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Abstract

In this paper we pursue the notion of a convexity space as a unifying
framework for the treatment of various notions of convexity in the
plane. In particular, we suggest how to capture the notion of visibility
within the general framework of convexity spaces, and investigate the
relationship between visibility, kernels and skulls. We prove the Kernel
Theorem and the Cover Kernel Theorem, both of which relate kernels
and skulls.

1 Introduction

Convexity spaces represent an abstraction of the structure of convex sets in
FEuclidian space. Leaving aside all topological concerns we Tequire convex
sets to be closed under intersection, thus capturing their lattice-theoretic
and algebraic properties. It is not surprising that such a general concept
has arisen in many different contexts and has led to a number of names such
as convezily spaces, convezity structures, or algebraic closure systems.

The main aim of abstract convexity is to provide a unifying framework
that goes beyond the concept of convexity based on line segments as in
real vector spaces. In fact, there is an astonishing variety of “non-standard”
notions of convexity in the plane that have been considered in computational
geometry in the past few years: restricted orientation convezily [13], NESW-
convezity [12, 20], rectangular convezity [10, 20], and geodesic convezity
[6, 24], to name the most prominent ones.

There is a close relationship between questions concerning visibility and
those concerning convexity. In most convexity spaces the definition of a
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convex set is based on the property that all points of a convex set can “see”
each other. So only the seeing relationship between two points has to be
specified in order to define the whole convexity space. We will pursue this
special notion of convexity in Section 3.2.

The original motivation for an abstract treatment of convexity is to inves-
tigate the relationships between the Helly, Radon, and Carathéodory num-
bers in an axiomatic setting [11, 9, 16]. Additionally, the exchange number
of a convexity space has been introduced and several generalizations of the
Helly and Radon numbers have been considered [4, 18].

The observation that many convexity spaces can be decomposed into
simpler components has led to a second line of investigation. The main goal
of this approach is to deduce properties of the convexity space from those
of its components. All the results obtained by this approach are concerned
with the characteristics of the convex hull operator (3, 5, 14, 17]. Little
attention has been paid to problems which involve visibility.

On the other hand, visibility is a well studied concept in the context
of real vector spaces [1, 23, 25]. But, as the above mentioned examples
illustrate, this is often too restrictive a setting. So, in order to define and
investigate notions of convexity that are not based on the properties of
straight lines, it is desirable to take the more general approach of convexity
spaces and make use of general results obtained in this context. This leads
to a number of questions which have not been considered or even cannot be
formulated in the framework of real vector spaces.

In Section 2 we introduce the concept of visibility in the setting of the
usual convexity in the plane. This is followed in Section 3, the main section
of this paper, with the presentation of our results on kernels and skulls in
convexity and aligned spaces. This culminates in the proofs of the Kernel
Theorem and the Cover Kernel Theorem. Finally, in Section 4 we consider
four examples of convexity spaces: real vector spaces; orthogonal convex
sets; geodesic convex sets; and NESW-convex sets.

2 Visibility and Convexity

Given a simple polygon P in the plane, we say that two points p and g in
P see each other if the line segment [p, ] joining them is wholly in P. The
visibility relation is denoted by seesp and we write p seesp q.

Clearly, seesp is reflexive and symmetric, but not necessarily transitive.
Indeed, it is transitive if and onmly if P is convex. Because seesp is not
transitive in general, it gives rise to weaker notions of convexity that we do
not pursue here. Our goal is to consider the relationship between maximal
convex subsets (see below) and kernels; we will further investigate when
kernels are convex.
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Recall that the star of a polygon P with respect to a point p in P is
the set {g | p seesp g} of points in P that are seen by p. This set is
denoted by star(p,P). We say that P is star-shaped if star(p,P) = P,
for some p. The kernel of P is the set of all points that see P, namely,
kernel(P) = {p | star(p,P) = P}. Clearly, kernel(P) # 0 if and only if P
is star-shaped. It is well known that kernel(P) is convex.

Let us now define the less familiar notion of a skull. Let P be a simple
polygon and Q be a convex set such that Q C P; Q is an inscribed conver
set. We say that Q is mazimal if there is no inscribed convex set R with
Q C R C P. Such a maximal convex set is called a skull of P. The family
of skulls of a polygon P is denoted by skulls(P) and is defined to be the set
{S | S is a skull of P}.

We now state an elegant kernel theorem that relates skulls and kernels
(21, 22].

