TECHNICAL REPORT NO. 297

Architectural Support
for Delayed Specialization of Logic Programs
by
Jonathan W. Mills
December 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Architectural Support for Delayed Specialization of Logic Programs

Jonathan Wayne Mills®
Indiana University
Bloomington, Indiana 47405

Abstract

Delayed specialization characterizes dynamic program modification and
conditional instruction execution as the transformation of an unspecialized physical
program P into a specialized virtual instance P' during the execution of P. The
original program P is compiled into sequences of mixed instructions and schemata.
Schemata are feiched as part of the instruction stream and used, typically with part
of the processor's state, to select operations which are performed in their place.
Schemata may be used with microcoded and random logic control units. Complex
schemata are implemented by decoding the instruction stream before selecting
microcode and/or generating control signals; simple schemata (such as conditional
branches) by gating processor status and control signals. Architectural support for
delayed specialization of logic programs includes schemata for dereferencing,
unification and trailing which typically execute in one clock cycle and allow the
WAM's unification instructions to be expanded in-line into sequences of one to five
instructions and/or schemata. WAM instructions emulated with schemata are space
and time efficient because code for matching, binding and failure is compressed into
a single schema, regardless of the number of arguments known at compile-time.
Partial unification in the LIBRA exemplifies delayed specialization in a language-
specific architecture. To show how an existing computer architecture can
implement unification, the SPARC RISC architecture is modified, and a new
schema, unify, is added to its instruction set.

1. INTRODUCTION

Since the Warren abstract machine (WAM) for Prolog was first described (Warren 1983) two
approaches have been taken to provide architectural support for logic programming. The first

'

101 Lindley Hall, Department of Computer Science, (812) 855-6486, jwmills@iuvax.cs.indiana.edu

Mills Architectural Suppont for Delayed Specialization of Logic Programs Page 1

approach, analogous 1o the design of a CISC architecture, embeds WAM instructions and recursive
unification routines in microcode, then adds specialized functional units and buses as necessary 10
minimize the WAM instruction cycle time. This is done in the PLM (Dobry 1987), PSI (Taki et al.
1987), IPP (Abe et al. 1987) and HPM (Nakazaki et al. 1985). The second approach, analogous
to the design of a RISC architecture, provides functional support for WAM instructions but leaves
the exact coding of the WAM instruction to the compiler. This is the approach taken in the LIBRA
(Mills 1988, 1989), BAM (Van Roy 1989), Pegasus (Seo and Yokota n.d.) and Toshiba's IP704
(Matoba et al. 1989). None of these architectures are general purpose processors, although the
LIBRA and the BAM provide support for general arithmetic and operating system functions. For
example, the LIBRA provides only integer add and subtract, shift, status manipulation and bus
lock instructions to construct general arithmetic and operating system functions. The PLM, a
special-purpose coprocessor, provides only escape instructions and delegates the majority of
arithmetic and operating system support 10 a host processor.

Such limitations of language-specific architectures are magnified by the recent performance
increases of commercial architectures, making the justification of language-specific processors and
coprocessors difficult.] In such a context language-specific architectures must be measured not
only by their raw performance, but by the cost of transferring this performance to commercial
architectures. The cost of the transfer will determine how much influence language-specific
architectures have on commercial architectures. Compiling techniques are the first enhancements
transferred because the hardware cost is zero; no change in the commercial architecture is
necessary. Hardware functions are the last enhancements 1o be transferred, and only those which
provide the greatest performance increase for the largest number of programming languages are
even considered.

This paper describes a general technique to define hardware support for high-level programming
languages in existing architectures, concentrating on Prolog in particular. The hardware that
results from the application of this technique has a low cost since it calls for little modification of
the existing architecture, and can result in signifcant increases in performance. The approach is
based on delayed specialization, a general characterization of dynamic program modification and
conditional instruction execution. The characterization provides a common definition for
conditional instructions, multi-way microcode branching, branch folding and instruction
polymorphism, and as yet unexplored improvements to existing instruction sets, such as dynamic

1 Although it is possible that this is only an analogous turn of Myer and Sutherland's (1967) wheellof
reincarnation which was first used 1o describe the cyclical increases and decreases in the complexity of graphics

Processors.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 2

branch compression. Delayed specialization is implementation independent, and may be used with
microcoded and random logic control units. It is accomplished by dividing an instruction set into
instructions and schemata, which are bit strings whose function varies with context. A schema is
implemented with a specialization function which translates the schema into one or more
operations, typically but not necessarily including the processor status as an input to the
specialization function. An example of a complex schema which compresses the branching paths
of a unifier into a single cycle is the LIBRA's unify; an example of a simple schema is the
Motorola 68000's conditional branch instruction Bec.

