs/digraph.G dfs.X -v A

A history file is not created until a transformation is applied for the first time.

Version files

Version files are used to store the current version number for each graph. They
are created and maintained automatically by the GraphView application. When a
transformation is applied to a graph digraph.G, the resulting graph will
automatically be named digraph_1.G. Applying a transformation to this graph will
yield digraph_2.G, and so on. The last sequence number used is kept in a
version file with the same name as the parent graph and a “.version” suffix. In
our example the version file would be named digraph.version. Version files
contain a single line of the form:

version <last version number>

A version file is not created until a transformation is applied for the first time.

Transformation files
Transformation files are executable programs, launched by the GraphView

application. GraphView assumes that transformation programs have a “.X”
suffix and they are displayed with an X icon in the Workspace browser.

57

