TECHNICAL REPORT NO. 296

Lukasiewicz Logic Arrays
by
Jonathan W. Mills, M. Gordon Beavers and Charles A. Daffinger

Revised: March 1990

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Lukasiewicz Logic Arrays

Jonathan Wayne Mills
M. Gordon Beavers
Charles A. Daffinger

Indiana University
Bloomington, Indiana 47405

Abstract

Lnkasiewicz logic arrays (LLAs) are massively paralle]l analog computers
organized as binary trees of identical processing elements performing either
implication (—), negated implication (+*) or both. We have designed and
built 2 working 31-cell CMOS VLSI LLA whose cells perform implication
{—). In this paper we discuss the rep tation complet of Lukasiewicz
logic with respect to other multiple-valued logics. describe the architectare of
the prototype ELA. its relationship to cellular automata and its VLSI
implementation, show how the prototype LLA is programmed. and report on
results obtained by programming the prototype £LA as a fuzzy function
generator. Because LLAs bave both an algebraic and a logical operational
semantics, they can be used to implément approximate reasoming systems,
including expert systems and neural networks.

L__INTRODUCTION

Laukasiewicz logic arrays (ELAs) are massively parallel analog computers.
They are organized as binary trees of identical processing elements {called
PEs. or cells). each PE performing either Lukasiewicz implication (—),
negated implication (4%} or both.

We have designed and built a working 31cell CMOS VLS] LLA whose cells
perform implication (—=). [n this paper we discuss the representation
completeness of Lukasiewicz logic with respect to other multiple-valued
logics, describe the architecture of the protorype ELA, its relationship to
cellular automata and its VLS] implementation. show how the prototype
1L A is programmed, and report on results obtained by programming the
protorype ELA as 2 fuzzy function generator.

The saccess of the prototype has encouraged us to continue research in the
design and application of £ As. During this research we have observed that
LLAs offer advantages as massively parallel analog computers.

11 ADVANTAGES

+LLAs are regular VLSI architectores. The VLSI implementation of LLAs is
simple and area-efficient because they are derived from cellular automata. and
implemented with analog rather than digital processing elements. Although
£LAs are analog computers they can be made surprisingly precise (3 to §
bits). due to the simplicity of their processing elements and the accuracy of
'VLSI process technology.

LLAs are inductive architectures. which means that they can be expanded by
adding more processing elements without redesigning the interconnection
petwork. While small ELAs can be used as circuit components. large £ As
can be used as massively parallel computers. Larger LLAs can be created by
cascading individual ELAs.

The general-purpose nature of LLAs is theoretically well-founded. Multiple-
valued logics used in computational nerworks are capable of both symbolic
and algebraic computation. LLAs can implement fuzzy inference and expert
systems [1], neural networks [3], and algebraic functions [4. 5]. Viewed as
circuit components. £LAs are the maltiple-valued logic equivalent of
programmable logic arrays (PLAs) for Boolean logic.

1.2 DISADVANTAGES

Of course, £L.As are not ideal analog processors, bat we are working to reduce
their drawbacks.

The prototype LLAs are programmed using normal forms of sentences in the
Lakasiewicz logic. This introduces data imputs on the order of O(2F) for
sentences in n implications, and limits the size of the sentences that can be
evaluated by 2 given LLA. Using the normal form also increases the sumber
of pins needed on the VLSI package, far beyond the number available even m
the foreseeable futmre. Homa.manyda:ainpmmm;:’fdu.orm

of a ted mumber of variable inputs. Based on this observation
Ww@mg' 'mkmmmemnﬂmuml'mpmudarﬁmcwd‘
mmmber of external data inputs. The data isputs are replicated and selected
internally at each input of the processor amay according to the externaily
applied control inpurs.

Becanse LL As are a new form of computational engine their use is still being
studied. We have only a basic nnderstanding of the programming
methodology for £L As. For example, the theoretical applicability of LLAs
as peural networks does mot immediately lead to the comstruction of
algorithms for back-propagation.

ELA programming is an instance of the more general problem of
programming analog and hybrid digital-analog computer architectures.
Research in this area stopped about 1970 due to the dominance of digital
computers. Because L£LA-based systems will be either analog or hybrid
Mills and Faustini [6] have proposed a language for ELA-based systems, but
its operational semantics are still only partly defined Completion of the
semantics will require 2 more exact characterization of the dynamic behavior
of LLAs, particularly £ As with cyclic interconnections.

The next section describes Lukasiewicz logic and its representation

completeness relative to the class of multiple-valoed logics whose valuation
functions can be defined in terms of +, —, min and max.

2. THE MULTIPLE-VALUED LOGICS CLASSES
Lfg‘:] AND L“.__‘A_v}

{Lukasiewicz and Tarski 1930) contains a compendium of the resuits of
investigation into multiple-valued logics obtained by Lukasiewicz and
his students in the 1920’s. Following the initial efforts of Lukasiewicz
and Post other multiple-valued logics were developed, both discrete and
continuous. Summaries of these logics can be found in (Rescher 1969)
and (Gaines 1976). Most of these logics belong to Lig,; which is given
by:

Definition 1. A logic L is @ member of the class Lig) iff there s
a logical matriz M appropriaie for L with M =< P,D > where P is
a non-empiy algebra whose carrier set s e subset of the real number
range [0,1], with D, the set of designated elements. a non-emply proper
subset of the carrier sel.

The class Lyp ;) can be further restricted to yield a class of logics whose
valuation functions for the connectives can be expressed in terms of
addition. subtraction. maximum. and minimum alone. This class will
be denoted by L{4 - av).

Definition 2. 4 logic L in Lig) is in L{4 _ A v} iff all sentences of L
can be evaluated using only the operators +.—. maz,min on the values
of the atomic sentences of L.)

©1950 by IEEE

To appear in the Proceedings of the IEEE 20th [nternational Symposinm on Multiple-Valued Logic

The importance of the class Ly, _ .y} is that it contains only those
logics whose sentences can be easily evaluated by analog circuits using
electrical current to represent the values of logical variables. The valu-
ation functions of these logics can be implemented by adding and sub-
tracting electrical currents — simple operations for electronic devices:
and by utilizing Ohm’s law, Kirchoff’s law and the law of conserva-
tion of energy to implicitly implement the operations maz and min for
electrical currents using the phyvsical properties of the circuit. Further-
more, this class contaius logics. such as fuzzy logic, whose significance
to the fields of approximate reasoning and artificial intelligence is well
established.

2.1 REPRESENTATION COMPLETENESS OF LUKASIEWICZ
LOGIC RELATIVE TO L4 _ av)

That Lukasiewicz logics are members of the class L4 - av) follows
from:

Definition 3. L is a Lukasiew:c: logic if L has a model M =< A.D >
where A =< §,~.—> and S is a subset of [0,1] such that:

1. 1€5,

2 Ifz,y€S thenmin{l.l1—r+y)€S, and1 =z €S,
where — y and —~z are evaluated as 1 — x +y and 1 — z respectively.

If S = [0,1] we get the classical propositional calculus. If S has n
elements then we get the n-valued Lukasiewicz propositional calculus
Ln. If the cardinality of S is Ry or ¥; we get Ly, or Ly, which happen
to have the same set of theorems. Ve designate Ly, by L and take §
for L to be the set of rational numbers between 0 and 1.
(Giles 1976) shows that Zadeh's seminal work on fuzzy set theory is
closely related to Lukasiewicz logic. That L is representation complete
with respect to the class of logics L{, _ A v) follows from the fact that
the evaluation of formulae in L has the following properties:

L v(=~(¢)) = v(¢ —0).

2. maz(v(6), v(¥)) = v((6 — ¥) —).

3. min(v(6), 9(¥)) = v(~((~6 — ~¥) — ~v))

4. min(1, v(9) + v(¥)) = v(—0 — v)

With the ability to perform these calculations. we have the first step in
our justification of the LLA as a fundamental circuit for approximate
reasoning.

2.2 McNAUGHTON'S THEOREM

McNaughton's theorem allows us 1o use L at different levels of abstrac-
tion, in particular as a classifier for elements of fuzzy sets. By showing
that valuation functions for connectives in sentences in L are equiva-
lent piecewise to poivnomials of degree one that map the hyperspace
[0,1]" into the interval [0, 1], the capability of building fuzzy pattern
recognizers is provided. Thus a series of sentences in L defines the poly-
tope of some simpiy connected solid in hyperspace of degree n. This
allows us to express arbitrarily complex membership relations in logical
form; in a VLSI circuit we define the polytope with a sentence from
L, which is converted to the normal form (derived in section 1) of the
sentence representable by one or more LLA circuits. The LLA circunt
may be “programmed” to deal with variants of the original sentence by
assigning incoming data to specific circuit inputs.

Theorem 1. (McNaughton 1931) Let uy, ..., un be numerical variadles
and Zy,...,Tn be propositional variables. For a function f(u;....,uq)
there is a logical formula 6 of L such that fuy,ua) = v(&(z1,.... 2a))
i
b
(i) f is continuous over {0,1]" and Range(f) C [0,1]. and
(i) there 1s a finite number ¢ of distinct polynomials =y, =,
each of the form
:j=65+m1_5u1+---+mn‘,’un)
with bj, m; ; inlegers such that for every <uy,...,un> there
is a j such that
flug, oo ttn) = 750y, ey tn)-

Next. homogeneous, heterogeneous and logical cellular antomata are defined,
and on this basis a Lukasiewicz logic amay is developed .that implements
implication for E.