Theorem 2.1 For all polygons P in the plane,

kernel(P) = n S.
Seskulls(P)

Since, by definition, each skull is convex, this result implies that kernel(P)
is convex. Furthermore, whenever skulls(P) is finite, it gives rise to an
algorithm, albeit an inefficient one, to compute kernel(P). In this paper, we
explore the relationship between skulls and kernels in the general setting of
convexity spaces. We want to characterize those convexity spaces for which
a Kernel Theorem holds; further it is our aim to establish the relationship
between skulls and kernels in arbitrary convexity spaces, and we want to
characterize when kernels are convex.

In the course of this investigation the proof of the above theorem will
turn out to be a corollary of a much more general theorem which we state
and prove in Section 3.4. However, the above theorem can, of course, be
proved directly and the reader is invited to do so.

3 Kernels in Convexity Spaces

This section contains the main results of the paper. It is structured as
follows: First, in Section 3.1 we define what we understand by a convexity
space and establish some of the properties of the convex hull operator. In
Section 3.2 we abstract a suitable notion of visibility in a convexity space
and illustrate some of its consequences. Finally, Section 3.3 deals with skulls
and aligned spaces. We are then in a position to state and prove the Kernel
Theorem in Section 3.4 and explore some natural follow up questions.
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3.1 Convexity Spaces

We base the following investigation on the concept of a convexity space
whose formal definition was first introduced by Levi [11]. A convexity space
is intended to abstract some of the essential properties of convex sets in n
dimensional Euclidian space.

Definition 3.1 Let X be a set and C be a collection of subsets of X. Then,
(X,C) is a convexity space if:

1. 0 and X are inC; and

2. for all C' C C, we have (\C' € C, where by NC' we mean Ngc C-*

X is called the groundset of the convexity space and C contains the “convex
sets” of X. Each set in C is called C-convez (or convex for short if the con-
vexity space is understood). So, the only characteristic required of convex
sets is their closure under intersection. It is obvious that additional prop-
erties are needed to generalize the more intricate properties of IE™ since a
wide variety of structures satisfy the above definition. Simple examples are:

1. The discrete convezity space (X,P(X)), where P(X) is the powerset
of X. Obviously, any intersection of subsets of X is again a subset of
X.

2. The topological convezity space. Let (X, T) be a topological space; then
(X,C) with ¢ = {C C X | C is closed in (X, 7)} is a convexity space
since the intersection of closed sets remains closed.

Immediately associated with a convexity space is the convex hull operator.

Definition 3.2 Let (X,C) be a convezity space; then, for all X C X, the
C-hull of X, which is denoted by C-hull(X), is defined by

C-hull(X)=[){CecC|XCC}

It is easy to see that the C-hull operator is well defined and unique; some of
its more pleasing properties are summarized in the following theorem.

Theorem 3.1 Given a convezity space (X,C); then, for all X, Y C X:
1. C-hull(X) € C;

2. X C C-hull(X);

'In this paper we will use [} F to denote the intersection of all sets in a family F and
U~ to denote the union of all sets in F.
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3. C-hull(X)= X if and only if X € C;
4. X C Y implies C-hull(X) C C-hull(Y); and
5. C-hull(C-hull(X)) = C-hull(X).

It can be shown that any operator ¢ that satisfies properties (2), (4) and
(5) induces a convexity space in the following way: For a given set A let
C = {CC X|p(C)= C)}, then (X,C) is a convexity space.

In most notions of convexity singleton sets are convex. This doesn’t hold
in convexity spaces, in general. For this reason, convexity spaces with this
property are singled out.

Definition 3.3 A convezity space (X,C) is called simple if for all z € X
we have {z} € C.

3.2 Visibility in Convexity Spaces

Given two distinct points p and ¢ in the plane, their convex hull is the line
segment joining them. Since this is the basis of visibility in polygons, our
abstract definition of visibility is analogous.

Definition 3.4 Let (X,C) be a convezity space and X C X. We say that
two points 2 and y in X see each other if C-hull({z,y}) C X. We write
z seesy y in this case.

Observe that seesx is symmetric, but not necessarily reflexive or tran-
sitive. We have reflexivity, for all X C X, if and only if (X,C) is simple.

Once having established a consistent definition of visibility it is easy to
generalize the notions of starshaped sets and kernels for convexity spaces
which we need in the remainder of this paper.

Definition 3.5 Let (X,C) be a convezity space and X C X.
1. For z € X, we define C-star(z,X) = {y € X | z seesx y}.
2. X is star-shaped if X = C-star(z,X) for some z € X.

3. C-kernel(X) = {z € X | C-star(z,X) = X}.

Note that, in general, C-kernel(X) is not convex. As an example we
introduce the following convexity space.

