TECHNICAL REPORT NO. 294

Elimination of Infrequent Variables

Improves Average Case Performance
of Satisfiability Algorithms

by
John Franco

October, 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Elimination of Infrequent Variables
Improves Average Case Performance

of Satisfiability Algorithms*

John Franco
Department of Computer Science,

Indiana University, Bloomington Indiana 47405

October 13, 1989

Abstract

We consider pre-processing a random instance I of CNF Satisfiability in order to remove
infrequent variables (those which appear once or twice in an instance) from I. The model used
to generate random instances is the popular random-clause-size model with parameters n, the
number of clauses, 7, the number of Boolean variables from which clauses are composed, and p,
the probability that a variable appears in a clause as a positive (or negative) literal. It is shown
that exhaustive search over such pre-processed instances runs in polynomial average time over
a significantly larger parameter space than has been shown for any other algorithm under the
random-clause-size model when n = 7%, € < 1, and pr < \/m Specifically, the results are
that random instances of Satisfiability are “easy” in the average case if n = r¢, 2/3 > ¢ > 0,
and pr < /3~ orn=1r1>¢€¢>2/3 pr < (1 —¢€—6)In(n) for any § > 0; or pn — 0,

pr < vInln(n) for any v > 0.

*This work was carried out in part at the FAW, Helmholtzstrasse 16, D-7900 Ulm/Donau, Germany.

""This work is based on research supported in part by the Air Force Office of Scientific Research, Grant No. AFOSR
84-0372.

1 Introduction

The Satisfiability problem is to determine whether there exists a truth assignment to the variables
of a given CNF Boolean expression which cause it to have value true. If such a truth assignment
exists we say the expression is satisfiable, otherwise it is unsatisfiable. The problem is NP-complete
so there is no known polynomial time algorithm for solving it. Several papers have been concerned
with the analysis of algorithms for Satisfiability that run in polynomial average time. These results
depend on an assumed probabilistic input model. One popular model is the “random-clause-size”

model which we refer to as M(n,r,p).

Let L = {v),%,v2,%3,...,,, 7, } be a set of 2r literals. According to the model M(n,r,p), n
disjunctions (called clauses) are generated as follows: for each clause C;, for all literals [€ L, put
in C; with probability p, independently of the placement of other literals and clauses. Notice that
it is possible for a pair of complementary literals (associated with the same variable) to be present
in a clause. It is also possible to generate an empty (or null) clause using this model. If an instance
contains a null clause it is trivially unsatisfiable. The preponderance or absence of null clauses in
random instances is controlled by the product pr which is half the average number of literals in
a clause. From [3] a random instance posseses a null clause with probability tending to 1 if the

product pr < In(n)/2.

In the literature, polynomial average time results for Satisfiability algorithms are known only
ifn=7r%12€¢>0pr < I r5<[6] orn =17,y > 1, pr < (7 - 1)In(n)/(27) [7); or
n = fr, B a positive constant, and pr < f(8) [4]; or pr > \/rIn(n) [5]. Furthermore, no polynomial
average time results are published for the case lim, ;o n/+/T = 00 and In(n)/2 < pr < /rIn(n);
this is a large range of pr where instances usually do not have null clauses. Also of interest is a
result in [2] which shows that the pure literal rule requires superpolynomial average time if n = 7€,
1> ¢ > 5, and pr > /w(r)In(n) - %= where w(r) is any growing function of r. This leaves
a substantial range of pr for which null clauses exist in random instances with high probability
but no published polynomial average time analysis exists and at least one non-trivial algorithm
requires superpolynomial average time. This philosophically uncomfortable situation has recently

been improved by a result in [4] which shows that exhaustive search, only if no null clauses are

present, has polynomial average time if n = 7¢, 1 > ¢ > .5, and pr < (1 — € — §)1n(n)/(2¢) for any
(1 —€)?* > § > 0. Thus, random instances of Satisfiability are generally easy in the average case

when null clauses are present with high probability.

In this paper we extend significantly the parameter space over which polynomial average time
results are known. This is accomplished by using substitution rules to eliminate clauses containing
infrequent variables: that is, variables occurring only once or twice in an instance. Thus, infrequent
variables are also eliminated by applying these rules. The results of this paper show that exhaustive
search over the remaining variables is speeded up considerably. The idea seems to be generalizable
and may represent the first of a family of such results that will take care of a large portion of the
remaining parameter space for which polynomial average time results are not now known. The
result of such a generalization, to the extent that it is possible, is apparent from the analysis
presented here. Specifically, the results of this paper are that random instances of Satisfiability are
“easy” in the average case if n = 7%, 2/3 > € > 0, and pr < r?/3~¢, orn =7, 1 > € > 2/3, and
pr < (1 —€— §)In(n) for any § > 0; or pn — 0, and pr < ylnln(n) for any v > 0;orn =fr, B a
constant, and pr < g(8)f(8) where g(8) > 1 for all 8. The first of these results does not depend

on the presence of null clauses in an instance and is significant for this reason.