3._ARCHITECTURE
3.1 DESIGN

inkasieu&abgicmysmﬂ(edﬁommfhhmoeﬂdarmuz
parallel architecrures for logic programming.® Cellolar antomata are of
particular interest because they lead 1o area-cfficient VLSI architectures. Sach
archilectures are implemented as regular arrays of processing clements which
commaunicate the results of their computation locally. They are derived by
instantiating a portion of a cellalar automaton as 2 VLSI circuit. The
structare and function of the circait arises from the definidon of a cellular
antomaton:

Definition 4. [7] A cellular automaton C is defined by the quadruple (S, g
K, ¢} where:

LY is a two-dimensional cellular space defined by the set of cells a
€ I xI where [denotes the set of integers.

g Esaugx‘gﬁborhoodﬁtumbnmpp&:gs-zsﬂddmxsfw is
a set defining the celis in the neighborhood of arelative to @
Bpically a is a member of its own neighborhood.

k' is aneighborhood state function at some time t. Values of cells
in the neighborhood of a at time t are obtained by applying i
1o the neighborhood g(@). The successive states of a at times
{10 13, 13 ...} can be defined by the compoesition f okt og(a) =
v*i(ay.

@ is a finite automaton replicated in each cell of S and defmed by
the triple (va f). Vis the set of states possible for each cell,
voa distinguished quiescent state, and f a transition function
mapping n-tuples of elements of V into ¥ The transition
finction fis constrained to preserve quiescence locally by
reguiring f(vg vo -, Vo) = Vo

A cellular automaton is homogeneous iflheneighbottmdﬁunaiona:udrhe
finite antomaton are identical for all cells in the cellalar space S at all times £.
otherwise the cellular automaton is heterogencous.

Heterogeneous cellular automata model 2 wide variety of paralilel
computational devices. Examples inciude the systolic architectures of Knng
and Lieserson [8]. the stochastic neural machines of Alspector et. al. [9, 10]
and the analog VLSI compaters of Mead [11].

Ideal Lokasiewicz logic arrays (LLAs) are heterogencous cellular automata
that implement a denumerably infinite sentence schema of £. The sentence
schema of L and the celiular automaton C are related by requiring the logical
variables of L to comespond to cells in the cellular space S, the structare of
memmsehcmmconupondmﬂ:emigbbomoodfmcﬁougndﬂ_n
connectives of L to correspond to the transition function f of ¢. E is
therefore a logic in the sense used by Belnap — an orgamon, or 2 tool for
inference — and not a formal axiomatic theory [12].

Real Lokasiewicz logic amays are derived by restricting the demumerably
infinite sentence schema of L. to a finite sentence schema, and implementing
the finite cellular automaton that results as a direct correspondence
architecrre. The structure of the resulting LLA is dependent on its
interconnection network. The prototype LLA uses an H-tree network whose
nodes are the processing elements corresponding to the connectives in the
finite sentence schema. The H-tree network was selected for its efficient use
of area on 2 VLSI circuit, as first proposed by Leiserson [13].

1 in the general sense of "programming with logic" rather than the
restricted sense of implementing Prolog.

Mills, Beavers and Daffinger

Lukasiewicz Logic A

Page 2

3.2_VLSIIMPLEMENTATION

Lukasiewicz logic arrays are implemented with analog processing elements.
A cell in the ELA is implemented as an analog cument-mode device
performing addition. subtraction. min and mar on carrents. Addition and
subtraction are dope instantaneously, thoagh the circuit needs a short time to
stabilize2 Early in our work we learned of a series of fuzzy functions
implemented by a basic logic cell {1]. The circuits which implement these
functions also implement the algebraic valuation functions for L. For our
purposes the most useful of Yamakawa's circuits are implication (—). which
computes min(l, 1 — a + B), and bounded difference, which computes max(
0. a-B). ically reducing the expression for negated implicadon (
~{a=flor a+ B) from (1 - min(l. 1 - a + B)) yields max(0. a -
B), showing that it is equivalent to the bounded difference.

The design uses Kirchhoff's laws to sum currents at points within the LLA
cell To ensure that the varying current drains of adjacent cells do not affect
the computation of their predecessors, as well as guaranteeing a proper toput
voltage, each cell is isolated by a set of current mirrors. MOS FET curent
mirrors have very good accuracy in making any number of copies of 2 given
input current without placing a variable drain on that input current.

The basic cell consists of six current mimors. and performs Lukasiewicz
implication (—). A cell has two inputs and 2 single outpuL and is designed
to be tiled in an H-tree (Figure 1a). The basic cell uses 11 mansisiors. and is
35 by 114y osing the 2u SCPE technology provided by the MOSIS
fabrication service (Figure 1b). Basic cells are combined in an H-mree to form
the LLA (Figure lc).

The operating range for the LLA cell varies from 0 1o 7 volts with input and
output currents varying from 0 to 20 microamperes (uA). Within this range
the accuracy of the ELA is affected by three soarces of emor. The fist is
steady-state error. which is dependent on the acral dimessions of the
wansistors and other process parameters for a panticular MOSIS run. The
second source of error is lemperature dependent. and varies as the temperature
changes over long periods of time. As long as the temperature of the system
in which the LLA is placed varies uniformly this error can be ignored. The
third source of error is transient error which arises when large current swings
occur in the inputs of the £L A and lasts until the cell has stabilized.

(a) Schemaric of implication cell (—)

(b) Layout of implication cell (—)

2 Simulations have been conducted on a timescale of microseconds., with
the response of the circuit to a change of inputs instantaneous on that
scale.

AR PP

e—
2 wm

s S T
» T
— 2 — -
-
R . . .

{¢) Lavoutofa 3l-cell 5-leveltlA

Figure 1. Heterogeneous LLA in implication (—)

SPICE simulations indicated that steady-state error is well-behaved. and
remains within 1.5% mean and 4% maximum for small cells. growing
slowly as the depth of the LLA is increased. Our observations agree with the
simulation.

The transient errot is dependent upon how chaotic the inputs of the circuit are.
This is related to the mumber of inputs that change during a sampling
interval the amount by which thev change. and the level of carent used for
the frwe. or maximum value. Selecting 2 high value for rrue increases the
precision of the ELA bat a1 a price: larger cumrent swings will require a
loager serling time. and produce a slower circmt.

Choosing an analog processing element yields several advantages. Becanse
the LLA is a current-mode circuit it has a precision which is not achievable
with an equivalently-sized voltage-mode circuit. Although L is infinitely
valued. in practice only £~ through Ensg can be implemented due to device
error and the resolution of our measuring devices. The output error measured
for the prototype LLAs is in the range of 025% to 2%. This gives an
information density ranging from 5.6 to 8.6 bits. or approximately 30 to 400
discreet values per LLA. This is a useful precision for approximate reasoning
systems.

The processing elements are simple. performing only Eokasiewicz
implication (—) to evaluate the sentences in L defined by the schema.
Processing elements need only two input wires and one output wire because
they use analog values. Thus, the bus strucrure of the LLA is also area-
efficient.

The total area used by an LLA is much less than the area required for an
equivalent digital processor. This is based on the mamber of transistors
needed 10 implement the digital processor's arithmetic logic unit (ALL) and
register file. but not its contol and bus interface circuitry. If each processing
element bas eight bits of precision. then the LIBRA digital ALU [14, 15]
uses 935 times more transistors and is 1.020 times larger than the basic cell
of the ELA (Table 1).

Mills, Beavers and Daffinger

Lukasiewicz Logic Armays

Page 3

Table 1. Comparison of the Lukasiewicz logic array 1o a digjtal Prolog
processor
+LA LIBRA Increase
Ti s i1 10,288 935x%
Area 6272u2| 64 x 1052 | 1.020x

However, one drawback to an area-efficient circuit is that it is limited by the
number of pins available on existing VLSI circuit packages. Although an
array of 1024 Lukasiewicz implication (—) cells could easily fit onto a
4500 x 2300u chip, it would require 2048 input pins and 1 outpat pin.
This is 1,921 more pins than are available on a 128 pin-grid array package.
Our research has shown that many fanctions implemented with £1 As will
have more than half of their inpats tied to frue or false. For these functions £
}LAscanbebuﬂ!Lhatmapmgnmmbkimemmﬁoaumrktomm
internally replicated zrue and false inpats to the PE amay. Data inputs also
tend to be used more than once. so they could be internally replicated and
routed, too. This approach allows large ELAs to fit into existing VLSI
packages.

The LLAs described bere resemble 1960's-era analog and hybrid digital-analog
computers. This leads to the view of £LA programming as an instance of the
more general problem of programming analog and hybrid computer
architectures. We develop a low-level LLA programming methodology in the
following section.

LLAs are programmed at the lowest level by fixing an interconnection
network for the inputs, and presenting inputs that are either rrue. false. or
variable. Because it is not practical fo build an £LA for each sentence in £,
it is mecessary to develop 2 normal form that maps arbitrary seatences onto
some general LLA.