Architectural support for delayed specialization of logic programs includes schemata for
dereferencing, unification and trailing which typically execute in one clock cycle and allow the
WAM's unification instructions to be expanded into in-line sequences of one to five instructions
and/or schemata. A WAM emulated with instructions and schemata is space and time efficient
because code for matching, binding and failure is compressed into one schema which executes in a
single cycle, regardless of the number of arguments known at compile-time. Partial unification in
the LIBRA exemplifies delayed specialization in a language-specific architecture, and can easily be
incorporated into existing RISC and CISC architectures. To show how an existing computer
architecture can be extended with delayed specialization for unification, the load and stere
instructions of the SPARC RISC architecture are modified, and a new schema, unify, is defined.

We begin with definitions. The intent of these definitions is to partition an instruction set into
instructions and schemata, without being forced to express schemata in terms of instructions.
Instead, schemata and instructions are expressed in terms of normalized operations which are
functions of identical arity whose arguments are pointers to the data they use. Normalized
operations are used 1o eliminate the possibility of instructions and schemata with varying lengths,
a concept which is implementation-dependent and not relevant to the definition of delayed
specialization.

Definition 1. n is a hardware architecture composed of functional units (a CPU).

Definition 2. W is the set of all strings w over {0,1} such that the length of w = n where n is
the number of bits composing a word for some hardware architecture.

Definition 3. F is a set of continuous functions {fo, f1, f2 ... fiF| } each of arity a;.
Definition4. A is the maximum arity of F, where A = maximum(ag, aj, a2, ... a|F))-

Definition 5. D is a set of data addresses {dg, dj, d>, ... d|p|}.
Definition 6. dg e D is designated as the null address; i.e. dg specifies no data.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 3

Definition 7. H is a set of operations {hg, hy, hy ..., h\} for the hardware architecture n
such that H CF x DM,

Definition 8. O is a sequence of operations (hg, hy, h, ..., h|o}) such that o € H*.

A data address defines the location of data to be processed by the architecture (integer, list pointer,
etc), but is distinct from the data it specifies. An integer in a register is specified by some d;j which
is the address of that register. An integer in a memory cell is specified by some dj which is the
address of that memory cell. Using the null specifier dp as a "placeholder" normalizes all
operations in H (which have a fixed arity A) by mapping them to f; € F withgj < A.

Definition 9. 1 is a set of instructions {ig, i1, i3 .., i)} where each ij € W and is associated
with an operation from H, such that i; defines some pair (w;h;j) € W x H.

Definition 10. e is a sequence of instructions (ig, iy, i3, ..., i|e]) such that e e I*.

Note that while every e defines some sequence of operations o, 0 may exist that are not defined by
any e because I may not be equivalent to H. The definition of I does not provide for conditional
instruction execution. Conditional program execution is possible under I either by computing a
branch address or by defining a sequence e that modifies itself, but each i; always performs the
same operation. This distinction between instructions that do not choose from a set of operations,
and "other things" that do, is intentional. We now define the "other things" as schemata.

Definition 11. X is an arbitrarily chosen set of sequences of operations {Op, 01, 02 ..., O] bl
such that Yo € 3, ois defined by e e I'*.
Definition 12. Cr is the processor state, or context, of 1) at time T after executing some e or &.

Definition 13. S is a set of schema {s¢, s1, 52, ..., S|s|} where each sj € W, and where each sj
has a corresponding specialization function gj which maps (s;,C) = 2

Any relation that can be expressed as a set of operations arising from one or more choices can be
implemented as a schema, as long as each operation can be selected based on the the processor

state C; (Figure 1).

i pS
R
AR N

,-"‘; ; :s‘ ‘:1:‘% ‘ k c':'.l ! & :II"=. - o o
C. = CGUC hghyhyhy hyhshghy bghghyghyy hyizhyahighys

Figure 1. Branch compression with a schema

Mills Architectural Support for Delayed Specialization of Logic Programs Page 4

The operation selected must be distinct, i.e., not a schema, but need not necessarily be unique.
The hardware architecture 1) must support both the operations chosen by the specialization function
and the specialization function itself; if n does not provide architectural support for the
specialization function then the schema is not executable on 7).