Example Let X = IN and C = {C C IN | C s finite}. Now consider
X = set of odd numbers and let z,y € X. Since |{z,y}| < 2 < oo, we get
C-hull({z,y}) = {z,y} and this is surely contained in X. Hence, allz,y € X
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can see each other by our above definition of visibility and C-kernel(X) = X.
But X is not finite and, therefore, X ¢ C.

Because C-hull is an expansive operator (Statement 2 of Theorem 3.1),
we deduce immediately that, for a convex set C and any two points = and
y in C, C-hull({z,y}) C C-hull(C) = C. Thus, for all points z and y in
C, we have z seesc y. The converse does not hold in general as the above
example illustrates. This kind of unexpected behaviour of convexity spaces
leads us to the next definition.

Definition 3.6 A convezity space (X,C) is said to be complete if, for all
X C X such that, for allz,y € X, C-hull({z,y}) C X, then we have X € C.

Hence, in a complete convexity space, all-seeingness and convexity are
equivalent notions. This property makes complete convexity spaces a natural
setting for questions concerning visibility. Moreover, most of the convexity
spaces that arise in practice are based on the the definition of the convex
hull of two points and extend this definition to a complete convexity space.
As an example consider the definition of convexity in the plane: A set X is
convex if it contains the line segment between any two points z and y in X;
that is, if all z and y in X can see each other.

Although not all convexity spaces are complete, we can always embed
an incomplete convexity space in a complete one, in a natural way, as we
now demonstrate.

Definition 3.7 Let (X,C) be a convezity space. The completion of (X,C)
is denoted by (X,C) and is defined by C = CU{C C X | forall z,y €
C; C-hﬂ”({ﬂ?,‘y}) g C}

Theorem 3.2 Let (X,C) be a convezily space. Then, the completion (X,(f)
of (X,C) is a convezity space and it is complete.

Proof: 1. We begin by proving the intersection property for (X ,é),
since this is sufficient to guarantee that it is a convexity space. Take any
C' C € and any two points z,y € (JC'. If z and y can see each other
via C-hull({z,y}) in NC’, then we know that (C' is C-convex, since z
and y are arbitrary. But, for all C € C’, we have C-hull({z,y}) C C,
so C-hull({z,y}) C NC’'. Hence, NC' € C.

2. We next show that (X,C) is complete, that is, if C-hull({z,y}) C C
for all z,y € C, then C € €. To this end we prove that, for all z,y € X,
C-huli({z,y}) = C-hull({z,y}) and the claim follows by the definition of C.

From the definition of € it follows immediately that C-hull({z,y}) C
C-hull({z,y}). To see the reverse inclusion observe that a set is C-convex
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only if it contains C-hull({u,v}), for all u,v € X. But, this implies that
C-hull({z,y}) contains C-hull({z,y}). 0

As a last visibility-related concept we need the notion of a C-join.

Definition 3.8 Let (X,C) be a converity space, C C X, and z € X; we
define the C-join() of z and C by

C-join(z,C) = | C-hull({z,c}).
ceC

The C-join of a convex set C and a point  consists, intuitively speaking,
of all the line segments between z and points c in C. It is easy to show that
the C-join in the plane is always convex if we consider normal convexity.
This, however, is not true for arbitrary convexity spaces. (We will look at
some examples in the next section.) This leads to:

Definition 3.9 Let (X,C) be a convezity space. (X,C) is said to satisfy the
C-join condition if, for all z € X and C € C\ {0}, we have

C-join(z, C) is convexz.

Note that the inclusion C-join(z,C) C C-hull({z} U C) holds for any
convexity space while the reverse inclusion only holds for convexity spaces
that satisfy the C-join condition. Hence, another way to state the C-join
condition is to require that C-join(z,C) = C-hull({z}U C), for all C €
€\ {0}. Now the reason to exclude the empty set from the definition becomes
apparent, C-join(z,0) = U.c C-hull(z,¢) = 0 # C-huli({z} U 0).

3.3 Skulls and Aligned Spaces

The definition of skulls in a convexity space is exactly analogous to the
definition in the plane.

Definition 3.10 Let (X,C) be a conveaity space and X C X then

1. S C X is a C-skull of X if S € C and there is no S' € C such that
ScS cX.

2. C-skulls(X) = {S | S is a C-skull of X}.

As we have seen before, convexity spaces can behave in a rather unex-
pected manner. This also applies to the definition of skulls. Given a set
X C X in a convexity space (X,C) and a convex subset C of X, we cannot
always assume that there is a C-skull S of X that contains C as the next
example illustrates.
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Example Let X be the closed set of reals [0,1] and let C be all closed
intervals in X'. Let X be the open interval (0,1). As it can be seen easily, X
contains convex sets, [1/4, 3/4] for instance, but there is no maximal convex
set in X. For, consider any convex set [a, 8] C X; it is contained in X and,
therefore, a > 0. Now [a, 8] C [@/2,8] C X and [a, 8] cannot be maximal.