4.1 ABALANCED NORMAL FORM FORL

The prototype LLA is structured as a binary tree whose nodes are conpectives.
and whose leaves are logical variables. Most sentences in £ do not map
directlv to this schema but must be transformed to equivalent sentences
which do. This general form of 2 sentence in L is the balanced normal form
in implication. with explicit negation possible anywhere in the sentence.
Definition 5. A sentence in £ is in balanced normal form in
implication if there exists some desig ion i
the sentence. starting at which a binarv tree of
implications can be extracted, and for which at each non-
leaf node in the tree the ber of implications and
logical variables in each subtree rooted at that node is
equal.

ted impli S

Theorem 2. Any sentence in L can be rewritten to an equivalent

tence in ball d normal form in implication.

Production of this balanced normal form can be viewed as an inverse
operation of the minimization of Allen and Givone [L6]. The circuit
implements balanced normal form sentences in L. because it is structured as
an H-tree. The use of a binary tree to realize n-input R-valued functions for
multiple-valoed logic circuits was described by [17].

EE

Figure 3.

(T =D=T=a)=(T=B) = =N =(T =D =T =) ~(T=D =T =)

4.2 NEGATION-FREFE NORMAL FORM

Thenms:q)wmrddevelopingamfnlnomaliomismemﬁerof
negaﬁon(mmanmbiﬂaxypointinanyuntcmmovingitbeﬂhcr&cm
or one of more leaves in the binary tree of coanectives and logical variables.

Unfortanately, we saspect that o normal form for Lukasiewicz logic exists
with negation moved fo either leaf or root implications. But it is just as
mﬁﬂ&omammpnmamhitect'spoimofvicwmlezvclhenegaﬁoain
phceashngasd:emgatedcxp:ﬁsbu~ambemmﬁmwmequivalent
form that does mot use megation explicitly, namely a == false. A claose
expressed in only one connective, while textually more complex, may be
mappcdtosmzﬂcrmdshnpkrphysicaldﬂioesthatpex{ormugaﬁonuing
data inputs alone.

The balanced pegation-free normal form is obtained by removing negation
from any scatence of £ by simplification where possible. or by rewriting
negation as a — false otherwise. To define the balanced negation-free normal
form we first define a negation-free normal form as follows.

A sentence ind is in negation-free normal form iff it is
expressed only in implication, and contains some
designated connective such that a binary tree of
conmectives can be constructed whose root is the
designated connective and whose leaves are logical
vy g & } b' m 1.

Definition 6.

To continge the transformation the concept of the weight of a tree must be
defined (it was implicit in Definition 5 of the balanced pormal form). From
this it is a short siep to the definition of the balanced negation-free normal
form (BNF normal form) and an equivalence theorem.

Definition 7. The weight of a tree is the number of connectives and
logical variables contained in the tree.

A clause is in BNF normal form iff it is in negation-frec
normal form. and at each non-leaf node in the tree the
weights of each subtree are equal.

Definition 8.

Any sentence in L can be transformed to BNF normal

form.

Theorem 3.

Theproofsoﬂ'hcorcms2and3momined.butanemplepmvidutheir
substance. Consider the transformation of an arbitrary sentence in £ to BNF
pormal form. The sentence is unbalanced initially, and contains negation

(Figure 2).
o
N g
/_'_'
g
(- & e) Emgind

Figere 2 Unbalanced sentence in &

The resultant BNF normal form to which it is transformed is shown pext
(Figure 3). Although the texmal form of the sentence is more complex, the
BNPnormalfommsael]sol‘l.thLAthat&eﬁxstfomwonldhavelcﬂ
uonsed. These “extra™ inputs and implications can be used fo adjust the
constraints under which the sentence is true.

R

BNF normal form of sentence in Figure 2

Mills, Beavers and Daffinger

Lukasiewicz Logic Arrays

Page 4

43 COMPLEXITY Of THE NORMAL FORM

The proof that the number of logical variables and connectives in the normal
form is of complexity O(2") where n is the minimum height of the tees
formed from an arbitrary sentence of L is outlined: simplify all negations,
then treat any acgation remaining as a node in the ree; generate a setof trees
by successively designating each implication in the sentence as the root
connective, then sclect n equal to the minimum of the height of all generated
trees. The number of inpats is at most 2'*1, and the number of nodes in the
tree is 2°. Although the presence of exponential complexity in both normal
forms is disturbing some optimizatioms are possible. For example, if a
sentence in L is transformed to BNF normal form, many of the inputs on the
original degenerate branch are either true or false. When a normal form is so
lasge that it spans multiple VLSI circuits, then it is possible to remove the
true and false inputs by supplying the single value instead of computing it
with a series of LLAs.

Lukasiewicz logic arrays were first proposed to evaluate sentences in L. but
because Lukasiewicz logic describes other forms of approximate reasoning, &
JLAs are useful for a variety of applications. The dual logical and algebraic
semantics of £ allow LLAs to implement expert systems. neural networks
(10, 18}, and fuzry computers [19, 20]. We present schematic examples for
each application, and report the results obtained by programming the
prototype £LA as a fuzzy function generator.

2.1 EXPERTSYSTEMS

LLAs implement expert systems by mapping membership functions to

ing elements at lower levels in the array. and rules to processing
elements higher in the aray. A rule is a single tree that is true or false 0 2
degree that depends on its inputs. Rules can be designed that do sot fire
unless their inputs reach a desired confidence level (Figure 4).

1>

1L A implementation of expert system

Figure 4.

A single Lukasiewicz logic array can implement a simple expert system.
which may be used to embed limited “intelligence” in individual sensors.
Within the array some processing elements operate at a low level of
abstraction. evalnating membership in a fuzzy set while other processing
elements operate at a higher level of abstraction. implementing a rule for that
sensor. The rule's operation may vary based on control inputs to the
LLA The expert system evaluates its sensor's input, firing the rule if the
confidence factor is exceeded.

5.2 NEURAL NETWORKS

McNaughton's theorem (see Section 2) and Giles' Logic of Assertions [21]
relate sentences in Lukasiewicz logic to piecewise-linear functions and the
theory of comvex anmalysis. This is the functional domain of pattern
recognizers and classifiers (Figare 5). which has encouraged us to investigate
penral networks implemented with LL As.

Early models of merve nets were described by McCulloch and Pirs [22].
Kleene and von Neamann anticipated much of the present-day work in neural
petworks, offering theoretical descriptions of the events representable in
neural networks [23]. and the creation of reliable compuring systems from
unreliable components [24].

(a) Nonconvex space (b) Decomposed into convex halls

¢ vy g

(¢) Expressed as a sentence in Lokasiewicz logic:
¢A-~YaAa-L

Figare 5. Relationship of non-convex space to Lukasiewicz logic

The evaluation formula for Lukasiewicz implication shows how it may be
used to construct a very simple “neuron” In the expression min(l. 1 - a +
B). @ is an inhibitory input that lowers the “firing rate”, or wuth value. B i
an excitatory input that increases the "firing rate.” Recursively connecting
several implication cells produces a "neuron” with a2 variable threshold (Figure

6a). Summation units can also be devised (Figure 6b).

Onut in

(@

Figure 6. Implemenﬁnga"mm’andsummiﬂgekmenlwid:um
Simulations of interconnecied LLA "neurons” and summing elements show
Mmmuebmkpmp«ﬁanmedwmumamm The
behavior of 2 “nearon” can be chamged by modifying its threshold. For
mmple.thcsﬁghxdchybefmthemondoutputpnlse‘mthesimnhﬁonb
due to an intermediate "neuron” (Figure 7).

0.60 : ::‘;l
. T
uim //'\\ \\ I
- At

' o e e o«

Simnulation of interconnected £ LA "neurons”

Mills, Beavers and Daffinger

Laokasiewicz Logic Arrays

Page 5

We are now working to construct a trainable neural network from these basic
components. The initial version will be a hybrid digital-analog system.
similar to those of Alspector and Graf [9, 10, 25]. However, we hope to
devise analog-only systems using double-poly capacitors as storage elements
for weights.

23 FUZZYT1OGIC

Lakasiewicz logic is closely related to fuzzy logic [19. 21, 26. 27, 28].
Yamakawa shows designs for fuzzy inference engines and expert svstems
which may be embedded in Lnkasiewicz logic armrays [L. 20. 29]. We have
osed the prototype LLA to compate fuzzy membership functions, and preseat
the results obtained along with observations on the ermor measured using the
prototype LLA.

An ime_ml:i.ng fuzzy membership function is the "notch”, defined by the
expression (~a—=a)—= = (a— ~ a). This membership function

ERN /

- -

“
|

.l

was programmed into the 31cell LLA as the following 32-element vector:
(LTTTTITITT.L.T LT T.LT.TTa.F Ta, Ta,a. R TTTF).

Theom:of&e&LAmmcdw«lheopemﬁngangcothoZﬂ
pAmperes (uA) by varying . The membership function was also calculated
after adjusting the evaluation function for Lokasiewicz implication to the
operating range of the circuit (Figure 8a).

The resalt of this experiment showed that the LLA implemented the notch
fusction linearly, but with a slope that varied from that of the calcalated
function. Thissca]ingisduetoana:bimchoiccofamminihe
measuring circuit. By changing this resistance ("trimming™), the oatput can
be adjusted to produce a much closer fit We have calculated that an
optimally trimmed LLA would have a typical error of less than 2%, and a
mean error less than 0.5% (Figure 8b).