2 The Algorithm

For convenience, we write a clause as a tuple of the literals it contains. For example, the clause
(z VyV z)is written as (z,y,z). Similarly, we write the conjunction of two clauses C; A Cy as

Cy,Cs.

Let a variable which appears exactly once in an instance I be called a unit variable. Let a
variable which appears exactly twice in I be called a double variable. Let a variable which appears
at least three times in I be called a serious variable. The table below defines substitutions for
clauses in I containing unit and double variables. In the table we use v to denote a positive literal
taken from a unit or double variable, ¥ a negative literal so taken, and = and y either a positive or

negative literal which is not necessarily taken from a unit or double variable.

var type | substitution name | occurrence replacement
unit unit elimination (R 2.) true
(¥,z,....)
double | double elimination | (v,v,z,...)
(T, Ty €,y en)
trivial elimination | (v,3,z,...)
pure literal rule fomz o) fospan)
(9,2, ...), (5,9, ...)
resolution B s By (B s} || ())

When we say apply unit elimination we mean, according to the table above, look for a clause
containing a unit variable v and replace it with the logical value true; if no such clause exists do
nothing. Similar statements hold for applying any of the other substitution rules listed in the table.
It is possible that, after repeated applications of double-variable substitution rules, some double
variables will occur only once in I. By clean up double variables we mean eliminate all clauses

containing double variables that appear once in I.

Consider the following algorithm for solving instances of Satisfiability:

INFREQ(I):

1. If I has a null clause then return “unsatisfiable”

2. Otherwise,
a. repeatedly apply double variable substitution rules in order until opportunities vanish
b. clean up all remaining double variables
c. repeatedly apply unit elimination until opportunities vanish
d. for all truth assignments ¢ to serious variables in I, if ¢ satisfies I then return “satisfiable”

3. Return “unsatisfiable”

In step (2d) INFREQ terminates as soon as the first satisfiable truth assignment is discovered.
It should be apparent that the size of I is not increased by the application of INFREQ to I. It

should also be apparent that all unit and double variables are eliminated from I in steps (2a), (2b),
and (2¢) of IN FREQ (these are the pre-processing steps). Thus, in step (2d), the truth assignment

t is an assignment to all variables which appear in the processed I.
Lemma 1 INFREQ returns “satisfiable” if and only if I is satisfiable.

Proof:

Suppose IN FREQ returns “unsatisfiable”. This can happen only if there is no truth assignment
t which satisfies all clauses of I in step (2d). But I in step (2d) contains a subset of the given input
and clauses formed by resolution. Hence, no t can satisfy the original input.

Now suppose I N FREQ returns “satisfiable”. Let ¢ be the truth assignment to serious variables
that satisfies all clauses in I of step (2d). We extend ¢ to an assignment which satisfies the given
instance I. If clause (v,z,...), alternatively (%,z,...), was replaced by true using unit elimination
then set v to true, alternatively, false, and the clause is satisfied. Similarly for (v,v,z,...), al-
ternatively (%,%,z...), using double elimination. A clause eliminated using trivial replacement is
trivially satisfied by any truth assignment. If clauses (v, z,...) and (v,y,...), alternatively (%, z,...)
and (7, y, ...) were replaced by true using the pure literal rule then set v to true, alternatively false,
and the clauses are satisfied. If clause (z,...,y,...) was the result of the resolution of (v,z,...) and
(9,9,...) and if t satisfies one of z, ..., alternatively v, ..., then set v to false, alternatively true.
If one or both clauses are themselves a result of some resolution then repeat, using the extended
t, until reaching original clauses. If a clause was cleaned up, set its double variable to satisfy the
clause. By proceeding as above a truth assignment satisfying the original instance is obtained. O

3 The Analysis

To simplify the analysis, we show that the expected number of iterations in step (2d) of INFREQ
is bounded by a polynomial in n under several conditions. Since the complexity of each step is
polynomially bounded, the average running time of IN FREQ must then be polynomially bounded
under those conditions as well. The equations and inequalities below up to (3) are taken from [4]

and repeated here for convenience.