The above example suggests that we require the union of nested chains
of convex sets to be convex sets once more.

Definition 3.11 Let (X,C) be a convezity space. We call (X,C) an aligned
space if, for every nested chain N C C, the union of N is also convex; that

is, UN €C.

Aligned spaces are well studied objects in the literature [7, 8, 19] but
usually for quite different reasons than those stated here. The following
lemma shows that the existence.of skulls is, indeed, guaranteed by forcing
nested unions to be convex. For this reason, whenever we require that such
skulls exist, we restrict ourselves to aligned spaces.

Lemma 3.3 Let (X,C) be an aligned space. Then, for all X C X and for
all C € C with C C X, there is a C-skull S of X that contains C.

Proof: To see this, take any X C X and C € C\ {0} with C C X.

Let ' = {C' € C| C C C' C X}. Now &' is a partially-ordered set and
any chain C' C &' has an upper bound |JC' € C with C C ' C X, since
(X,C) is an aligned space. By Zorn’s lemma, there is a maximal element S
in §', s0 S is a C-skull of X containing C. O

Another counter-intuitive observation is that C-skulls(X) need not nec-
essarily cover X, in the sense that |JC-skulls(X) is not necessarily X itself,
but only a subset. Whenever an aligned space is simple, however, we ob-
tain a cover since every point is convex subset and, therefore, there exists a
maximal convex subset containing it.

We have introduced the notions of complete and aligned spaces above.
Fortunately, there is a straightforward relationship between them.

Lemma 3.4 Let (X,C) be a convezity space. If (X,C) is complete, then
(&,C) is an aligned space.

Proof: Let A be a nested chain of convex sets and let C = |JAN. Further,
let £ and y be arbitrary points in C. It suflices to show that z and y see
each other in C to prove that C is convex because (X, C) is complete. For z
and y there are C, and Cy, € N such that 2 € C, and y € C,. Since N is
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a nested chain we can assume that C, C C,. So C, U C, = C, is convex,
and C-hull({z,y})C C, C C. m]

Lemma 3.4 ensures that whenever we are dealing with complete convex-
ity spaces skulls automatically exist. There is also a (weak) converse that
requires the C-join condition (see Theorem 2 in Kay and Womble [9]).

Lemma 3.5 Let (X,C) be an aligned space. If (X,C) satisfies the C-join
condition, then (X,C) is complete.

Proof: Consider a set X C X such that X # 0 and C-hull({z,y}) C X,
for all z,y € X. We prove that X is convex.

Because X # 0, X contains at least one point z, say, and because
C-hull({z,z}) C X, by assumption, there is a C-skull S; with z € S; and
S. C X. Now, take y € X; then, we have C-hull({s,y}) C X, forall s € S,
since y can see all the points in X. In other words, C-join(y,S;) C X.

But, C-join(y, S:) is convex and C-join(y,S;) C S, by the definition of
a C-skull. Thus, y € S, and S; = X hence X is convex. . O

3.4 The Kernel Theorem

After this preparation we can now turn to stating and proving the Kernel
Theorem. It gives a complete characterization of those convexity spaces for
which the kernel of a set X is given by the intersection of all skulls in X; we
make crucial use of the concepts introduced so far.

Theorem 3.6 (The Kernel Theorem) Let (X¥,C) be a convezity space.
Then, we have, for all X C X,

C-kernel(X) = ﬂC-skuHs(X)
if and only if the following three conditions hold:
i. (X,C) is an aligned space.
ii. For allz € X, for all C € C, C-join(z, C) is convex.
. For all z, y € X, C-hull({y}) C C-hull({z}) U {y}.
Proof: Let K = C-kernel(X) and I = (C-skulls(X).
if. We split the proof into two parts.

K CI.If K = 0, this holds vacuously, so assume that K # @. Consider
p € K; we prove that p € I. Let S be a skull in C-skulls(X) and
s a point in S; since p € C-kernel(X), we have p seesxy s. Thus,
C-hull({p,s}) C X and so C-join(p,S) = U,csC-hull({p,s}) C X;
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furthermore, C-join(p, S) is convex, by assumption. But S is a maxi-
mal inscribed convex set of X; therefore, C-join(p,S) =S, p€ S, and
hence p € I.