Several factors contribute to the observed emor. The true reference for
implication (=) only partially corrects the outpuL Also, an emor due o
variations in each cell is randomly distributed through the ELA. A
simulation with random errors distribated through the £LA indicated that the
total error should be o greater than the eror of a single cell. Our
observations agree with this simelation.

A trimmed £L A computes fuzzy functions accarately. Error is within 15%
of ideal. with error near 4% where the current changes value rapidly. With
farther modifications to the circait, and trimmed outputs, the emor should
drop 1o less than 1% as reported by Yamakawa [1].

We close with a summary of our resalts and directions for future research.

6. CONCLUSIONS

con sl

=
w
53
o
g

(@) Uninmmed “notch” and emor

20

5
"
0 s 10 15 20
10 o - -
b : — Ermoc (%)
53 i erssnnnannnans
o\ _ N e
-5 = T T 7T | T T T] T o S I N
0 5 10 15 20
(b) Optimally trimmed "notch” and error
Figure 8. {LLA implemenutionof(~a—=a)—= ~(a—=-a)

Lnkasiewicz logic is representation complete with respect to other multiple-
valoed logics. Mapping sentences in Lukasiewicz logic to cellnlar automata
kadsmpam]]cluchitecmmmmmperfomava:ietyofmmpuadom.

We described the architecture of an operational 31-cell CMOS VLSI ELA,
which is teguhx.simple.m-efﬁcientandhnpmnmdwﬁhumgmm
than digital processing elements. Although LLAs are analog computers they
can be made surprisingly precise (5 10 8 bits).

The prototype LLAs are programmed with input vectors derived from normal
forms of sentences in the Lukasiewicz logic. This requires data inpats on the
order of O(2%) for sentences in n implications, limits the size of the sentences
that can be evaluated by a given L1 A and increases the nomber of pins needed
on the VLSI package. However. many data inputs are Zrue ot false, or are
composed of a repeated number of variable inputs. Based on this cbservation
we are designing £LAs that have external control inpats, and a restricted
namber of external data inputs.

LLA programming is an instance of the more general problem of
programming analog and hybrid digital-analog compater architectures.
Becanse LLA-based systems will be either analog or hybrid digital-analog
mmmwmmmpmw&r
them.

The dual logical and algebraic semantics of Lukasiewicz logic allow £L.As to
implement expert systems. nearal networks, and fuzzy logic functions. We
presented schematic examples for cach application. and reported the resalts
obtained by programming the prototype LLA as a fuzzy function generator.

The resaits showed that the LA implemented the notch function linearly,
bat with a slope that varied from that of the calculated function. This scaling
was due to an arbitrary choice of a resistor in the measuring circuit.
Opﬁmllyclnngingthismbumwascakdatedwyiddompmwilha
rypicalenoroflessthan.‘%.andammcﬂorhsthano.s%. Changes to
the £LA basic cell, and MOSIS muns specifically for analog circuits, are
expectedtoimpmemmyandmprcckim.

Mpmtamc}njkngeh&edﬁignofmivdypamﬂelpmoasom
as well as the design and programming of analog and hybrid compaters. For
thosepmblcmwhempmcisionmaybemdcdforspeed.&l.&spmvidem
excellent solution.

- Mills, Beavers and Daffinger

Lukasiewicz Logic Arrays

Page 6

ACKNOWL EDGMENTS

Gregory J. E. Rawlins' and the referces’ suggestions were extremely belpful.
Several long discussions with Dr. Rawlins belped improve our presentation
of the ideas contained in the original version of this paper.

REFERENCES

[1] Yamakawa T. and T Miki 1986. The curent mode fuzzy logic
integrated circuits fabricated by the standard CMOS process. IEEE
Transactions on on Computers C-35 (2): pp. 161-167.

[Z] Rumelhart, D. E, and J. L. McClelland. 1986. Parallel Distributed
Processmg. Cambridge, Massachusents: MIT Press.

[3] Grossberg S. 1988. Neural Networks and Natural Intelligence.
Cambridge, Massachnserrs: MIT Press.

{4] Wilkinson, R. H. 1963. A Method of Generating Functions of Several
Variables Using Analog Diode Logic. JEEE Transactions on Electronic
Computers EC-12 (2): pp. 112-128.

(5] McNanghton, R. 1951. A theorem about infinite-valued sentential
logic. Journal of Symbolic Logic 16 pp. 1-13.

[6] Mills, J. W, and A. A. Faustini Lucid: An Intensional Programming
Language fordukasiewicz Logic Arrays. (in preparation)

[7]1 Codd. E. F. 1968. Cellular Automata. New York. New York: Academic
Press.

(8] Kung H.T. and C. E. Leiserson. 1978. Systwolic arrays (for VLSI).
Proceedings of Symposrum on Sparse Matrices Computations.
Knoxville, Teanessee: SIAM. pp. 245-282

[9] Alspector. J, R B. Allen. V. Hu and S. Satyasarayana. 1987.
Stochastic learning networks and their electronic implementation.
Proceedings of Neural Information Processing Svstems—~Natural and
Synthetic. Denver, Colorado, November 8-12:

[10] Alspector, J.. and R. B. Allen. 1987. A neuromorphic VLSI learning
system. ln Advanced Research in VLSI: Proceedings of the 1987
Stanford Conference. Edited by P. Losleben. pp. 313-349. Cambridge.
Massachusetts: MIT Press.

[11] Mead. C. 1989. Analog VLSI and Neural Svstems. Edited by L.
Conway, C. Seitz and C. Koch. VLSI System Series/Compatation and
Neural System Series. Reading. Massachusetts: Addison-Wesley.

{12] Belnap. N. D. 1977. How a computer should think. In Contemporary
Aspects of Philosophy. Edited by G. Ryle. pp. 30-56. Boston
Massachusertts: Orel

[13] Leiserson. C. E. 1981. "Area-Efficient VLS| Compatation.” PhD.
Dept. of Compater Science. Carnegie-Mellon University.

{14] Mills. J. W. 1989. A pipelined architecture for logic programming with
a complex but single-cycle instruction set. Proceedings of [EEE Ist
International Tools for Artificial Intelligence Workshop. Fairfax.
Virginia: [EEE Computer Society Press. pp. 326-333.

[15] Celis, I B. Cox. L-L. Shyw and J. W. Mills. 1989. LIBRA bit-slice
design. Computer Science Deparunent [ndiana University:

[16] Allew. C. M, and D. D. Givone. 1984. The Allen-Givone
impl. ion oriented algebra. In Computer Science and Multiple-
Valued Logic. Edited by D. C. Rine. pp. 268-288. Amsterdam: North-
Holland.

[17] Hurst S, L. 1986. A survey: developments in optoelectronics and its
applicability to multiple-valued logic. Proceedings of IEEE 16th
Svmposium on Multiple-Valued Logic. Blacksburg, Virginia: [EEE
Computer Society Press. pp. 179-188.

[18] Matrey. R. F, D. D. Givone. and C. M. Allen. 1973. Applying
maltiple-valued algebra concepts to neural modeling. Proceedings of
IEEE International Sympostum on Multiple-Valued Logic. Toronto,
Canada:

{19] Giles, R 1976. Lukasiewicz logic and fuzzy set theory. Int. J. Man-
Machine Studies 8 pp. 313-327.

[20] Yamakawa T 1988. High-speed fuzzy controller hardware system: The
Mega-FIPS machine. Information Sciences 45 (2): pp- 113-128.

{21] Giles, R. 1985. A resolution logic for fuzzy reasoning. Proceedings of
IEEE 17¢h International Symposium on Multiple-Valued Logic. IEEE
Computer Society Press. pp. 60-67.

[22] McCulloch, W. S., and W, Pitrs. 1943. A logical calcalus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics 3
pp. 115-133.

[23] Kleene, S. C. 1956. Representation of events in nerve nets and finite

ta. In Automata Studies. Edited by C. E. Shannon and J.
McCarthy. pp. 3-31. Princeton: Princeton University Press.

[24] von Neamann, J. 1956. Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components. In. A ta Stud
Edited by C. E. Shannon and J. McCarthy. pp. 43-99. Princeton, New
Jersey: Princeton University Press.

[25] Graf. H. P. L. D. Jackel and W. E. Hubbard. 1988. VLS
implementation of a neural network model [EEE Computer 21 (3): pp-
41-49.

[26] Giles. R. 1979. A formal system for fuzty reasoning. In Fuzzy Sets and
Systems 2. pp. 233-257. North-Holland.

[27] Giles, R- 1982 Semaatics for fuzzy reasoning, Int. J. Man-Machine
Studies 17 pp. 401-415.

[28] Zadeh, L A. 1975. Fuzzy logic and approximate reasoning. Synthese
30 pp. 407-428.

{29] Yamakawa T. and H. Kabuo. 1983. A programmable fuzzifict
integrated circuit—synthesis, design and fabrication. Information
Sciences 45 (2): pp- 15-112

[30] Lukasiewicz. J. and A Tarski 1930. Untersachungen iber den

rendus des sé. de la Société des sciences
et des lettres des Varsovie Classe 1 (23): pp. 30-50.
31] Gaines, B. R. 1976. Fuzzy reasoning and the logics of uncertainty.

