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Abstract

Logic programming languages typically combine declarative specification with inference
techniques that utilize a depth-first control discipline. Applications that require other
forms of control behavior are often difficult to express in these languages. In this paper we
present the high-level extra-logical control operators of a Prolog extension called Conlog.
These operators allow multi-tasking and variations on breadth-first search to be conve-
niently expressed. Examples illustrating the use of these operators include Algorithm A*
and the samefringe problem.

1. Introduction

Logic programming languages exist both for nonprocedural program specification and as
programming tools for problems requiring extensive search. Unfortunately this dichotomy
weakens most logic programming languages so that it is difficult to express complex search
behavior. Prolog, for example, is a poor choice for problems in artificial intelligence re-
quiring intricate heuristic-based search strategies.

Prolog supports declarative program specification via Horn clauses, with an underlying
computation procedure founded on the resolution inference rule. In Prolog, as in most
logic programming languages, the inference algorithm is implemented with a depth-first
backtracking control strategy. This strategy is chosen for efficiency, though it comes at the
cost of resolution completeness. Since Prolog’s default control strategy is depth-first search,
it is well suited for applications involving this type of search. Prolog also provides the extra-
logical control operator cut (!), which trims the search tree by discarding a portion of the
backtrack history. Cut is widely used, but it provides only a limited ability to modify
control. Prolog may be used to solve problems requiring alternative control behavior,
such as variations on breadth-first search, but only by using techniques such as dynamic
program modification (asserting and retracting program rules) and meta-programming

(interpretation) that are often inefficient and obscure.
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Much previous effort has gone into extending the control capabilities of Prolog, as
in IC-Prolog [4] and Epilog [15]. However, the control mechanisms introduced by these
languages require the insertion of special syntax at critical points within the code. This
results in programs that are difficult to understand and which may produce more data
than necessary due to incorrect backtrack sequencing. [12]

In this paper we introduce the high- and intermediate-level control operators of Con-
log, a Prolog extension that allows alternative patterns of control to be expressed in a
direct and efficient manner. Our approach differs from previous proposals in that it is
based on first-class continuations. Continuations are a general abstraction of sequential
control. The continuation of a computation records the current control state—information
that indicates how the computation is to be completed, which may be informally viewed
as the “future” of the computation.

Continuations were first used in denotational semantics to express non-standard con-
trol behavior, such as jumps and exits. For example, the effect of a “goto” statement
is to substitute the continuation of the goto label for the current continuation. In many
languages a subcomputation has a single continuation representing normal flow of control.
The control behavior of logic programs can be described by associating each goal evalua-
tion with two continuations: a success continuation represents the forward movement of
the program should the goal succeed; and a failure continuation, encapsulates the back-
tracking behavior that is appropriate should the goal fail. Success and failure continuations
are appropriate semantic tools for describing any backtracking system, and are frequently
used in denotational semantics of Prolog. [1,2,6]

In systems employing rigid backtracking disciplines, such as Prolog, there is little
opportunity to manipulate the continuation contexts in which computations execute. An
exception is the cut, which is used in Prolog to discard choice points that have been created
since the current relation was entered. Cut replaces the current failure continuation with

the failure continuation that was current when the relation in which the cut appears was
called.

Control information is typically stack allocated. In such cases continuations cannot be
used outside of their control context, for when control returns from a context the stack is
popped and control information is lost. If provision is made for heap allocation of control
information when necessary, continuations may have indefinite extent. Such first-class
continuations allow multiple threads of control to be maintained indefinitely. With first-
class continuations, control no longer is restricted to the linear form of a stack, but can
branch to form a control tree. (In a control tree each branch represents a computation
in progress, and not simply a potential computation as in a search tree.) First-class
continuations may be used to obtain a variety of control behavior, including coroutines,
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multi-tasking, and breadth-first search. [8,9,16,19]
A few languages, most notably Scheme [5], make it possible for the programmer to

reify first class continuations by making them data objects. Such continuations may be
stored in data structures and invoked at any future time, even after the computation has

left the dynamic context of the continuation.

The first set of control operators proposed here are of a high level, abstracting control
paradigms that are useful in the context of logic programming. A single set of intermediate-
level operators generalizing cut is also described, which can be used to implement the high-
level operators. The intermediate-level operators may in turn be implemented using low-
level operators that support reified first-class failure continuations and dynamic database
protection. Companion papers define the semantics of the low level operators [10] and
the implementation of Conlog’s control operators. [11] The low-level operators are more
general, but they are also more difficult to use. The control facilities that are most easily
used in logic programming require complex operations involving first-class continuations,

such as management of queues through database assertion and retraction.