I'C K. Again assume that I # 0 and consider p € I and an arbitrary point

z € X. We have to show that p seesx z. Since C-hull({p}) C I C X,
we have C-hull({z}) C {z}UC-hull({p}) C X by Condition (iii). Also,
since C-hull({z}) C X, we know that there is an S, € C-skulls(X)
with C-hull({z}) C S;. Now p € I C S, and, thus, C-hull({p,z}) C
Sz C X. Therefore, p seesx z and p € K.

only if. We prove the necessity of the three conditions in the order in which
they appear in the theorem.

Condition i: We have to show that (X, C) is an aligned space. Let A/ C C be

a nested chain of convex sets and Q denote |JN. Consider z,y € Q.
As in the proof of Lemma 3.4, we obtain C € N with z,y € C;
thus C-hull({z,y}) C C C Q. Hence C-kernel(Q) = Q and since
C-kernel(Q) is convex (it is the intersection of convex sets), we have
QelcC.

Condition ii: We now prove that the C-join is convex. Consider an arbitrary

point z € X and an arbitrary C € C \ 0; we show that X denoting
C-join(z, C) is convex. For all y € X, we have y € C-hull({z, c}), for
some ¢ € C. But, this implies that C-hull({z,y}) C C-huli({z,c}) C
X and z seesx y. In other words, 2 € C-kernel(X) and, hence,
z € (\C-skulls(X). Therefore, all skulls of X contain z. Because
(&,C) is an aligned space, there is a skull S of X that contains C. S
also contains z, so X = C-join(z,C) C C-hull({z}UC) C S C X and
X is convex.

Condition i: Consider two arbitrary points z and y in X and let X =

C-hull({z}) U {y}. We prove that C-hull({y}) C X by contradiction.

Assume that C-hull({y}) € X. Then C-hull({y,2}) € X,forallz € X,
and, hence, y is not visible from any point in X (including itself).
Thus, C-kernel(X) = 0. But, by similar reasoning, for every S €
C-skulls(X), we have y ¢ S. This implies that S C C-hull({z}) and
C-hull({z})is the only skull of X. Thus, N C-skulls(X) = C-hull({z}) #
0 and we have a contradiction; so C-hull({y}) C X.

]

As an immediate consequence we get the following corollary.

Corollary 3.7 Let (X,C) be a convezity space that satisfies the conditions
of the Kernel Theorem; then, for all X C .Y, C-kernel(X) is conver.
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To give a more elaborate example we will illustrate the applicatioh of
the Kernel Theorem in the case of partition converity.

Example Let X be some nonempty set and Il = {X; | i € I'} be a partition
of X (X = UII and X; N X; # @ implies ¢ = j). Then, (X,C) is a convexity
space, where C = {0, X} UTI, because

@ fPecCorX;and X; €C,i#j.
¢ =4 Xi ifCis either {X;} or {X;, A}
X ife= {x).

Consider X such that § ¢ X C X;, for some X; € II; then there are points z
and y in X that do not see each other, since C-hull({z,y}) = X;. Conversely,
all pairs of points in @, X, and X € II see each other, so (&,C) is complete
and, hence, it is a complete aligned space.

If there is an X; that consists of at least two points, say z and y, then
consider Q = X; U {z}, for X; # X;. Immediately, C-kernel(Q) = @ and
C-skulls(Q) = {X;}; the Kernel Theorem does not hold.

Otherwise, each X; is a singleton set and (X, C) is simple. Consider three
points p, g, and r € X, If p = ¢ = r, then C-join(p,C-hull({g,7})) = {r},
otherwise C-join(p,C-hull({g,r})) = X. In both cases, the C-join is convex;
thus, the Kernel Theorem holds in (X,C).

The Kernel Theorem gives rise to two natural follow up questions.

1. Can we guarantee the convexity of kernels under weaker conditions
than those necessary for the Kernel Theorem?

2. Is there a relationship between kernels and skulls in general convexity
spaces?

Let us consider the convexity of kernels first. Algorithms that compute
kernels of polygons often make crucial use of their convexity. Therefore, it
is desirable to have a characterization of those convexity spaces for which
this is true. Unfortunately, there is a large gap between the sufficient and
necessary conditions for the convexity of kernels as stated in the following
two theorems.

Theorem 3.8 Let (X,C) be a complete convezity space. If (X,C) satisfies
the C-join condition, then C-kernel(X) is convez, for all X C &'.