B Proceedings of [EEE 6th International Symposium on Multiple-Valued
Logic. IEEE Computer Society Press. pp. 179-188.

[32] Rescher. N. 1969. Many-Valued Logic. New York: McGraw-Hill

Mills, Beavers and Daffinger

Lukasiewicz Logic Arrays

Page 7

TECHNICAL REPORT NO. 296

Lukasiewicz Logic Arrays
by
Jonathan W. Mills, M. Gordon Beavers and Charles A. Daffinger

Revised: March 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

fukasiewicz Logic Arrays

Jonathan Wayne Mills
M. Gordon Beavers
Charles A. Daffinger

[ndiana University
Bloomington, Indiana 47405

Abstract

Eunkasiewicz logic arrays (LLAs) are massively parallel analog computers
organized as binary trees of identical processing elements performing either
implication (—), negated implication (+*) or both. We have designed and
built a working 31-cell CMOS VLSI LLA whose cells perform implication
(—)- In this paper we discuss the rep ion compl of Lukasiewicz
logic with respect to other multiple-valued logics, describe the architecrure of
the prototype LLA, its relationship to cellular automata and its VLSI
implementation, show how the prototype £LA is programmed, and report on
results obtained by programming the prototype £1.A as a fuzzy fonction
generator. Because ELAs have both an algebraic and a logical operational
semantics, they can be used to implément approximate reasoning systems,
including expert systems and neural nerworks.

L. INTRODUCTION

Lukasiewicz logic arrays (LLAs) are massively parallel analog computers.
They are organized as binary trees of identical processing elements {called
PEs, or cells), each PE performing either fukasiewicz implication {—),
negated implication () or both.

We have designed and built a working 31-cell CMOS VLS] LLA whose cells
perform implication (—=). In this paper we discuss the representation
compl of Lukasiewicz logic with respect 1o other multiple-valued
logics. describe the architectare of the prototype LLA, its relationship to
cellular automata and its VLS| implementation, show how the prototype
£LA is programmed, and report on results obtained by programming the
prototype £LA as a fuzzy function generator.

The success of the prototype has encouraged us to contnue research in the
design and application of ELAs. During this research we have observed that
LLAs offer advantages as massively parallel analog computers.

1.1 ADVANTAGES

LLAs are regular VLSI architectures. The VLSI implementation of LLAs is
simple and area-efficient because they are derived from cellular avtomata and
implemented with analog rather than digital processing elements. Although
LI As are analog computers they can be made surprisingly precise (5 to §
bits), due to the simplicity of their processing elements and the accuracy of
VLSI process technology.

LI As are inductive architectures. which means that they can be expanded by
adding more processing elements without redesigning the interconnection
network. While small LLAs can be used as circuit components, large £L As
can be used as massively parallel computers. Larger £ As can be created by
cascading individual ELAs.

The general-purpose nature of ELAs is theoretically well-founded. Multiple-
valued logics used in computational networks are capable of both symbolic
and algebraic computation. L[As can implement fuzzy inference and expert
systems [1], neural networks [2. 3], and algebraic functions [4, 5]. Viewed as
circuit components, ELAs are the multiple-valued logic equivalent of
programmable logic arrays (PLAs) for Boolean logic.

1.2_DISADVANTAGES

Of course, £LAs are not ideal analog processors, but we are worlking to reduce
their drawbacks.

The prototype £1 As are programmed using normal forms of sentences in the
Lukasiewicz logic. This introduces data inputs on the order of O(27) for
sentences in n implications, and limits the size of the sentences that can be
evaluated by a given LLA. Using the normal form also increases the number
of pins needed on the VLSI package, far beyond the number available even in
the foreseeable fumre. However, many data inputs are frue or false, or are
composed of a repeated mumber of variable inputs. Based on this observation
we are designing LLAs that have external conwol inputs, and a restricted
number of external data inputs. The data inputs are replicated and selected
internally at each input of the processor array according to the externally
applied control inputs.

Becanse LI As are a new form of computational engine their use is still being
studied. We have only a basic understanding of the programming
methodology for LLAs. For example, the theoretical applicability of £LAs
as neural networks does mot immediately lead to the construction of
algorithms for back-propagation.

LIA programming is an instance of the more gemeral problem of
programming analog and hybrid digital-analog computer architectures.
Research in this area stopped about 1970 due to the dominance of digital
computers. Because LLA-based systems will be either apalog or hybrid
digital-analog computers we must develop programming languages for them.
Mills and Faustini [6] have proposed a language for LLA-based systems, but
its operational semantics are still only partly defined. Completion of the
semantics will require a more exact characterization of the dynamic behavior
of LL As, particularly £ LAs with cyclic interconnections.

The next section describes Lukasiewicz logic and its representation

completeness relative to the class of multiple-valoed logics whose valuation
functions can be defined in terms of +, —, min and max.

2. THE MULTIPLE-VALUED LOGICS CLASSES
Ligy) AND Liy _avy

{Lukasiewicz and Tarski 1930) contains a compendium of the results of
investigation into multiple-valued logics obtained by Lukasiewicz and
his students in the 1920’s. Following the initial efforts of Lukasiewicz
and Post other multiple-valued logics were developed, both discrete and
continuous. Summaries of these logics can be found in (Rescher 1969)
and (Gaines 1976). Most of these logics belong to Lig,1) which is given
by:

Definition 1. A logic L is a member of the class Lig 1) iff there 1s
a logical matriz M appropriatie for L with M =< P, D > where P is
a non-empiy algebra whose carrier set 1s a subset of the real number
range [0,1], with D, the set of designated elements, a non-empty proper
subset of the carrier sel.

The class Lyg 1) can be further restricted to vield a class of logics whose
valuation functions for the connectives can be expressed in terms of
addition, subtraction. maximum. and minimum alone. This class will
be denoted by L{4 - av}-

Definition 2. 4 logic L in Lig yj is in L{4 — a v} iff all sentences of L
can be evaluated using only the operators +. —. maz, min on the values
of the atomic sentences of L.

©1990 by [EEE

To appear in the Proceedings of the [EEE 20th Intemational Symposium on Multiple-Valued Logic

The importance of the class L, _ .} is that 1t contains only those
logics whose sentences can be easily evaluated by analog circuits using
electrical current to represent the values of logical variables. The valu-
ation functions of these logics can be implemented by adding and sub-
tracting electrical currents — simple operations for electronic devices:
and by utilizing Ohm's law, Kirchofl's law and the law of conserva-
tion of energy to implicitly implement the operations maz and min for
electrical currents using the physical properties of the circuit. Further-
more, this class contains logics. such as {uzzy logic, whose significance
to the fields of approximate reasoning and artificial intelligence is well
established.

2.1 REPRESENTATION COMPLETENESS OF LUKASIEWICZ
LOGIC RELATIVE TO Ly - av)

That Lukasiewicz logics are members of the class Ly _ v} follows
from:

Definition 3. L is a Lukastewtc: logic if L has a modelM =< A. D >
where A =< §,—.—> and S 15 a subset of [0,1] such that:

1. 1€85,

2 Ifr,y€S thenminil.1—x+y)J€ S, andl - €S,
where £ — y and —z are evaluated as 1 —z+y and 1~z respectively.

If S = [0,1] we get the classical propositional calculus. If S has n
elements then we get the n-valued Lukasiewicz propositional calculus
L,. If the cardinality of S is Ko or 8y we get Ly or Ly, which happen
to have the same set of theorems. Ve designate Ly, by L and take §
for L to be the set of rational numbers between 0 and 1.
(Giles 1976) shows that Zadeh's seminal work on fuzzy set theory is
closely related to Lukasiewicz logic. That L is representation complete
with respect to the class of logics Ly, _ 1 v} follows from the fact that
the evaluation of formulae in L has the following properties:

1. v(=(¢)) = v(¢ —0).

2. maz(v(6).9(¥)) = v((6 — ¥) — v).

3. min(v(8), v(¥)) = v(~((~6 — ~v) — -v))

4. min(l,v(9) + v(¥)) = v(~e — ¥)

With the ability to perform these calculations. we have the first step in
our justification of the LLA as a fundamental circuit for approximate
reasoning.

2.2 MeNAUGHTON'S THEOREM

McNaughton’s theorem allows us to use L at different levels of abstrac-
tion, in particular as a classifier for elements of fuzzy sets. By showing
that valuation functions for connectives in sentences in L are equiva-
lent piecewise to polynomials of degzree one that map the hyperspace
[0,1]* into the interval [0, 1], the capability of building fuzzy pattern
recognizers is provided. Thus a series of sentences in L defines the poly-
tope of some simpiyv connected solid in hyperspace of degree n. This
allows us to express arbitrarily complex membership relations in logical
form; in a VLSI circuit we define the polyvtope with a sentence from
L, which is converted to the normal form (derived in section 4) of the
sentence representable by one or mnore LLA circuits. The LLA circunt
may be “programmed” to deal with variants of the original sentence oy
assigning incoming data to speciiic circult inputs.

Theorem 1. (McNaughton 1951) Let uy, ..., un be numerical variables
and Iy,...,z, be proposilional variables. For a function f(uy...,u.)
there is a logical formula @ of L such that f(uy, ...,ua) = v(6(z1..... za))
i
ff
(i) f is continuous over {0,1])" and Range(f) C [0,1]. and
(ii) there 15 a finile number t of distanci polynomuals =y, ... 7,
each of the form
T = bj + my Uy + -4 M jUn
with b;, m; ; integers suckh that for every <uy, ..., un > there
15 a j such that
flur, v ua) = 75(up, o ttn).

