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0. Abstract

GraphView is an extensible graphical tool for interactively creating,
editing, manipulating, and displaying, graphs on the NeXT computer.
The key features of GraphView are its easy-to-use interface and its
easy-to-extend collection of graph manipulation tools. This technical
report discusses GraphView’s motivations, design goals, and

implementation details.
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1. Introduction

In the process of working with graphs or designing graph algorithms, there often is a
need for:

e displaying multiple graphs
e testing algorithms on different graphs

e analyzing the interaction between a graph’s structure and various algorithmic
transformations.

Until recently, pap~r and pencil were the primary tools used to address the above
needs. Computers were used occasionally, but only when the benefits of this out
weighted the typically large overhead for programming solutions. Such benefits have
occurred for special application areas of graphs (e.g. PERT charts and interprocedural
dependency graphs). However, the vast majority of research (and teaching) with and on
graphs is still carried out with paper and pencil. GraphView is an attempt to fulfill the
above needs with a general and easy-to-use software tool. With GraphView, we are
trying to answer the question:

“Can we build an interactive and extensible software tool
for displaying and manipulating graphs?”

This paper reports on our affirmative answer to this question. In particular,
GraphView is an extensible graphical tool for interactively creating, editing,
manipulating, and displaying graphs on the NeXT computer. GraphView’s key features
are its easy-to-use graphical interface and its easy-to-extend collection of graph
manipulation tools. Graphs can be created directly on the screen, read in from a file,
produced by a graph-family generator, or extracted from a database of graphs. Graphs
and various characteristics can then be displayed, edited, and transformed using a
dynamic external library of transformations written in Objective-C or any other
description language. Any graph generated can be printed or stored in a file. (For more
details, see the documentation for GraphView [BiSh 89].)

Previous work related to GraphView has involved either producing graph tools for
widespread use or investigating issues in visualization and animation. Projects of the first
type of include ISI Grapher [Robi 87], MacProject (for PERT charts) [Mac 84], and
GDBX [Bask 85]. Though these did achieve some degree of widespread use, they are
focused on special subclasses of graphs and problems; they lack full generality. Projects
of the second type include BALSA I and II by Brown and Sedgewick [Brow 84, BrSe 84,
BrSe 85] and TANGO by Stasko [Stas 89]. These systems focused on the issues involved
in visualizing and animating discrete objects such as graphs. The design concepts from



these systems are fundamental for the area of visualization, though, as research systems,
they were not intended to serve as platforms for application systems.

In addition to the systems discussed above, there have been many other application-
specific and locally targeted systems for manipulating and displaying graphs. Most of
these recent systems are interactive. For a summary of these systems, see the excellent
survey by Tamassia and Eades [TaEa 89]. The system GMB by Jablonowski and Guarna
[JaGu 89] is the most similar to GraphView.

None of the systems discussed so far are easy to extend. In comparison, GraphView
is the first one to be extendable without having to recompile or restart the whole system.
In the future, we plan to implement a high-level language facility (based on Scheme/Lisp)
inside GraphView so that new transformations can be added to GraphView from inside
the program. Currently, new transformations must be written and compiled as
independent tasks. As discussed in Section 5, we expect GraphView will become highly
portable by the end of 1990. GraphView is not intended to be a research system in itself;
we are working towards making it a widely-used general system for graphs.

Given our success in meeting our design goals and the generality of GraphView, we
expect it to serve as a platform for significant applications. In particular, work is already
underway to use GraphView for:

e graphical descriptions of database queries

e dependence graphs in program transformers for parallel programs

e graph layout problems

e parallel algorithms for low-genus graphs

e visualizing graph-oriented data structures in a visual debugger

e algorithms courses on basic computer algorithms and data structures

e artificial intelligence courses involving semantic and neural networks.

In the next section we give an expanded description of the system from the user’s
point of view. In Section 3 we discuss GraphView’s design goals. In Section 4 we discuss

the implementation details. In Section 5 we conclude with comments on current and
future work for GraphView.