Let I-(z) denote the event that the input contains exactly z serious variables. Let I>(z) denote

the event that the input contains at least = serious variables. Let I denote the event that the input

contains a null clause. Let T'(n,r,p) denote the average number of steps executed by IN FREQ
given that instances are generated according to model M(n,r,p). Then, since the number of steps
required by exhaustive search on an input with exactly z serious variables is at most 2%, we can

write

Pr(Iy) + i 2% . Pr(Iy A I-(z))

T(n:! T! p) S
z=1
r—1
< 14 2Pr(I4 AIx(1))+ > 2% Pr(ly Als(z + 1))
z=1
[3.82p] r—1
< 3+) 22 Pr(Ig)+). 2% Pr(Ix(z+1))
z=1 z=|3.82u|+1
|3.82p] r
= 34+ > 22.Pr(lp)+ > 2571 Pr(Ix(z)) (1)
=1 r=|3.82u|+2

where p is the mean number of serious variables in an instance.

First, we obtain a bound on the second sum in (1). Since variables are placed independently in
clauses, the number of serious variables in an instance is binomially distributed. By the Chernoff

bound for binomial distributions [1], Pr(I>((1 + B)u)) < e #*#/3, § > 0. Thus,

T

T
Z 2“‘1-PT(I2(:(:)) < Z oo (=/p-1Pn/3
z=|3.824)+2 z=[3.82u)+2
= i e:l:ln(z)—o:2f(3p}+2xf3—;.t{3
z=[3.82u]+1
< > 1 £
z=[3.82u]+1

Next, we obtain an upper bound on the first sum in (1). The probability that a clause is null
is (1 - p)?". Hence, the probability that all clauses are not null is Pr(I) = (1 - (1 — p)?")™. Thus,
we write

|3.82u] 13.82u] |3.82u]

S 2Py = Pr(ly) Y 2 =(1-(1-p) Y. o (2)
z=1 p=1 z=1

O . p)2r)n2L3.82.uJ+1 < e~ Te P 93.82u41

I

e—ne-zl”‘ +].|1(2)(3.82u+1). (3)

Now, we compute x and obtain upper bounds on (3). The probability that a variable is not in a
particular clause is the probability that neither literal associated with the variable is in that clause
and is equal to (1 — p)?. Since clauses are independently chosen, the probability that a variable is
not in a given instance is (1 — p)?", the probability that a variable appears once in an instance is
2pn(1—p)®™~', and the probability that a variable appears twice in an instance is (%")p?(1—p)?"~2.
Therefore, the probability that a variable is a serious variable is 1 —(1—p)*"—2pn(1—p)**~! —n(2n—

1)p*(1 — p)**=? which may be reduced to 1 — (1 — p)?™(1 +2pn/(1 — p) + 2(pn)*(1 — 1/n)/(1 - p)?).

Theorem 1 INFREQ runs in polynomial average time if n = r¢, € < 2/3, and pr < r2/3=¢, or if
n=r%1>¢e>2/3, andpr < (1-€e—§)In(n), for any § > 0, or if pn — 0 and pr < yInln(n) for

any ¥ > 0.

Proof:

Ifn =7 e < 2/3, and pr < r2/3-¢ then pn = pr-re=1 < p2/B3—ete=1 _ -1/3 _, o 1f
1> €>2/3and pr < In(n) then pn = pr-r*~! < eln(r)r*~! — 0. So, we assume pn — 0. Then
1= (1= p)™ (14 2pn/(1—p) + 2(pm)2(1 - 1/m)/(1— p)?) = (4/3)(np) + O((np)*). From now on we
ignore the small term for simplicity. Since variables are placed independently in clauses, the number
of serious variables in an instance is binomially distributed with parameters r and (4/3)(np)3. Thus,
the mean number of serious variables in an instance is g = (4/3)(np)r. Substituting into (3) gives
e~me T +1n(2)(5.093(np)*r+1) wwhich is polynomially bounded if e~ +n(2)(5.093(np)’r) i Therefore,

we require

—e %" 1+ 3.53(pn)%(pr) < In(n)/n. (4)
Let n =%, 1> € > 0. Then, after rearranging, (4) becomes

3.53(pr)3r2(s-1)
3.53(pr)®r*? < rfe %" 4 eln(r) (5)

I

e 4 er~¢In(r) =

Let € < 2/3 and pr = 7%, a a constant. Then (5) becomes

3.53r3 %32 < o= 2%p€ 1 eln(r). (6)

Clearly, (6) is satisfied if 3a + 3¢ —~ 2 < 0 or & < 2/3 — €. Thus, if € < 2/3 and pr < r2/3~¢ then (2)
is polynomially bounded.