Next. homogeneous, heterogeneous and logical cellular automata are defined,
and on this basis a Lukasiewicz logic array is developed that implements
implication for E..

3.]1_DESIGN

Lukasiewicz logic arrays resulted from research into cellular automata as
parallel architectures for logic progr ing.l Cellular avtomata are of
particular interest becanse they lead to area—cfficient VLSI architectures. Such
architectures are implemented as regular arrays of processing elements which
communicate the Its of their ¢ ion locally. They are derived by
instantiating a portion of a cellular automaton as a VLSI circuit. The
structure and function of the circuit anses from the definition of a cellular
automaton:

Definition 4. [7] A cellular automaton C is defined by the quadruple (S, &
K, ¢) where:

s is a two-dimensional cellular space defined by the set of cells @
€ I x [where [denotes the set of integers.

g isaneig pping S — 25 such that g() is
a set defining the cells in the neighborhood of arelative to a
Typically a is a member of its own neighborhood.

) g | A Bt te,
El

K is a neighborhood state function at some time t. Values of cells
in the neighborhood of & at time t are obtained by applying b
to the neighborhood g(a). The successive states of a at times
{10 t], 13 .} can be defined by the composizion f oFf og(a) =
v,

-] is a finite automaton replicated in each cell of 5 and defined by
the triple (Y va). V is the set of states possible for each cell,
v a distinguished quiescent state, and f a transition function
mapping n-tuples of elements of Vinto ¥ The transition
function f is constrained to preserve quiescence locally by
requiring f(vp vo .-, vo) = vp

A cellular is homog if the neighborhood function and the
finite antomaton are identical for all cells in the cellular space S at all times £,
otherwise the cellul

1= k.
on is heterog

Heterogeneous cellular automata model a wide variety of parallel
computational devices. Examples include the systolic architectures of Kung
and Lieserson [8]. the stochastic neural machines of Alspector et. al. [9, 10]
and the analog VLSI compaters of Mead [11].

Ideal Lokasiewicz logic arrays (RLAs) are heterogeneous cellular automata
that implement a d bly infinite e schema of L. The sentence
schema of £ and the cellular automaton C are related by requiring the logical
variables of L 1o comespond to cells in the cellular space S, the structure of
the sentence schema to comespond to the neighborhood function g and the
connectives of L to correspond to the transition function f of . L is
therefore a logic in the sense used by Belnap — an organon, or a tool for
inference — and not a formal axiomatic theory [12].

Real Lukasiewicz logic armrays are derived by restricting the denumerably
infinite sentence schema of L. to a finite sentence schema, and implementing
the finite cellular automaton that results as a direct correspondence
architecture. The structure of the resuiting £LLA is dependent on its
interconnection network. The prototype £LA ases an H-tree network whose
nodes are the processing elements comesponding to the conmectives in the
finite sentence schema. The H-tree network was selected for ifs efficient nse
of area on a VLSI circuit, as first proposed by Leiserson [13].

1 In the general semse of "programming with logic” rather than the
restricted sense of implementing Prolog.

Mills, Beavers and Daffinger

Lukasiewicz Logic Amays

Page 2

s »
i

Lukasiewicz logic armays are implemented with analog processing elements.
A cell in the ELA is implemented as an analog curmrent-mode device
performing addition. subtraction, min and max on currents. Addition and

btraction are doge i L isly, though the circuit needs a short time to
stabilize.? Early in our work we learned of a senes of fuzzy functions
implemented by a basic logic cell [1]. The circuits which implement these ®
functions also implement the algebraic valuation funcuons for E. For oumr
purposes the most useful of Yamakawa's circuits are implication (—), which
computes min(l, 1 - a + f), and bounded difference, which computes max(
0. a - B). Algebraically reducing the expression for negated implication (
~(a—=B).or a+ B) from (1 - min(l. 1 - a + B)) yields max(0. a -
) showing that it is equivalent to the bounded difference.

o

a2

The design uses Kirchhoff's laws to sum currents at pownts within the LLA
cell. To ensure that the varying current drains of adjacent cells do not affect

the computation of_ rh_eir predecessors, as well as gt_la.ranteeing a proper input 9 R
voltage, each cell is isolated by a set of current mirrors. MOS FET current
mirrors have very good accuracy in making any number of copies of a given . 3 ?
input current without placing a variable drain on that input current. = i\\\‘h S]
o N 3 I
The basic cell consists of six current mirmrors. and performs Lukasiewicz - i 3 -
implication (—). A cell has two inputs and a single output. and is designed 5 3 i
to be tiled in an H-tree (Figure la). The basic cell uses 11 trapsistors. and s - R \ -
35u by 114y using the 2u SCPE technology provided by the MOSIS 53 x
fabrication service (Figure 1b). Basic cells are combined in an H-tree 1o form § \
the LLA (Figure lc). . £ \\\\(“kt .
The operating range for the ELA cell varies from 0 to 7 volts with input and . g ; e -1

output currents varying from 0 to 20 microamperes (uA). Within this range ==

the accuracy of the LA is affected by three sources of emor. The first is ..::ﬁ - - ;*

steady-state error. which is dependent on the acrual dimensions of the
transistors and other process parameters for a particular MOSIS rua. The

second source of error is temperamnure dependent. and vanies as the lemperarure (¢) Lavout of a 31-cell 5-level LLA
changes over long peniods of time. As long as the temperature of the system
in which the LLA is placed vanes uniformly this error can be ignored. The Figure 1. Heterogeneous L1 A in implication (—)

third source of error is transient error which arises when large current swings

occur in the wnputs of the LA and lasts until the cell has stabilized.
SPICE simulations indicated that steady-state error is well-behaved, and
remains within 1.3% mean and 4% maximum for small cells. growing
slowly as the depth of the LLA is increased. Our observations agree with the
simulation.

The transient error s dependent upon how chaotic the inputs of the curcuit are.
This is related 1o the number of imputs that change during a sampling

L [interval the amount by which they change. and the level of current used for

| €—] the frue. or maximum value. Selecting a high value for frue increases the

@ 1 L., precision of the LA but at a price: larger curment swings will require a
I—.—i I-.-{ longer sertling time. and produce a slower circuit.

Choosing an analog processing element yields several advantages. Because

é 6 % the ELA is a current-mode circuit it has a precision which is not achievable

with an equivalently-sized voltage-mode circwit. Although E is infinitely
(a) Schemarc of implication cell (—) valued. in practice only £~ through Ensg can be implemented due to device
error and the resolution of our measuring devices. The output error measured
for the prototype LLAs is in the range of 025% to 2%. This gives an
information density ranging from 5.6 to 8.6 bits. or approximately 50 to 400
discreet values per LLA. This is a usetul precision for approximate reasoning
systems.

Plago 4 : ST The processing elements are simple. performing only Luokasiewicz

7 220 f ? : 7 . implication (—) to evaluate the sentences in L defined by the schema

; Processing elements need onlv rwo input wires and ome oufput wire becanse

they use analog values. Thus. the bus strucrure of the ELA is also area-
efficient.

The total area used by an LLA is much less than the area required for an
equivalent digital processor. This is based on the mumber of transistors
needed to implement the digital processor’s arithmetic logic unit (ALU) and
register file. but not its control and bus wterface circuitry. If each processing
element has eight bits of precision. then the LIBRA digital ALU [14. 15]

(b) Layout of implication cell (—)

2 Simulations have been conducted on a fimescale of microseconds, with uses 935 times more transistors and is 1.020 times larger than the basic cell
the response of the circuit to a change of inputs instantaneous on that of the LLA (Table 1).
scale.

Mills, Beavers and Daffinger Lukasiewicz Logic Arrays Page 3

Table 1. Comparnison of the Eukasiewicz logic ammay 1o a digjtal Prolog
processor
L1LA LIBRA Increase
Transistors 11 10,288 935x
Area 6272u | 64 x 10542 | 1.020x

However, one drawback to an area-efficient circuit is that it is limited by the

ber of pins available on existing VLSI circuit packages. Although an
array of 1024 Lukasiewicz implication (—) cells could easily fit onto a
4500u x 2300u chip, it would require 2048 input pins and 1 outpur pin.
This is 1,921 more pins than are available on a 128 pin-gnd amay package.
Our research has shown that many functions implemented with £LAs will
have more than half of their inputs tied to frue ot false. For these functions £
)LAs can be bailt that use a programmable interconnection nerwork to route
internally replicated frue and false inputs to the PE array. Data inputs also
tend to be used more than once. so they could be internally replicated and
routed. too. This approach allows large ELAs to fit into existing VLSI
packages.

The ELAs described here resemble 1960's-era analog and hybrid digital-analog
computers. This leads to the view of LLA programming as an instance of the
more general problem of programming analog and hybrid computer
architectures. We develop a low-level ELA programming methodology in the
following section.

4. PROGRAMMING IN LUKASIEWICZ LOGIC

LLAs are programmed at the lowest level by fixing an interconnection
network for the inputs, and presenting inputs that are either rrue. false. or
variable. Because it is not practical to build an ELA for each sentence in £.
it is mecessary 1o develop a normal form that maps arbitrarv seaiences onto
some general ELA.