The high-level operators fall into two categories: the cleanup operators (cleanup
and defer) and the multi operators (multi_step and multi_sweep). The cleanup op-
erators are used to express variations on breadth-first search, while the multi operators
express multi-tasking (coroutine) control behavior. The intermediate-level operators are
mark_region, mark, and cut_to_mark, which generalize cut by permitting the user to name
arbitrary “cut points.”

We have implemented Conlog via a syntactic preprocessor that produces a Scheme
program. This embedding technique, described elsewhere [7,16], makes use of a state-space
to restore shallow-bound logic variable bindings when continuations are invoked. These
state-space techniques may also be used to obtain a direct (native code) implementation
of an extended logic programming system supporting these operators.

Section 2 provides detailed descriptions and examples of the cleanup operators, while
section 3 does the same for the multi operators. Section 4 describes the mark operators,
and the implementation of the cleanup and multi operators in terms of the mark operators
is in Section 5. Conclusions are drawn in the last section. The reader is expected to be
familiar with Prolog. [3]

2. Alternative Search Strategies

In this section we present the “cleanup” operators of Conlog, which allow various combi-
nations of depth-first and breadth-first search to be conveniently expressed. This is not
possible in standard Prolog because of the persistence of success; that is, as long as a
computation is succeeding along a particular path it will continue to pursue that path.
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It is possible to explicitly interrupt the search by deliberately failing, but this results in
backtracking that is “blind.” It is impossible to later return to the point at which back-
tracking was initiated, since there is no way to record this point and its control context is
not retained (backtracking pops some of the context off the control stack). The cleanup
operators enable “non-blind” backtracking [18], in which control points are recorded prior
to backtracking in such a way that it is possible to return to them at a future time.

Breadth-first search branch points are created with the operator cleanup. Invoking
cleanup(G), where G is a goal, results in creation of a new first-in-first-out cleanup queue
and the invocation of G within the scope of this queue. The scope of the cleanup queue
is dynamic in the sense that the queue is active until control leaves G or the queue is
shadowed by by another cleanup operation. Control may leave the dynamic context of G
with either success or failure, or via invocation of a first-class continuation representing

control outside its dynamic context.

The defer operator causes a “pseudo-failure.” The immediate control effect of defer
is the same as fail: the current failure continuation is invoked to initiate backtracking.
However, before failing, the current success continuation is enqueued on the currently
active cleanup queue. If backtracking causes control to return from the goal of a cleanup
operation, a continuation is dequeued from the associated cleanup queue and invoked. If
the queue is empty, then backtracking proceeds past the cleanup.

Consider the following program schema.
p :- cleanup(ql).

ql :- defer, (g2 ; q3).
ql :- q4.

q2 :- defer, g5.
g2 - g

q3 :- defer, q7.
qQ3 :- g8.

Invoking p causes cleanup to create a cleanup queue and control proceeds into q1. The
defer in the first clause of q1 causes a continuation that performs the alternation q2;q3
to be enqueued, and g4 to be entered. Assuming g4 fails, the continuation which performs
the alternation q2;q3 is dequeued. When control enters q2, evaluation of g5 is deferred
and g6 is entered. When q6 fails, g3 is called, q7 is deferred and g8 called. Assuming g4,
q6, and g8 fail, the final order in which subgoals are visited is cleanup, q1, defer, g4, q2,
defer, g6, q3, defer, g8, g5, q7. This order combines elements of both depth-first and
breadth-first search. The control tree for this procedure is traversed in an order indicated
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Figure 1. Sample control pattern for cleanup/defer

by the node numbers in Figure 1.

To achieve completeness with reasonable efficiency, many problems involving extensive
search require a combination of depth- and breadth-first search. Such searches are often
heuristically driven, and for these we allow defer to accept a numeric argument. This
argument is used as a priority value for insertion of the deferred continuation into the
queue (lower values indicate higher priority), and makes it straightforward to implement
a variety of heuristic-based search strategies. If defer is called with no arguments, the
priority defaults to 1.

Example: Breadth-first Search

To illustrate an application of cleanup and defer, we present a procedure bf that performs
a purely breadth-first traversal of a binary tree. We assume a binary tree is represented as
either an atomic list element or a pair of the form [L|R], where L and R are binary trees.
For example, the list structure [[[1]2]13] |4] represents the binary tree depicted by
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The relation bf(T,X) binds X to the leaf values of T in a breadth-first fashion. It is
obtained by adding cleanup and defer to a standard depth-first tree traversal program.

bf(T, X) :- cleanup(traverse(T, X)).
traverse([LIR], X) :- !, defer, (traverse(L, X); traverse(R, X)).
traverse(X, X) :- .

bf serves only to create a cleanup queue. By using defer to postpone traversal of an
interior node, each call to traverse will descend just one level. If the node is a leaf, the
traversal terminates successfully by binding X to the leaf value. Otherwise, traversal of the
node’s children is deferred. These deferred traversals are processed in turn as the cleanup
queue is accessed. Failure in the left child of such an interior node (the left disjunct) causes
the traversal to continue in the right child (the right disjunct). Failure in the right child
results in backtracking to the cleanup point. This dequeues the next continuation, so that
the traversal continues with the next pair of sibling nodes. Each time an interior node
is visited another disjunction is added to the queue. As nodes are traversed from left to
right, continuations that traverse their children are added to the queue in a left to right
order.