2. The GraphView System

In this section we summarize the GraphView system. Complete user’s
documentation for GraphView is in the companion technical report GraphView
Documentation [BiSh 89]. It includes a tutorial, user’s manual, and important
implementation specifications.

GraphView is an extensible graphical tool for interactively creating, editing,
manipulating, and displaying, graphs on the NeXT computer. The key features of
GraphView are its easy-to-use graphical interface and its easy-to-extend collection of
graph manipulation tools. Graphs can be created directly on the screen, read in from a
file, produced by a graph-family generator, or extracted from a database of graphs.
Graphs and various characteristics can then be displayed, edited, and transformed using a
dynamic external library of transformations written in Objective-C or any other
description language. Any graph generated can be printed or stored in a file.

GraphView enables the user to work on multiple graphs at once, each appearing in a
separate window on the screen. Several display attributes, such as the display of labels or
characteristics, are controlled by the user. Subgraphs are copied between different graphs
or within the same graph using the standard Copy/Cut/Paste mechanism.

In GraphView, graphs can be arbitrarily manipulated using external programs which
communicate with the main program. These transformation programs can be written in
any suitable programming language capable of communicating with the main application.
In this version, plain ASCII files in a special format are used to transfer information
between the programs. Classes of external programs include:

1. Regular transformations which operate on a given input graph,
returning one or more graphs as output.

2. Generators, which create new graphs.

3. Displayers, which attempt to lay out a given graph geometrically.
<<to be implemented>>

GraphView automatically keeps track of the history of each graph, i.e. which
external programs and graphs were used to create it. Some other features available
include intelligent printing, dynamic display of characteristics, automatic version
numbers, a preference panel for setting program defaults, automatic labeling of graphs,
and scalable views.



3. Design Goals

The primary objective in GraphView’s design was to provide an interactive tool that
would be flexible and natural to use both for research and education purposes. It should
make the user feel free to do things in his or her own way as much as possible by trying to
avoid imposing constraints on implementing the user’s ideas. GraphView is meant to
extend the functionality of paper and pencil allowing the user to draw and edit graphs in a
natural way, eliminating the need for an eraser and the tedious process of redrawing
everything when the graph changes. In addition GraphView is to be able to apply
algorithms designed and implemented by the user, to transform existing graphs or
generate new ones, and display the results. Therefore, GraphView must be:

e Easy to lean and use. We expect GraphView to be used by researchers, teachers,
and students from a broad range of backgrounds and levels of expertise with
computers. GraphView must be easy to use for both novice and experienced
users.

e General and complete. Any type of simple graph and graph algorithm should be
natural to work with. Any type of transformation on a graph should be possible.

e Efficient and reliable.

e Extensible. With a high-level programming language, users should be able to
naturally add new transformations, generators, and displayers. to the standard

library.
e [nteractive.

e Graphically oriented.

e Straightforward to implement, maintain, and extend.



4. Implementation Details

In this section we discuss GraphView’s important implementation details. In
particular, we show how its user interface was made easy to use and how extensibility
was achieved. For the more detailed documentation necessary to write transformations,
to modify, or to extend GraphView, the complete class specifications and file format
specifications for GraphView are in the companion technical report GraphView
Documentation [BiSh 89]. It also includes a tutorial and user’s manual.

Given the design goals above, we produced the following implementation goals.

1. GraphView should be an interactive graphical graph editor, capable of
manipulating graphs in a natural way, saving/reading to/from disk, printing, and
providing dynamic control of display attributes.

2. It must have some means of communicating with external programs or
transformations written by the user and applying them to the graphs created by the
editor. This might involve showing partial results after various steps in the user’s
transformation.

3. All of the above should be integrated into a complete graphical application
program managing several graphs at once and provide an easy—-to—use interface.

In the following subsections we describe the development environment, translation of
graphs to objects, higher level objects, and transformations. It is assumed that the reader
has some knowledge of object oriented programming concepts such as inheritance,
methods or messages, classes and instances, sub- and superclasses, and instance variables.