4.1 _ABALANCED NORMAL FORM FORS

The prototype £LA is structured as a binary tree whose nodes are connectives.
and whose leaves are logical variables. Most es in £ do not map
directly to this schema. but must be transformed to equivalent sentences
which do. This general form of a sentence in L is the balanced normal form
in implication. with explicit negation possible anywhere in the sentence.

Definition 5. A sentence in £ is in balanced normal form in
implication if there exists some designated implication in
the sentence. starting at which a binarv tree of
implications can be extracted, and for which at each non-
leaf node m the tree the number of implicanions and
logical variables in each subtree rooted at that node is

equal.
Theorem 2. Any sentence in L can be rewritten to an equivalent
sentence in balanced normal form in implication.

Production of this balanced normal form can be viewed as an inverse
operation of the minimization of Allen and Givone [16]. The circuit
implements balanced normal form sentences in L because it is structured as
an H-tree. The use of a binary tree to realize n-input R-valued funcuons for
multiple-valued logic circuits was described by [17].

Y VE]

The next step toward developing a useful normal form is the transfer of
negation from an arbitrary point in any sentence, moving it to either the root
or one or more leaves in the binary tree of connectives and logical variables.

Unformnately, we suspect that no sormal form for Lakasiewicz logic exists
with negation moved to either leaf or root implications. Bat it is just as
useful from 2 computer architect's point of view to leave the negation in
place as long as the negated expression —a can be re-written to an equivalent
form that does not use pegation explicitly, namely a — false. A clanse
expressed in only one comnective, while textually more complex, may be
mapped to smaller and simpler physical devices that perform negation using
data inputs alone.

The balanced negation-free normal form is obtained by removing negation
from any sentence of £ by simplification where possible, or by rewriting
negation as @ — false otherwise. To define the balanced negation-free normal
form we first define a negation-free normal form as follows.

A sentence inL is in negation-free normal form iff it is
expressed only in implication, and contains some
designated connective such that a binary tree of
connectives can be constructed whose root is the
designated connective and whose leaves are logical
variables in the clause.

Definition 6.

To contince the transformation the concept of the weight of a tree must be
defined (it was implicit in Definition 5 of the balanced normal form). From
this it is a short step fo the definition of the balanced negation-free normal
form (BNF normal form) and an equivalence theorem.

mm;hofam&mmofmad
logical variables contained in the tree.

Definition 7.

A clause is in BNF normal form iff it is in negation-free
normal form. and at each non-leaf node in the tree the
weights of each subtree are equal.

Definition 8.

Theorem 3. Any sentence in L can be transformed to BNF normal

form.

The proofs of Theorems 2 and 3 are omifted, but an example provides their
substance. Consider the transformation of an arbitrary sentence in L to BNF
normal form. The sentence 15 unbalanced initally, and contains negation

(Figure 2).

il
/—.\ “1\
/_"_'

M
(a (B —==Y))~~8

Figure 2. Unbalanced sentence m L

The resultant BNF normal form to which it is transformed is shown mext
(Figure 3). Although the texmal form of the L

e is mMore comp the
BNE normal form uses cells of the £LA that the first form wouald have left
unosed. These "extra” inputs and implications can be used to adjust the
constraints under which the sentence is true.

i i

(@ =TT o) =T =) === = (T =T)~=(T &) (T *D =T =M

Figure 3.

BNF normal form of sentence in Figure 2

Mills, Beavers and Daffinger

Lukasiewicz Logic Armays

Page 4

43 COMPLEXITY OF THE NORMAL FORM

The proof that the number of logical variables and connectives in the normal
form is of complexity O(2") where n is the minimum height of the trees
formed from an arbitrary sentence of L. is outlined: simplify all negations,
then treat any negation remaining as a node in the tree; generate a set of trees
by successively designating each implication in the sentence as the root
connective, then select n equal to the minimum of the height of all generated
trees. The number of inpats is at most 2*1, and the number of nodes in the
tree is 27. Although the presence of exponential complexity in both normal
forms is disturbing, some optimizations are possible. For example, if a
sentence in L is transformed to BNF normal form. many of the inputs on the
original degenerate branch are either true or false. When a normal form is so
large that it spans multiple VLSI circuits, then it is possible to remove the
true and false inputs by supplying the single value instead of compuung it
with a series of LLAs.

2. APPLICATIONS OFLLAS

Lukasiewicz logic arrays were first proposed to evaluate sentences in L. but
because Lnkasiewicz logic describes other forms of approximate reasoning, £
JLAs are useful for a variety of applications. The dual logical and algebraic
semantics of £ allow ELAs to implement expert systems. neural nerworks
[10, 18], and furzry computers [19. 20]. We present schematic examples for
each application, and report the results obtained by programming the
prototype ELA as a fuzrzy function generator.

3.1 _EXPERT SYSTEMS

L1 As implement expert sysiems by mapping membership functions to
processing elements at lower levels in the amray. and rules to processing
elements higher in the array. A mle is a single tree that is true or false to a
degree that depends on its inputs. Rules can be designed that do not fire
unless their inputs reach a desired confidence level (Figure 4).

L[A implementation of expert system

Figure 4.

A single Lukasiewicz logic array can implement a simple expert system.
which may be used to embed limited “intelligence” in individual sensors.
Within the armray some processing elements operate at a low level of

b ion. evaluating membership in a furzy set while other processing
elemeants operate at a higher level of abstraction. implementing a rule for that
sensor. The rule's operation may vary based on control inputs 1o the
LLA The exper system evaluates its sensor's input. firing the rule if the
confidence factor is exceeded.

2.2_NEURAL NETWORKS

McNaughton's theorem (see Section 2) and Giles' Logic of Assertions [21]
relate sentences in Lukasiewicz logic to piecewise-linear functions and the
theory of convex anmalysis. This is the functional domain of pattern
recognizers and classifiers (Figure 3). which has encouraged us to investgate
neural networks implemented with ELAs.

Early models of nerve nets were described by McCulloch and Pits [22].
Kleene and von Neumann anticipated much of the present-day work in neural
networks, offering theoretical descriptions of the events representable in
neural networks [23], and the creation of reliable computing systems from
unreliable components [24].

(a) Non-comvex space (b) Decomposed into convex hulls

[Noe

(c) Expressed as a sentence in Lukasiewicz logic:
oA-YA-L

Figare 5. Relationship of non-convex space to Lukasiewicz logic

The evaluation formula for Lukasiewicz implication shows bow it may be
used to o 1 a very simple " " [n the expression min(l, 1 - a +
B). a is an inhibitory input that lowers the “firing rate”, or truth value. f is
an excitatory input that increases the "firing rate.” Recursively connecting
several implication cells produces a "neuron” with a variable threshold (Figure
6a). Summation units can also be devised (Figure 6b).

Out 2%

False %2

= Threshold = Jbie
In 1
Xq False
(a))

Figure 6. lmplementing a “neuron” and summing element with an £LA
Simulations of interconnected LLA “neurons” and summing elements show
that they have the basic properties needed to construct a neural nerwork. The
behavior of a “neuron” can be changed by modifying its threshold. For
example. the slight delay before the second output pulse in the simulation is
due 1o an intermediate "neuron” (Figure 7).

0.70

— iopot

R STRTAFTRIRNeN INIRANTRTU ORI

T

0 10 20 30 40
time

Simulation of interconnected LA "neurons”

Mills, Beavers and Daffinger

‘Lukasiewicz Logic Amays

Page 5

We are now working to construct a trainable neural network from these basic
components. The initial version will be a hybrid digital-analog system.
similar to those of Alspector and Graf [9, 10, 25]. However, we hope fo
devise analog-only systems using double-poly capacitors as storage elements
for weights.

23 FUZZY LOGIC

Lokasiewicz logic is closely related to fuzzy logic [19, 21, 26, 27, 28].
Yamakawa shows designs for fuzzy inference engines and expert systems
which may be embedded in Eukasiewicz logic arrays [1, 20, 29]. We have
used the prototype LLA to compute furzy membership functions, and present
the results obtained along with observations on the error measured using the
prototype ELA.

Ax interesting fuzzy membership function is the “potch”. defined by the
expression (~a—=a) — = (a-—= - a) This membership function

was programmed into the 31-cell LLA as the following 32-element vector:

The output of the ELA was measured over the operating range of 0 to 20
pAmperes (A) by varying a. The membership function was also calculated
after adjusting the ¢valuation function for Lukasiewicz implication to the
operating range of the circuit (Figure 8a).

The result of this experiment showed that the LLA implemented the notch
function linearly, but with a slope that varied from that of the calcalated
function. This scaling is due to an arbitrary choice of a resistor in the
measuring circuit. By changing this resistance (“trimming™), the output can
be adjusted to produce a much closer fit We have calculated that an
optimally trimmed LLA would have a typical emmor of less than 2%, and a
mean error less than 0.5% (Figure 8b).

Several factors contribute to the observed emor. The true reference for
implication (—) only partially corrects the outpat. Also, an error due 1o
variations in each cell is randomly distributed through the LLA. A
simulation with random errors distributed through the £LA indicated that the
total error should be mo greater than the error of a single cell. Our
observations agree with this simulation.