Definition 14. © is an instruction set for 1 composed of instructions and schemata such that
G=1USwherel NS =2

Definition 15. P is a program for the hardware architecture n iff P € U*. P is also represented
by the sequence (pg p1, p2 ..., D|P|) where each pj € 0.

Definition 16. P is an unspecialized program iff P € 0* and 3pj € P such that pj € S.
Definition 17. P is a specialized program iff P € I* .
Definition 18. P’ is a virtual instance of P iff

(a) P ev%

(b) P e 0%

(c) =3pjeP'suchthatp’; €8, and

(d) VpjeP [Eej eP' VCA (pj €S = gj(pjCo) — 0j) = ¢j defines 0j)

or (PjeP (pjeS=pj=py)]

Given these definitions we now define delayed specialization.

2. DELAYED SPECIALIZATION

Definition 19. Delayed specialization is the execution of a specialized virtual instance P' in
place of an unspecialized program B, as a consequence of executing P on some

hardware architecture n.

P is composed of instructions and schemata. As P executes, the instructions are invariant with
respect 1o the operations in H they perform, while schemata are specialized 1o operations in H as
they are encountered, and perform various functions in F depending on the processor state. In one
sense the program is compiled as it is run, and is described by some specialized program P' which
contains only instructions. However, P' does not exist even temporarily because instructions are
not substituted for schemata. Instead, schemata are dynamically translated by the associated

Mills Architectural Support for Delayed Specialization of Logic Programs Page 5

specialization function gj, using the processor state C. arising from the prior execution of
instructions or schemata.

2.1 SIMILAR TECHNIQUES

Delayed specialization that selects one of n operations may be implemented using an n-way
microcode branch, such as the AMD 2910 microsequencer's three-way branch (TWB) or mapped
jump (JMAP) (Mick and Brick 1980). However, the hardware architecture 7 need not be
microcoded to use delayed specialization. All that is necessary is a means of generating the
specialization functions, which could be done with combinational logic, a programmable logic
array or, as is the case in the LIBRA, a mapping read-only memory. Admittedly, since most
architectures are now microcoded, it is natural to view delayed specialization as a form of
microcoded branch, but to do so is to confuse the implementation with the principle.

Delayed specialization does not require a writable control store, since schemata do not modify the
control store as the program executes. Delayed specialization may be coupled with a writable
control store to implement dynamic branch compression, but this is an implementation technique.

Delayed specialization differs from partial evaluation (or partial deduction) in that the code
sequences of P' are never produced, but are only executed. Although there is a program P'
corresponding to the specialization of program P, P' is a virtual program; it never exists.

Delayed specialization differs from interpretation because an interpreter calls a routine for every
token it encounters, while delayed specialization compiles an operation for every schema the
hardware architecture 1 encounters. Delayed specialization is equivalent to interpretation if ¥ =S,

in which case the entire program is compiled, possibly for a second time, as it is run.
2.2 DELAYED SPECIALIZATION IS NOT SELF-MODIFYING CODE

Delayed specialization is not self-modifying code. A program that modifies itself leaves the
modified code in place for some time after the code has executed. A program that uses self-

modifying code must embed a code sequence e; in P for each specialization function associated
with a schema s; € S, and introduce a second code sequence e’j which is altered by e; from e to

e, The lifetime of e is longer than its execution time, making it possible for e; corresponding
to the schema to produce an instruction sequence e’j,, , after the unaltered e’j, is fetched, either
during caching or instruction pre-fetching. This will lead to errors which delayed specialization

avoids because it does not separate the schema and its sequence of operations, substituting
operations for schema only after the schema has been fetched by the hardware architecture 1.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 6

2.3 EXAMPLES OF DELAYED SPECIALIZATION IN COMPUTER ARCHITECTURES

Delayed specialization is commonly used in computer architectures, although no architecture
includes all variations of it. The conditional branch instructions found in most computer
architectures are by definition schemata. For example, a branch if zero instruction can be
realized with a schema for which £ = {nop, goto} and the associated specialization function g;
chooses goto if the zero status bit is set, and nop otherwise.