Proof: Without loss of generality we can assume that C-kernel(X) # 0,
so let z,y € C-kernel(X). Since z and y can see each other, we have
C-hull({z,y}) C X. Take any z € X. Then, C-join(z,C-hull({y,2})) C X,
since C-hull({y,z}) C X and z can see all points in C-hull({y, z}). Since,
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C-join(z,C-hull({y, 2})) = C-hull({z,y,z}) D C-join(z,C-hull({z,y})), we
know that, for any w € C-hull({z,y}), we have C-hull({w, z}) C X. But
this implies that w € C-kernel(X), since z was arbitrary. ]

This immediately yields an analogous result for aligned spaces in view
of Lemma 3.5.

Corollary 3.9 Let (X,C) be an aligned space that satisfies the C-join con-
dition; then, C-kernel(X) is convez, for all X C X.

The assumption of a complete space cannot be relaxed as the next the-
orem shows.

Theorem 3.10 Let (X,C) be a convezity space such that C-kernel(X) s
convez, for all X C X; then, (X,C) is complete.

Proof: Let C C X and, for all p,q € C, let C-hull({p,q}) C C. We have
to show that C is convex; that is, C € C. Since every point p € C can see
all the other points ¢ in C, we obtain C-kernel(C) = C. But all the kernels
in (X,C) are convex and, hence, C € C. O

We turn now to the second question: What is the relationship between
C-skulls(X) and C-kernel(X), for X C X, in an arbitrary convexity space?
It is obvious that we have to require the existence of skulls in order to be able
to make a statement that relates skulls and kernels. Taking this condition
into account the next theorem gives the most general connection between
skulls and kernels possible.

But before we can state and prove a generalized version of the Kernel
Theorem, we need the notion of a skull cover.

Definition 3.12 Given a converity space (X,C) and a set X C X, we say
that a subset S of C-skulls(X) is a skull cover of X if UsesS = X. We
define the collection of skull covers of X as the set {S | S C C-skulls(X)
and S is a skull cover of X} and we denote it by 2(X).

The theorem can now be stated as follows.

Theorem 3.11 (The Cover Kernel Theorem) Let (X,C) be a
convezily space. Then, we have, for all X C X,

C-kernel(X)= | ) (S)

sex(X)

if and only if, for all convex subsets C of X, there is an S € C-skulls(X)
with C C S.

Proof: if. Let K = C-kernel(X) and I = Usez(}{](ﬂs)' We first prove
that K C I and then prove that  C K.
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K CI. Let z € K and define S, = {S € C-skulls(X) | z € S}. Since z can
see all points in X, we have that, for all y € X, C-hull({z,y}) C X;
that is, there exists an § € S, such that {z,y} C C-hull({z,y}) C
S € S, since the existence of skulls for any convex subset C of X is
guaranteed. Hence, S, is a cover of X with z € NS, C I.

IC K. Let = € I; then, there is an S € X(X) such that z € NS. Let
y be an arbitrary point in X; then, since S is a cover of X, there
is a skull S € S such that y € S. Because z € [|S, we know that
z € S, so {z,y} C S and, by expansiveness of the C-hull operator,
C-hull({z,y}) € S C X that is, z seesx y and z € C-kernel(X).

only if. Let X C X and C a convex subset of X. We have to show
that there is a skull of X that contains C. Consider the family S¢ = {C’ ¢
C|C C C'C X} and let Q be the set |JS¢. Clearly, C C C-kernel(Q)
and since C-kernel(Q) = Usex(Q)(NS), there has to be at least one skull S
contained in Q with C C S. Since all convex sets that contain C of X are
also contained in Q we have S € C-skulls(X). =]

Clearly, we can restrict ourselves to minimal skull covers in the above
theorem. This gives us a slightly stronger version of the first Kernel Theo-
rem:

C-kernel(X) = C-skulls(X) by the Kernel Theorem
C Ns with § € ¥(X), S a minimal cover;
C Usesx)(NS)

C-kernel(X)

and, hence, C-kernel(X) = (8, for any minimal cover S of X.

4 Examples

In this section we provide four examples in order to illustrate some of the
properties of convexity spaces that we have considered; three of these are
taken from the literature of computational geometry. Since we want to
establish that the examples are not only aligned spaces, but also that the
C-join condition holds, we begin by proving a general result for complete
convexity spaces.

Theorem 4.1 Let(X,C) be a complete converity space. Then, the following
two conditions are equivalent.

1. For all points p, q, and r in X, C-join(p,C-hull({q,7})) is convez.

2. For all poinis p in X' and for all C in C, C-join(p, C) is convez.
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Proof: 1 = 2. Consider some point p in X and some C in C, and let
Q = C-join(p,C). For every pair z and y of points in Q, we must show
that C-hull({z,y}) C Q. Because (X,C) is complete, this implies that Q is
convex.