4.1 The development environment

The NeXT computer was chosen as the computing platform for several reasons. First,
it provides an excellent environment for developing applications requiring a graphical
user interface. It also provides good support for 2-D graphics, runs a Unix-based
operating system, and was primarily targeted (at the time the project was started) at
universities and research environments, making it a feasible choice for a project like this.
The main drawbacks of using the NeXT computer are the lack of color and the fact that
programs developed on the NeXT are not easily ported to other machines (yet).

GraphView is written in Objective C, using Display PostScript as an image
specification language. At the time the project started there was no other choice of a
programming language if one wanted to use the full features of the graphical interface.
Since then, Allegro Common Lisp has become available and might even be a better
choice for reasons outlined below.



The NeXT/Objective C environment is almost entirely based on the object oriented
programming concept. Graphs can be represented nicely as a hierarchy of related objects
simplifying the tedious manipulation of the data structures traditionally used for
representing graphs. The user also benefits from the encapsulation of the graph
components as objects, since when writing transformations access is provided to
individual components through predefined high level methods so that minimal knowledge
of the underlying data structures is needed. This also helps maintain the integrity of the
internal data structures since the user is not allowed direct access to them.

4.2 The implementation of graphs

For the purposes of GraphView, graphs are considered to be built from two types of
objects: vertices and edges. Although these two object types are usually considered to be
quite different, they share some common properties in the program. For example, both
types of objects can be defined by labels, selected, and accompanied by attached
information. This last point deserves a few comments. Frequently when working on
graphs, one wants to assign some characteristics to edges and/or vertices in the graph.
Examples include colors of vertices and weights of edges. At the lowest level this is
simply implemented in such a way that a character string of any length can be assigned to
each object in the graph. It is then left to the upper level objects to interpret this
information depending on the situation. Given this, the classes Edge and Vertex were
made subclasses of a common parent class, GraphObject, providing the basic

functionality common to both object types.

In addition to being a GraphObject, a Vertex contains a list of Edge objects and its
geometric location in the graph. For Edge objects however, we only need to add instance
variables representing the source and destination vertices.

The Graph class itself is finally defined as a list of vertices along with some other

necessary variables. Following is a short summary of the functionality of each class (for
details see the class specifications).

GraphObject:

- Manages the state of the selection for each object.

- Manages the assignment and retrieval of labels and characteristics attached to objects.

- Manages temporary variables, used for example for numbering objects when
saving/reading graphs to/from disk.



Vertex:

- A list of edges and the geometric location of the vertex.

- Provides methods for drawing the vertex.

- Provides methods for writing the information associated with the vertex to disk.

- Capable of detecting whether it is hit, given the position of the mouse.

- Provides various methods for moving the vertex, computing a bounding rectangle,
and sorting the edge list according to embedding.

Edge:

- Consists of a source and destination vertex (and a pointer to the containing graph).

- Provides methods for drawing the edge.

- Provides methods for writing the information associated with the edge to disk.

- Capable of detecting whether it is hit, given the position of the mouse.

- Provides methods for reversing, computing its angle with respect to either vertex (for
sorting edges according to embedding) and computing a bounding rectangle.

Graph:

- Has a list of vertices, a list of selected vertices, and a list of selected edges.

- Provides methods for saving/reading the whole graph to/from disk. The graphs are
saved as text files in a special format.

- Provides methods for reading and writing to and from the pasteboard. This is done in
response to messages from higher level objects as a part of a cut, copy or paste
operation. Graphs written to the pasteboard are in a form similar to graph files on
disk, but somewhat simpler.

- Provides methods for adding and removing vertices and edges.

- Provides various methods for operating on the current selection.

- Stores characteristics attached to the graph. This could be some descriptive text or
some other facts about the graph. This is implemented by having an instance of a
GraphObject as an instance variable and using it to store the characteristics.

- Stores information on which characteristics to display for the objects in the graph (see
discussion below). This information is stored as two strings of characters and again
We use GraphObjects to access it.