Branch folding in the CRISP microprocessor is an example of delayed specialization (Ditzel and
McLellan 1987). All "instructions" are schemata for virtual 192-bit four-address instructions,
where £ = {<op:inc PC>, <op:address>, <op:predictedaddress:otheraddress>}. The
specialization function g; recognizes instances of a non-branch instruction followed by an
unconditional branch instruction, and "folds" the branch into the non-branch instruction, using the
branch address to construct <op:address>. The CRISP follows the definition of delayed
specialization exactly, in that conditional branches are not translated to schema, but to a pair of
branch addresses. If the conditional test fails, then the processor recovers and restarts execution
using an alternate program counter.

Other examples of delayed specialization include the PLM, which translates WAM opcodes into an
intermediate fixed-length instruction form with operands in pre-specified positions, and the Intel
iAPX-432, which has polymorphic instructions in its instruction set. These examples demonstrate
the effectiveness of delayed specialization and schemata. Next, the use of delayed specialization in
the LIBRA Prolog architecture is discussed.

3. ARCHITECTURAL SUPPORT IN THE LIBRA

The LIBRA architecture has a number of features that provide architectural support for Prolog, but
some, such as the organization of the individual ALUs and the internal pipelining of each
functional unit are not easily transferred to other processors. However, the collection of features
that provide support for delayed specialization of logic programs are sufficiently independent that
they could be added to other machines, although in a restricted form.

3.1 PARTIAL UNIFICATION

Unification requires an execution sequence of five instructions if the sub and switch instructions
are used to build a "tree-structured" unifier in the LIBRA (Figure 2).

Mills Architectural Support for Delayed Specialization of Logic Programs Page 7

tag2

A 4 Y

Cindex = ClagIU C[agz ho hl hz h3 h4 hS h6 h'; hs hghlo hll h12h13h14h15
Figure 2. Unification tree

This is because the sub instruction, which simply subtracts the tags, allows only for comparison
of equality or inequality between tags. This does not allow the relationship between two terms 10
be identified with a single comparison. Examining a tree-structured unifier shows that its purpose
is 1o reach a leaf node in the tree, at which either binding, branching or dereferencing is performed.
In (Mills 1988) the relationship between the tree structured unifier and the table-driven unifier is
used to develop a new "instruction”, which operates in a single cycle and encodes the leaf node
instructions of the unification branch tree, or partial unification.? Partial unification depends on the
observation that, except for recursive unification and failure, all operations in a table-driven unifier
are single instructions — and the two exceptions can be made single instructions by replacing them
with subroutine calls (Figure 3).

B

Bound Imt Listl Strucl
Unb Sym List2 Struc2

Bound UndeBued
Usb n elmc
Bind jr. to sr.
Int
Bind Ao B
A Sym :

] Bind Bio A
Listl S
List2 Faf]‘ |
S AR A
Struc? | B

Figure 3. LIBRA partial unification

The cost of executing one of the leaf node instructions is due to the need to determine both operand
types, then select the correct table entry based on these types. If the tags of the two operands are
used to form the index, then the tag checking and indexing instructions can be eliminated. This is
done in the LIBRA, where the look-up table is implemented with a 64 x 8 bit mapping read-only

2 Panial unification was originally viewed as an instruction; it is a schema by the definitions in this paper.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 8

memory activated by unify, the partial unify schema. Partial unification detects special cases
(such as two structure pointers being equal), which further reduces the frequency of branches, in
this case calls 1o the recursive unifier. This means that unify avoids a pipeline break for a switch
or a call instruction whenever it is possible to do so. It is critical to reduce pipeline breaks in a
machine that frequently executes sequences of semantically-related short branches, and
parallelizing the operations internally to select one of many non-overlapping operations with a
single schema is an effective way to do it.

Before providing a detailed description of the operation of the LIBRA's unify schema, a block
diagram of the architecture is presented. The LIBRA looks very like a commercial RISC
architecture, with additional ALUs to perform tag processing and garbage-collection bit
management. Functional support for trail-checking and trailing is also present. However, the
support for partial unification consumes much less area than any of the other functions (Figure 4).