A trimmed LLA computes fuzzy functions accurately. Error is within 15%
of ideal. with error near 4% where the current changes valve rapidly. Witk
further modifications to the circuit, and trimmed outputs, the error should
drop to less than 1% as reported by Yamakawa [1].

We close with a summary of our resuits and directions for future research.

6. CONCLUSIONS

Lukasiewicz logic is representation complete with respect to other multiple-
valued logics. Mapping sentences in Lukasiewicz logic to cellular automata
leads to parallel architectures that can perform a variety of computations.

We described the architecture of an operational 31-cell CMOS VLSI £ELA,
which is regular, simple, area-efficient and implemented with analog rather
than digital processing elements. Although LLAs are analog computers they
can be made surprisingly precise (5 to 8 bits).

The protorype ELAs are programmed with input vectors derived from pormi
forms of sentences in the Lukasiewicz logic. This requires data inputs on the:
order of O(20) for sentences in n implications, limits the size of the sentences
that can be evaluated by a given LLA and increases the number of pins needed
on the VLSI package. However. many data inputs are frue or false, or are
composed of a repeated number of variable inputs. Based on this observation
we are designing LLAs that have external control inputs, and a restricted
number of exteral data inputs.

LLA programming is an instance of the more general problem of
programming analog and hybrid digital-analog computer architectures.
Because LLA-based systems will be either analog or hybrid digital-analog
comp futore b includes developing programming languages for

them.

The dual logical and algebraic semantics of Lukasiewicz logic allow ELAs to
implement expert systems. neural networks, and fuzzy logic functions. We
presented schematic examples for each application. and reported the resulis
obtained by programming the prototype £LA as a fuzzy function generator.

The resalts showed that the LLA implemented the notch function linearly,
but with a slope that varied from that of the calculated function. This scaling
was due to an arbitrary choice of a resistor in the measaring circuitl.
Optimally changing this resistance was calculated to yield output with a
typical error of less than 2%, and a mean error less than 0.5%. Changes to
the LLA basic cell and MOSIS muns specifically for analog circuits, are
expected to improve accuracy and increase precision.

LLAs present a new challenge in the design of massively parallel processors,
as well as the design and programming of analog and hybrid computers. For
those problems where precision may be traded for speed, LLAs provide an
excellent solution.

20
15—
10 —
5 —
0
U] 5 10 15 20
10 -
s3-
3
0 - -
] :
$ T — — —T—
0 5 10 15 20
(@) Uninmmed "noich” and ermror
20
15 —
10—
G e T R L R R :
i — Caleulated (uA)
: = Trimmed (uA)
0 — T T
o 5 10 13 20
10 — -
E : — Error (%)
53 ¢
o —
] U
s T T T T T T T L j T T T T l T T L k]
0 5 10 15 20
(b) Optimally trimmed "notch™ and error
Figure 8. LLA implementationof (~a—a)— ~(a—=-a)
Mills, Beavers and Daffinger

Lukasiewicz Logic Arrays

Page 6

Gregory J. E. Rawlins' and the referees’ suggestions were extremely helpful.

Several long discussions with Dr. Rawlins helped improve our presentation
of the ideas contained in the original version of this paper.

BEFERENCES

[1] Yamakawa T, and T Miki. 1986. The current mode fuzzy logic
integrated circuits fabricated by the standard CMOS process. [EEE
Tr ctions on on Computers C-35 (2): pp. 161-167.

2] Rumelbart, D. E, and J. L. McClelland. 1986. Parallel Distributed
Processing. Cambridge, Massachusetts: MIT Press.

[3] Grossberg S. 1988. Neural Nerworks and Natural Intelligence.
Cambridge, Massachusetts: MIT Press.

[4] Wilkinson, R. H. 1963. A Method of Generating Functions of Several
Variables Using Analog Diode Logic. JEEE Transactions on Electronic
Computers EC-12 (2} pp. 112-128.

(5] McNaughton R. 1951. A theorem about infinite-valued seatential
logic. Journal of Symbolic Logic 16 pp. 1-13.

[6] Mills, J. W, and A. A. Faustini. Lucid: An Intensional Programmmng
Language fordukasiewicz Logic Arrays. (in preparation)

[71 Codd. E. F. 1968. Cellular Automata. New York, New York: Academic

Press.

[8] Kung H.T. and C. E. Leiserson. 1978. Systolic arrays (for VLSI).
Proceedings of Symposium on Sparse Matrices Computations.
Knoxville, Tennessee: SIAM. pp. 245-282

[9] Alspector. J. R. B. Allen. V. Hu. and S. Saryanarayana. 1987.
Stochastic learning networks and their electronic implementation.
Proceedmgs of Neural Information Processing S) Natural and
Svnthetic. Denver, Colorado, November 8-12:

[10] Alspector. J.. and R. B. Allen. 1987. A neuromorphic VLSI learning
system. In Advanced Research in VLS!: Proceedmgs of the 1987
Stanford Conference. Edited by P. Losleben. pp. 313-349. Cambnidge.
Massachusetts: MIT Press.

[11] Mead. C. 1989. Analog VLSI and Neural Svstems. Edited by L.
Conway, C. Seitz and C. Koch. VLSI System Series/Computation and
Neural System Series. Reading. Massachusetts: Addison-Wesley.

(12] Belnap. N. D. 1977. How a computer should think. ln Coniemporary
Aspects of Philosophy. Edited by G. Ryle. pp. 30-56. Boston
Massachusetts: Orel.

[13] Leiserson. C. E. 1981. "Area-Efficient VLSI Computation.” Ph.D.
Dept. of Computer Science. Camegie-Mellon University.

[14] Mills. J. W. 1989. A pipelined architecture for logic programming with
a complex but single-cycle instruction set. Proceedings of [EEE Ist
International Tools for Artificial Intelligence Workshop. Fairfax.
Vuginia: [EEE Computer Society Press. pp. 526-533.

[15] Celis, I. B. Cox. L.-L. Shyw. and J. W, Mills. 1989. LIBRA bit-slice
design. Computer Science Department [ndiana University:

[16] Allen. C. M., and D. D. Givone. 1984. The Allen-Givone
implementation oriented algebra. In Computer Science and Multiple-
Valued Logic. Edited by D. C. Rine. pp. 268-288. Amsterdam: North-
Holland.

[17] Hurst S, L. 1986. A survey: developments in optoelectronics and its
applicability to multiple-valued logic. Proceedings of IEEE 16th
Svmposium on Multiple-Valued Logic. Blacksburg, Virginia: [EEE
Computer Society Press. pp. 179-188.

[18] Matrey. R. F, D. D. Givone. and C. M. Allen. 1973. Applying
multiple-valued algebra concepts to neural modeling. Proceedings of
IEEE International Symposium on Multiple-Valued Logic. Toronto,
Canada:

[19] Giles, R. 1976. Lukasiewicz logic and fuzzy set theory. /nr. J. Man-
Machine Studies § pp. 313-327.

[20] Yamakawa, T 1988. High-speed fuzzy controller hardware system: The
Mega-FIPS machine. Information Sciences 45 (2): pp. 113-128.

[21] Giles, R. 1985. A resolution logic for fuzzy reasoning. Proceedings of
IEEE 17th International Symposium on Multiple-Valued Logic. IEEE
Computer Society Press. pp. 60-67.

[22] McCaulloch, W. S_ and W. Pirts. 1943. A logical calcatos of the ideas
immanent in nervous activity. Bulletin of Math ical Biophysics §
pp. 115-133.

[23] Kleene, S.C. 1956. Representation of events in nerve nets and finite
automata. In Automata Studies. Edited by C. E. Shannon and J.
McCarthy. pp. 3-41. Princeton: Princeton University Press.

[24] von Neumann, J. 1956. Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable C. £5. InA . Studres.
Edited by C. E. Shannon and J. McCarthy. pp. 43-99. Princeton, New
Jersey: Princeton University Press.

[25] Graf, H. P. L. D. Jackel. and W. E. Hubbard. 1988. VLSI
implementation of a neural network model. [EEE Computer 21 (3): pp-
41-49.

[26] Giles. R. 1979. A formal for fuzzy
Systems 2. pp. 233-257. North-Holland.

[27] Giles, R. 1982. Semantics for fuzzy reasoning. [nt. J. Man-Machine
Studies 17 pp. 401-415.

[28] Zadeh, L A. 1975. Fuzzy logic and approximate reasoning. Synthese
30 pp. 407-428.

{29] Yamakawa, T. and H. Kabuo. 1988. A pwmmbk ﬁlzziﬁgr
integrated circuit—synthesis, design and fabrication. Information
Sciences 45 (2): pp. 75-112

[30] Lukasiewicz, J. and A. Tarski. 1930. Untersochungen dber dea
Aussagenkalkill. Comptes rendus des séances de la Société des sciences
et des lettres des Varsovie Classe 111 (23): pp- 30-50.

31] Gaines, B. R 1976. Fuzzy reasoning and the logics of uncertainty.

i Proceedings of [EEE 6th International Svmposium on Multiple-Valued
Logic. IEEE Computer Society Press. pp. 179-188.

[32] Rescher. N. 1969. Many-Valued Logic. New York: McGraw-Hill

ing. In Fuzzy Sets and

Mills, Beavers and Daffinger

Lukasiewicz Logic Armays Page 7