Now there are ¢; and ¢; in C with ¢; € C-huli({p,c;}), i = 1,2,
by definition. Because ¢; and c¢; are in C, C-hull({c1,¢c2}) C C;
therefore, C-join(p,C-hull({cy,c2})) 2 C-hull({p,c1}) U C-hull({p,c2}) 2
{g1,92}. But, C-join(p,C-hull({c1,c2})) € C, by assumption; hence,
C-hull({q1,q2}) C C-join(p,C-hull({c1,c2})) C C-join(p, C) = Q.

2 = 1. Trivial. a

4.1 Real Vector Spaces

As we mentioned carlier, visibility has been studied mostly in the framework
of real vector spaces. In the following we will show that the structure of the
family C of convex sets in a real vector space V is very well behaved. In fact,
(V,C) satisfies all the properties that we have considered in the previous
section. Hence, for instance, the Kernel Theorem holds.

Of course, this property could have been proven directly, but the question
of characterizing all convexity structures that satisfy the Kernel Theorem
would have been well beyond the scope of the theory of real vector spaces.
Thus real vector spaces turn out to be a special case among simple and
complete convexity spaces that satisfy the C-join condition.

Theorem 4.2 Let V be a real vector space with the normal definition of
convezity, that is, C C V is convez if ap+ (1 — a)g € C, for all p,q € C
and a € [0,1]. Let C = {C C V| C is convez }.

Then, (V,C) is a complete, simple convezily space thal satisfies the
C-join condition. :

Proof: = The completeness of (V,C) is an immediate consequence of
the definition of a convex set since C-hull({p,q}) obviously equals {z €
V | there is an a € [0,1] withz = ap + (1 — a)q} and C C V is convex if
and only if C-hull({p,q}) C C, for all p,q € C.
The simplicity of (V,C) is equally easy to see. Note that simplicity implies
Condition (iii) in the Kernel Theorem.
We will use Theorem 4.1 to show that (V,C) satisfies the C-join condition.
_Let p,g, and 7 € V and consider Q = C-join(p,C-hull({g,7})). Since V
is a vector space we can assume without loss of generality that p = 0, where
0 is the origin of V. Take two arbitrary points s, € Q. If we can show
that s and ¢ can see each other in Q we can conclude by the completeness
of (V,C) that Q is convex. The definition of Q ensures that there are points
95,9 € C-hull({g,r}) such that s € C-hull({p, ¢,}) and t € C-hull({p, g:}).
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(a) (b)

Figure 1: The join of an ortho-convex set and a point.

In particular, let «, € [0,1] with s = a,q, + (1 — a,)p = a,q, and let o
be defined in the analogous way. Since P = C-join(p,C-hull({g,, ¢:})) C Q
it suffices to show that s sees t in P. Now choose any u = s + (1 — B)t €
C-hull({s,t}), B € [0,1]. If we define X to be Ba,/(Ba, + (1 - B)a) € [0,1]
and g = 1/(Ba, + (1 — B)as) € [0,1], it is easy to see that u = p(Ag, + (1 —
A)g;)+ (1 - p)p € C-join(p, C-hull({g,, ¢:})) and hence, C-hull({s,t}) C P C
Q. O

From our previous results we now conclude that the Kernel Theorem
holds in all real vector spaces.

4.2 Orthogonal Convexity

As an example of a convexity space that fails to satisfy the Kernel Theorem
we study the notion of ortho-convezity.

We say that a subset X of IE? is ortho-convez if its intersection with a
horizontal or vertical line is empty, a single point or a line segment. Letting
C be the set of all ortho-convex sets, (IEZ,C) is a convexity space; see [15];
The convexity space (IE?,C) is simple and complete. However, it does not
satisfy the C-join condition, so there is no Kernel Theorem. We provide a
counterexample. Let P be the polygon in Figure 1(a) and p be the point
shown outside P. Then Q = C-join(p, P) is given in Figure 1(b), and this is,
clearly, not convex. The Cover Kernel Theorem holds, however, as is seen
by examining some of the skulls of Q, P is itself a skull of Q as are the
subsets of Q shown in Figure 2. Observe that P and S, as well as S, and
S, cover Q. The union of their respective intersections: (P NS,)U(S; NS,)
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/
i

S S2

(a) (b)

Figure 2: The ortho-skulls of Q.

is shown in Figure 3 — it is already the kernel of Q.

4.3 Geodesic Convexity

Geodesic convexity provides an example of a convexity space that has highly
non-linear characteristics but still satisfies all the properties we considered
in Section 3.