Trap
Address Instruction Fetch ALU
1A1U ROM (IALU)
ucode ROM

Instruction = i
Conditioning # I el E'IP
Logic I Page Address Generation
i Multiplexers. .

| Partial Unify Mapping ROM
_'_I'_l_:_qq}tction Decode PLA

Immediate Data Bus : i

IR

Return Address Registers

Register General Purpose Registers

Clock | Address | Tag ALU | Garbage Trail
Decoder | (TAL Coll Check
e . qll eI c]t Trail Check Registers Srores

(GALL) & Half-Comparators Board

TALU Stack Pointers
GALU Forwarding
VALU
pcode ROM MveR D
MDR/MARs/MDIN

Figure 4. Functional schematic of the LIBRA

Mills Architectural Support for Delayed Specialization of Logic Programs Page 9

Latch pcode word
soleciad by specialization
fanction

Micrecode sddreis
sanl o pcode ROM

The it atring 111000 for parnal
T'—‘D . @ mmify 1 Dee other "impar to e

specalizanon fanctioa It
wasbles B factions cafpal.

Togs from the repster fetch phase of
The last imstruchion thal sl condibons
are input to the mappisg ROM which
implements e specializanos fusction

Latch tags from operand | and
(A operund I registers if condinon

code bitis sel

4. Operaad | register |

- Operaad 2regater l

Figure 5. Operation of partial unification in the LIBRA
The LIBRA's unify schema operates as follows (Figure 5):

1. Both operands' tags are laiched if an instruction or schema operation sets condition
flags, however this is practically restricted to dyadic operations such as sub or add,

2. The latiched tags and the zero status flag are presented to the mapping read-only
memory during the decoding of all subsequent instructions, until some instruction
changes them by setting condition codes,

3. If the unify schema is detected, then the microcode address select multiplexer is
steered to output the microcode address from the unify mapping read-only memory
instead of the opcode mapping read-only memory,

4. The unify microcode address is presented to the microcode read-only memory, and
5. The microcode word selected is latched to control the subsequent execution.

At this point it is clear that partial unification is not an instruction, but a schema, with Z = {store,
goto, nop} and a specialization function that uses the operand tags and the machine state to select
an operation from . Using this insight partial unification can be further improved. In the LIBRA
the partial unifier had to be protected from bound variables because no entry in the mapping read-
only memory was defined for them. However, given the parallel functional units in the LIBRA, it

Mills Architectural Support for Delayed Specialization of Logic Programs Page 10

B

Bound Imt Listl Strucl
Unb Sym List2 Strue2

Bound B oaaa P2
Unb [] Load B; PC-2
Int Bind jr. to sr.
4 SYm . Bind A to B
List1 ; Bind Bio A
List2 L] mailifA=B
Strucl 7 . - Fail always
Struc2 | 7 % Callif A=B

Figure 6. Modified LIBRA partial unification includes dereferencing for bound variables

is possible to add the load operation to I and obtain a partial unifier that dereferences its
arguments if necessary (Figure 6).

3.2 FREQUENCY OF UNIFICATION

Partial unification does not provide a fully recursive unifier in hardware as has been suggested by
(Shobatake and Aiso 1986, Woo 1985) because it is not cost-effective. Although the frequency of
unification appears to call for unification hardware (Table 1), the majority of these unifications
(>95%) are non-recursive (Tick 1987). Thus a minimalist approach such as partial unification is
sufficient.

Table 1. Dynamic WAM Instruction Frequency for Four Prolog Implementations
Frequency (%)
WAM Instruction group PLM’ PWAM' LOGIX’ WAM6
Unification’ 48.54 39.67 41.94 44.02
Procedure calls8 37.16 41.26 40.42 28.26
Backtracking® 14.12 15.86 17.57 26.50
(Arithmetic) 0.39

Dobry, Despain and Patt (1985).

Hermenegildo (1986). Paralle] WAM.

Ginosar and Harsat (1987). Flat Concurrent Prolog machine.

Tick (1987).

Includes dereferencing, term and structure matching, binding and recursive unification.