It is at the Graph level that meaning is assigned to the characteristics attached to

individual graph objects. The program can currently interpret characteristics of the form
<keyword> <some_value>. An example would be: "color blue". The Graph class
stores for each graph, two lists of keywords whose values are to be displayed next to the
objects to which they are attached. One list is used for vertices and another for edges.
The user can easily change the characteristics to be displayed by simply specifying the
proper keywords. Note that although the program interprets characteristics of this
particular form, the interpretation can be turned off and the characteristics used to
represent whatever the user chooses.



Figure 1 shows the relationship between the basic graph classes.

GraphObject

- selects/unselects

- labels

- characteristics

- temporary vari ables

Vertex Edge

- list of Edge objects - source/destination
- position - drawing

- drawing - detects mouse hits
- detects mouse hits - primitive I/O

- primitive I/O - embedding

Graph

- list of vertices

- lists of selected objects

- I/O methods

- operations on the selction
- detects mouse hits

- add/remove objects

- managing misc. attributes

Figure 1. The basic graph classes.

4.3 The higher levels

Connecting the graph data structures described above to the user interface provided
by the NeXT environment is relatively straightforward. The NeXT application kit
supplies a view class which already does most of the lower lever tasks associated with

displaying the graphs in a window and tracking the mouse. The graph editor is simply
implemented as a subclass of the built-in view class. This new class, called Graphview,

has a Graph as one of its instance variables. Its purpose is to respond to messages from

the interface objects and apply them to the underlying graph. All operations performed
on the graph in the GraphView application have to go through the Graphview class; the

levels above do not have direct access to the graph itself. The main tasks performed by

this class are:

GraphView:

- Responds to mouse clicks, for adding edges and vertices and selecting objects.
- Draws the graph when necessary (scrolling, resizing windows).

- Prints.

- Responds to Cut/Paste/Copy messages from the user.

- Responds to various other messages initiated by the user through the interface objects,
affecting display attributes such as scale and display of additional information.




A few words on how the graph is drawn: at first the graph data structure was simply
traversed (visiting each object once) each time the graph needed updating, sending each
vertex and edge a message to draw itself. This is adequate for small graphs (less than
30-40 vertices) but becomes intolerably slow for very large graphs. As a first attempt to
optimize the drawing procedure, each object in the graph was modified to know its
bounding rectangle and the object was only drawn if the rectangle intersected the
rectangle being drawn. By specifying rectangles as small as possible for updating and
intersecting that rectangle with the visible rectangle, it was possible to reduce
considerably the PostScript code needed for redrawing. We still needed to traverse the
graph to determine which objects should be drawn. However, we discovered that the
operations requiring the fastest response time (e.g. scrolling) usually don’t need to update
the graph itself at all. Therefore an off-screen cache window could be used to draw the
whole graph and update to the graph could be done to that window. The actual display of
the graph then simply requires copying the appropriate rectangle from the off-screen
cache to the screen. This is several orders of magnitude faster than traversing the graph
as before.

Finally an application class was created to integrate all of the above into a complete
program. It manages any number of graphs on the screen at once and handles tasks such
as passing messages from the user interface objects to the currently active graph, setting
user preferences, applying user written transformations to the graphs, and managing
auxiliary support windowsl. The application also keeps track of the history of each
graph, i.e. what transformations were applied to create it. This is done by attaching a
history file to each graph file that lists its ancestors and the appropriate transformations.

4.4 Applying transformations

The transformation? programs are meant to be totally independent from the main
application. The user should be able to write a transformation and, without recompiling
or restarting GraphView, that transformation should become visible and available for use
immediately. This implies that the main application must have some means of executing
the transformation, passing it the graph in question and reading back any intermediate and
final results. Furthermore it is desirable to have a separate communication channel along
which the transformation program can pass auxiliary feedback or progress information
back to the user. There are several ways to do this.

1 Actually two other classes are also used. One is a subclass of the built-in Scrol1view class that adds
scrolling capabilities to a GraphView class, and the other is a class that reads in an interface file, for an
instance of a Graphview, and initializes its parameters.