Let X’ be a polygon in the plane and for any two points z and y in X
let <z,y>, denote the shortest path lying wholly in X that connects z and
Y. (We use the standard Ly metric to define distance.) A set C C X is
g-convez if, for every two points z,y ¢ C, we have <z,y>, belongs to C.
Figure 4 gives an example. Letting C be the set of all g-convex sets in X ,
then (X,C) is a convexity space.

Clearly, (X, C) is simple and it is also complete; thus, (X,C) is a complete
convexity space. Furthermore, it satisfies the C-join condition. To see this
consider any three points p, g and r in X and let Q be C-join(p, C-hull({g, r})).
We must prove that Q is convex; that is, for all z, y in Q, <z,y>, isin Q.

In the proof of the C-join property we make use of basic observations
about shortest paths in simple polygons.

i. There is a unique shortest path between any two points p,qg€EX.
ii. The shortest path between two points is a polygonal chain.

iii. If one endpoint of a shortest path is moved continuously, then the path
alters its shape in a continuous way.
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PnSs, S1nS, Ortho-kernel(Q)

Figure 3: The ortho-kernel of Q.

Figure 4: A g-convex set.
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iv. If two shortest paths end in the same point, then they do not cross.

v. Subpaths of shortest paths are again shortest paths between their end-
points.

Hence, the boundary of C-join(p,C-hull({g,r})) is a simple polygon
whose edges may overlap but do not cross. It consists of <p, Wy Sl
and <r,p>,. Because of the third observation, it is clear that Q is ex-
actly the region delimited by the three shortest paths <p, ¢> ,, <g, >, and
<r,p>,; that is, Q contains no holes.

Now take the two points z,y € Q. If <z,y>,¢Z Q, then <z,y>,
must cross one of the three paths <p,¢>,,<gq,r>,, or <r,p>, which is
impossible according to Observations (i) and (v) since we would have two
distinct shortest paths between the cross points.

From this we can conclude that the Kernel Theorem holds in any geodesic
convexity space.

4.4 NESW-Convexity

NESW -convexity is a well studied convexity space that has been of especial
interest since it can be shown to satisfy the decomposition theorem of [14].
But, unfortunately, it fails to satisfy the C-join condition.

Definition 4.1 A horizontal ray is an E-ray if it lies to the east of some
vertical line. Similarly, we can define N-, S-, and W -rays.

The SW-line at a point p consists of a N -ray and a E-ray that have their
endpoints at point p. The point p is said to be the vertex of the SW-line.
The notions of NE-, SE-, and NW -lines are defined similarly.

Given two points p and ¢ in the plane, they determine a unique NE-line
if either p is to the left of and not below g or vice versa; p and ¢ define a
NE-line in these cases.

Definition 4.2 Let P C IE? and p,q € P.

t. We say p and q NE-see each other in P if they do not define a NE-line
or, if they do, the vertez of the NE-line is in P.

1. P is NE-convex if all p,qg € P NE-see each other.
We say that a set P is NESW-convex if it is both NE- and SW -convez.

Again NESW-convex sets form a simple, complete convexity space, but
the C-join condition does not hold. Consider two points p and ¢ such that
p is to the left and below q. Therefore {p, ¢} is NESW-convex and NESW-
hull({p,q}) = {p,q}. Let r be to the left of p and above ¢; then, NESW-
join(r, N ESW-hull({p, q}) consists of three line segments, as shown in Fig-
ure 5(a), and this is not NESW -convex.
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q q
E b
N ESW-join(r, NESW-hull({p,q})) NESW-hull({p,q,7})

(a) (b)

Figure 5: The NESW-join of three points.

5 Conclusions

We have introduced a definition of visibility in abstract convexity spaces
and explored some of its consequences. Our main concern has been to
characterize the convexity spaces that satisfy the Kernel Theorem. While
we have been able to prove a very general relationship between skulls and
kernels for arbitrary convexity spaces, the problem of finding necessary and
sufficient conditions for convexity spaces, in which all kernels are convex,
remains elusive. We feel that the conditions considered in this paper cannot
capture the convexity of kernels and new concepts will have to be introduced
to answer this question.

A second concern is the computational implications of the discovered
results. We showed that if the Kernel Theorem holds, it suffices to consider
any minimal cover of skulls to find the kernel. For polygons in the plane
this means that we have to consider at most n skulls if n is the number of
edges of the polygon; this holds although there may be an infinite number
of skulls altogether. There are, of course, much more efficient algorithms to
compute the kernel of polygon in the plane. But it seems doubtful if the
framework of convexity spaces allows us to develop more efficient algorithms
without making crucial use of the topological properities of the Euclidian
plane or the n-dimensional Euclidian space.
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