Now let 1 > € > 2/3 and pr = aln(r). Then (5) becomes

3.53(aln(r))®r%2 < 7%= 4 cln(r). (7)

Inequality (7) is satisfied if 3¢ — 2 < € — 2a — 26 for any positive constant § and this is satisfied if
a<1—-€e—¢. Thus,if1>e>2/3 and pr < (1 —€—§)In(r) then (2) is polynomially bounded.

The remaining case, pn — 0 and pr < yInln(n), is straightforward. O

We make two remarks about the proof of Theorem 1. First, in (6) the term e~ 2"" 7€ is due to the
presence of null clauses in I. But this term is ignored when determining that @ < 2/3 — € in the
sentence following (6). Thus, the polynomial average time result for n = r, € < 2/3, is not due to

the presence of null clauses in I.

The second remark concerns the scope of infrequent variables. From the paragraph preceeding
Theorem 1 it should be evident that, if pn — 0 and only unit variables are eliminated in IN FREQ,

then p = 6((np)?r) and, up to constant factors, (6) becomes
plot2e—1 % e—2r°‘re i 6].11(7')

which is satisfied if @ < .5 — e. If we could use substitution rules to eliminate triple variables,
those which appear three times in an instance, then p = ((np)*r) and a < (3/4) — e. If we could
eliminate all variables occurring ¢ or fewer times in I then we would have p = 8((np)®*~r) and
polynomial average time if pr < r#/(+1)=¢ ¢ < i/(i 4 1). Clearly ¢ does not have to be very large to
make a major impact on the parameter space supporting polynomial average time. Unfortunately,
trying to eliminate even triple variables can cause an exponential explosion of the size of I. In this
event the assumption that the complexity of each step of IN FREQ is polynomially bounded is
not valid. We ask: are explosions so infrequent that they do not significantly affect average time
performance? An affirmative answer would have a major impact on polynomial average time results

under the random-clause-size model. We leave investigation of this question for a future paper.

The next theorem shows where IN FREQ runs in polynomial average time when n = 87, 8 a

positive constant.

Theorem 2 INFREQ runs in polynomial average time if n/r = 3, where 3 is a positive constant,

and 2.64(1 — (1 — p)?"(1 + 28pr + 2(Bpr)?)) < Be~ 2",

Proof:
Since p< 1,1/(1—p) > 1 and 1/(1 — p)? > 1. Then

p=(1-(1-p)*(L+ 2pn/(1-p)+2(pn)*/(1 - p)*))r < (1 — (1 — p)*™(L + 2pn + 2(pn)?))r.

Thus, (3) is polynomially bounded if

~ne™ 4 1n(2)(3.82(1~ (1 - p)*™(1 + 2pn + 2(pn))))r < ln(n) <
—Be™" 4 2.64(1— (1 —p)*"(1+ 26pr +2(Bpr)?)) < In(n)/r (8)

The theorem follows. O

According to Theorem 2, IN FREQ has polynomial average time if 2pr < In(8) — In(2.64) (this
is fairly tight if 3 is large). If § = 1 then IN FREQ has polynomial average time if pr < .59.

4 Conclusions

We have investigated a simple strategy for solving instances of CNF Satisfiability with respect to
average case performance. The important idea is the elimination of infrequent variables before
applying, in this case, exhaustive search. We have shown that this strategy is superior in average
case performance to all other algorithms analyzed under the random-clause-size model when pr <
Verln(r), n < r¢,and € < 2/3. The strategy may be generalizable, to some extent, and the analysis

seems to suggest the outcome of an investigation of such a generalization.

References

[1] Angluin, D., and Valiant, L. G., “Fast probabilistic algorithms for Hamiltonian circuits and match-
ings”, Journal of Computer and System Sciences, Vol. 18, (1979) pp.155-193.

[2] Bugrara, K., Pan, Y., and Purdom, P. W., “Exponential average time for the pure literal rule”,
SIAM J. Comput., Vol. 18, No. 2, (1989) pp. 409-418.

[3] Franco, J., “On the probabilistic performance of algorithms for the Satisfiability problem”, Information
Processing Letters, Vol. 23, (1986) pp. 103-106.

(6]

(7]

Franco, J., “On the occurrence of null clauses in random instances of Satisfiability”, Technical Report
No. 291, Computer Science Department, Indiana University (1989).

Iwama, K., “CNF Satisfiability test by counting and polynomial average time”, SIAM J. Comput., Vol.
18, No. 2, (1989) pp. 385-391.

Purdom, P. W., and Brown, C. A., “The pure literal rule and polynomial average time”, SIAM J.
Comput., Vol. 14, No. 4, (1985) pp. 943-953.

Purdom, P. W., and Brown, C. A., “Polynomial average time Satisfiability problems”, Information
Sciences, Vol. 41, (1987) pp. 23-42.

10