2 By transformations we also mean generators, which are actually a special case of transformations
operating on an empty graph, and displayers, which will compute the geometric locations of vertices.
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The method that GraphView currently implements, is to simply write the graph to be
transformed to a file, then create a process which executes the transformation program
and wait for that process to terminate. The executed program starts out by reading in the
graph file (its name is supplied as a parameter) then it applies the transformation and
writes an output file which the application can then read in and display. Intermediate
results are handled the same way: by writing a file and passing a message along the
communication channel (a Unix pipe) to display the file. Figure 2 illustrates this
arrangement. Currently the transformation programs are written in Objective C using the
same classes as described above to store and access the graphs and compiled as stand-
alone programs. The user is not restricted to using only Objective C. Any programming
language capable of reading and writing files (and of course manipulating the graphs) can
be used.

GraphView (@ Messages (} Transformation
A £7

Graph
files

Figure 2. Applying a transformation.

The advantage of this method is its simplicity. The transformations are completely
independent programs and can easily be run as such, given the proper parameters. They
could even be run on a remote (possibly non-NeXT) machine for transformations
requiring large amounts of storage or CPU time.

The disadvantages of using files for the graph transfers are obvious: it is inherently
slow for large graphs, having to do at least four read/write operations on the entire graph
for one transformation.

Another way of communicating with the transformation programs is to use shared
memory between the two processes. The easiest way to do this is probably to load the
transformation program into the address space of the application and execute it there.
However, this requires relocating the transformation program before loading, since there
is no way of knowing where it will be loaded at compile- or link-time.

11



Sharing memory between processes is also possible by other means on the NeXT
computer. The Mach operating system allows a process to specify that another process is
allowed to inherit a part of its virtual memory image. This is not straightforward to
implement using the object representation mentioned above for the graphs. All objects
are dynamically allocated memory at run time and there is no easy way for the application
process to determine what part of its virtual image is allocated to a particular graph. We
tried using this scheme by first writing a representation of the graph to a ‘‘file’” in
memory and allowing the transformation process to inherit the memory space occupied
by the file, using Objective C classes (Speaker/Listener) supplied for message-passing
between processes. This still requires both processes to perform the read/write operations
for the graphs, although from a new memory file. The results showed that this was not
worth the extra complexity; running times of transformations were almost the same as
when using regular files for the transfer, indicating that increased paging due to the
memory files probably results in similar disk activity as just using files explicitly.

The third way of implementing transformations would be to integrate an interpreter
for a specialized graph manipulation language into the application. The user could then
type in a program or load it from a file and have it executed under the control of the main
application. One could imagine providing constructs such as:

for all vertices v with v.color == blue do ..... od

Just recently a Common Lisp environment that provides a full interface to the
Application Kit’s windowing environment has become available for the NeXT computer.
This suggests that a conversion to a Lisp implementation would make the above problems
disappear trivially while retaining all the benefits of the NeXT graphical user interface. A
transformation program written in Lisp (augmented with a graph package) could simply
be loaded or typed into a window and applied to the current graph. Objective C could
still be supplied as a language for writing transformations, since Lisp also supports
loading of foreign language functions. The transformation programs would probably be
more straightforward to implement in Lisp than in Objective C, relieving the user from
taking care of issues such as allocating an freeing memory.
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5. Future Directions

GraphView’s current limitations include no capacity for color (because it works only
on the NeXT) and portability to other systems such as Suns, Macs, or even high-end
graphics workstations. We are working in conjunction with the Visualization Lab at
Indiana University’s Center for Innovative Computer Applications (CICA) to write
GraphView in terms graphics/interface description toolkit which they have ported to four
computing platforms already, with more planned for the spring of 1990. This toolkit
from CICA will make GraphView very portable.

In 1990, there are three major goals for GraphView. Firstis to get user feedback and
feedback from applications where GraphView is a platform. To this end, GraphView will
be integrated into the “Analysis of Algorithms” course in the Computer Science Dept. at
Indiana University. Also, GraphView is will be used in a number of applications listed at
the end of the Introduction Section. Another goal is to develop significant libraries of
algorithms for generating, transforming, and displaying graphs. A final goal is to enable
interactive high-level programming in GraphView so that new transformations can be
built on-line. Scheme, a Lisp-related language, will be used for this.
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