Goal matching instructions are included in this category because they correspond to parameter passing
instructions in an imperative language

9 Includes clause indexing and failure.

O ~1 O Lh B W

Mills Architectural Support for Delayed Specialization of Logic Programs Page 11

4. ADDING A PARTIAL UNIFICATION SCHEMA TO THE SPARC

The SPARC RISC architecture includes tagged addition and subtraction instructions (Sun
Microsystems Inc. 1987) which are not useful in a Prolog implementation because they invoke an
overflow trap on unaligned address references instead of providing type comparisons. Prolog
implementations typically rely on fast conditional branches; the overhead of a trap, and even a
subroutine call, is too costly in many cases. This analysis was suggested by Lindholm (1989),
who states that the tagged operations are not used in the SPARC implementation of Quintus
Prolog. However, delayed specialization can be used to make use of the SPARC's tag bits more
effective.

4.1 PARTIAL UNIFICATION

Partial unification on the SPARC is even more restricted than partial unification on the LIBRA
because fewer tag bits and no specialized functional units are available. However, performance
gains could be realized by using the two tag bits to define the following WAM operand types:

00 bound variable
01 unbound variable
10 atom

11 structure pointer

Next define a unify schema for partial unification over these types (Figure 7).

B
Bound Atom
Unb Struc

Bound B Load Asset Z flag Bind Bto A

Unb [] LoadB;setZflag [] FailifA=B
g:om Bind jr. to sr. . Fail always
ruc =
P4 BindA 0B A canica=8

Figure 7. Partial unification for the SPARC

This definition of partial unification overloads the atom type with both integer and symbol types,
and the structure type with both list and structure types. If bit 31, the sign bit, is used 10
differentiate between integers and symbols, and lists and structures, then partial unification
succeeds in the case that the two objects unify, and fails when they do not. Recursive unification
is handled by the proposed SPARC unify schema just as it is handled by the LIBRA, but
dereferencing is handled differently. If a bound variable is encountered unify sets the zero flag.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 12

This condition can be intercepted by a conditional branch following unify, and used to repeat the
unify until both arguments are dereferenced. If the compiler can determine that zero or one
dereferences will be sufficient, then the conditional branch can be omitted, and the instruction
following unify will always be executed. Although emulation of WAM code using the SPARC's
instruction set and the proposed unify schema is not presented in this paper, examples follow
those of the LIBRA, which are given in Mills (1988, 1989).

The block diagram of a SPARC modified for partial unification is mostly unchanged (Figure 8).
The simplicity of the modification in the diagram may not represent the actual difficulty that would
be encountered in extending the SPARC's design, particularly any effects adding the tag buses
would have on worst-case timing. However, if the bus is pre-charged a ratioed driver could
reduce added delays.

v B3 Used “s o
[B Modifies
d port e
5 14 SPARC: 2-bit ' spdted
1 Regieters Tag Fiehd
sl pont sl port g e
l v ¥ + Constants
T 2-bit Tag Buses

and Lo

Figure 8. SPARC Integer Unit modified for partial unification

5. CONCLUSIONS AND FURTHER WORK

Delayed specialization was defined and shown to be generally useful in compressing sequences of
semantically-related branches. Partial unification as defined in the LIBRA was shown 10 be a form
of delayed specialization, and to be one of the most area efficient support functions for logic
programming of the LIBRA. The generality and simplicity of partial unification was demonstrated
by adding a new schema, unify, is added to the SPARC instruction set. A thorough analysis of
the effect of the unify instruction on the SPARC's performance remains to be carried out, but
based on an early comparison 1o the LIBRA, a modified SPARC should be capable of attaining
75% of the LIBRA's performance when emulating the WAM.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 13

6. ACKNOWLEDGEMENTS

Delayed specialization was first recognized during discussions with Olivier Danvy about the
relationship of partial unification to self-applicable partial evaluation and program specialization;
the term "delayed specialization" is due to Danvy, but the definitions in this paper are due 10 Mills.

Peter Van Roy's comments on the ideas presented here led to a stronger distinction between the
principle of delayed specialization and its various implementations.

REFERENCES

Abe, T, T. Bandoh, S. Yamaguchi, K. Kurosawa, and K. Kiriyama. 1987. High performance integrated Prolog
processor IPP. Proceedings of 14th Annual International Symposium on Computer Architecture. Pittsburgh,
Pennsylvania. Washington, D.C.: IEEE Computer Society Press. pp. 100-107.

Ditzel, D. R., and H. R. McLellan. 1987. Branch folding in the CRISP microprocessor: Reducing branch delay to
zero. Proceedings of 14th International Symposium on Computer Architecture. Boston, Massachusetts.
Washington, D.C.: IEEE Computer Society Press. pp. 2-9.

Dobry, T 1987. 4 high performance architecture for Prolog. Report No. UCB/CSD 87/352. Computer Science
Division (EECS), University of California, Berkeley, California.

Dobry, T, Y. Patt, and A. Despain. 1985. Performance studies of a Prolog machine architecture. Proceedings of
12th International Symposium on Computer Architecture. Boston, Massachusetts. Washington, D.C.: IEEE
Computer Society Press. pp. 180-190.

Ginosar, R., and A. Harsat. 1987. Profiling LOGIX: A step towards a flat concurrent Prolog processor. Department
of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

Hermenegildo, M. 1986. "An Abstract Machine Based Execution Model for Computer Architecture Design and

Efficient Implementation of Logic Programs in Parallel.” Ph.D. Dissertation, Department of Computer
Sciences, University of Texas at Austin., Austin, Texas.

Lindholm, T. 1989. Personal communication.

Matoba, T, T. Aikawa, K. Maeda, M. Okamura, K. Minagawa, T. Takamiya, and M. Saito. 19?9. Twin register
architecture for an Al processor. Proceedings of First International Tools for Artificial Intelligence Workshop.
Fairfax, Virginia. Los Alamitos, California: IEEE Computer Society Press. pp. 168-173.

Mick, J., and J. Brick. 1980. Bit-Slice Microprocessor Design. New York: McGraw-Hill.

Mills, J. W. 1988. "LIBRA: A high performance balanced RISC architecture for Prolog." PhD Dissertation, Arizona
State University, Tempe, Arizona.

Mills, J. W. 1989. A pipelined architecture for logic programming with a complex but single-cycle instruction set.
Proceedings of IEEE Ist International Tools for Artificial Intelligence Workshop. Fairfax, Virginia: IEEE
Computer Society Press. pp. 526-533.

Myer, T H., and 1. E. Sutherland. 1967. On the design of display processors. CACM 11 (6): pp. 410.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 14

Nakazaki, R., A. Konagaya, S. Habata, H. Shimazu, M. Umemura, M. Yamamoto, M. Yokota, and T. Chikayama.
1985. Design of a high-speed Prolog machine (HPM). Proceedings of 12th Annual International Symposium
on Computer Architecture. Boston, Massachusetts. Washington, D.C.: IEEE Computer Society Press. pp.
191-197.

Seo, K., and T Yokota. n.d. Pegasus: A RISC processor for high-performance execution of Prolog programs.
(unpublished)

Shobatake, Y., and H. Aiso. 1986. A unification processor based on a uniformly structured cellular hardware.
Proceedings of 13th Annual International Symposium on Computer Architecture. Tokyo, Japan. Washington,
D.C.: IEEE Computer Society Press. pp. 140-148.

Sun Microsystems Inc. 1987. The SBARC ™ Architecture Manual Version 7. Part No: 800-1399-08, Revision A.
Sun Microsystems, Inc., Mountain View, California. October 22, 1988.

Taki, K., K. Nakajima, H. Nakashima, and M. Ikeda. 1987. Performance and architectural evaluation of the lf‘Sl
machine. Proceedings of Second International Conference on Architectural Support for Prpgrammmg
Languages and Operating Systems (ASPLOS II). Palo Alto, California. In ACM SIGPLAN Notices 22: pp.
128-135.

Tick, E. 1987. Swdies in Prolog architectures. Technical Report No. CSL-TR-87-329. Computer Systems
Laboratory, Stanford University, Stanford, California.

Van Roy, P. 1989. Personal communication.

Warren, D. H. D. 1983. An abstract Prolog instruction set. Technical Note 309. SRI International, Stanford,
California.

Woo, N.-S. 1985. A hardware unification unit: Design and analysis. Proceedings of 12th Annual International
Symposium on Computer Architecture. Boston, Massachusetts. Washington, D.C.: IEEE Computer Society
Press. pp. 198-205.

Mills Architectural Support for Delayed Specialization of Logic Programs Page 15