Example: Algorithm A*

A straightforward implementation of the well-known heuristic search procedure Algorithm
A* [14] is possible, under certain restrictions, by providing defer with a computed priority.
Algorithm A* applies to problems that can be represented in terms of a production system.
To specify the problem we define a space of possible states and a set of transition rules,
which are partial functions over the state space. The solution is a sequence of states
indicating a path between given initial and goal states. Usually a minimal path is sought
based on a cost assigned to each transition.

A frequently used example for such a problem is the eight puzzle. [14] The eight
puzzle consists of a 3 x 3 matrix representing 8 numbered movable tiles. One cell is always
empty, making it possible to move an adjacent tile into the empty cell, thereby moving
the empty cell as well. These transitions can be completely described using four functions,
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Figure 2. Initial and goal configurations for the 8-puzzle

each moving the empty cell in one of four directions. Figure 2 illustrates possible initial
and final states for this problem.

A naive approach is exhaustive search, using backtracking, of a tree representing all
possible non-cyclic paths. Assumemove(State,NewState) is a nondeterministic procedure
relating State with a NewState reachable from it by one of the transition rules. A Prolog
program that performs this search under the assumption of uniform transition cost follows.

pathsearch(Initial,Goal,Sol) :-
retractall(seen_state/1), solve_bt(Initial,Goal,[],Sol).

solve_bt(Goal,Goal,PSol,Sol) :- Sol = reverse([Goal|PSol]).

solve_bt(State,Goal,PSol,Sol) :- seen_state(State), !, fail.

solve_bt(State,Goal,PS0l,So0l) :- asserta(seen_state(X)),
move(State,Newstate), solve_bt(NewState,Goal, [State|PSol],Sol).

The relation seen_state records states as they are produced. The variable Sol holds the
solution, a sequence of states along a path from the initial state to the goal. PSol holds
the partial solution consisting of the sequence of states along the path from the initial to
the current state (in reverse order).

For all but the simplest problems, pathsearch is unsatisfactory. It may be improved
by using a heuristic to order the search. Normally an explicit graph structure is required
to enable resumption of the search at any node, requiring a substantial restructuring of
the pathsearch program. In Conlog we can retain the structure of pathsearch, relying
on first-class continuations to maintain the context of each search path so that it may be
resumed when appropriate. (The Conlog run-time system maintains a control tree with
first-class continuations at the leaves, which takes the place of an explicit graph structure.)

The basic search algorithm, known as graphsearch, maintains a pool of states that
have yet to be explored and uses an evaluation function f to determine which move to
make. In Algorithm A, f(n) = g(n) + h(n) is an estimate of the minimal cost path from
the initial to the goal state constrained to pass through state n. g(n) is the current best
cost from the initial state to n, and a heuristic function h(n) estimates the minimal cost
from n to the goal state. If h is bounded from above by the actual minimal cost then we
have algorithm A*, which is guaranteed to terminate with an optimal path if a path exists.
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graphsearch(Initial,Goal,Sol) :- retractall(seen_state/1),
cleanup(solve_a(Initial,Goal,0,[],So0l)).

solve_a(Goal,Goal,PathCost,PSol,Sol) :- Sol = reverse([Goal|PSol]).
solve_a(State,Goal,PathCost,PSol,Sol) :- seen_state(State), !, fail.

solve_a(State,Goal,PathCost,PSol,Sol) :- asserta(seen_state(State)),
h(State,H), F is H + PathCost, defer(F),
move_with_cost(State,Newstate,C), NewPathCost is PathCost + C,
solve_a(NewState,Goal,NewPathCost, [State|PSol],Sol).

Figure 4. Algorithm A* using cleanup and defer

(If h = 0 and transition costs are uniform this produces a purely breadth-first search).

Since the evaluation function uses the current best cost from the initial state to n,
this value must be continually revised whenever n is reached by a better path. Under a
second restriction (the “monotone restriction”) we are guaranteed that each state n will be
reached for the first time from a given neighboring state along a minimal cost path from
that state. We will assume that this criterion holds for the heuristic function used in our
solution.

A graphsearch procedure may be obtained in Conlog by modifying pathsearch.
First we upgrade procedure move to move_with_cost, which includes a third parameter C
bound to the cost of the transition from State to NewState (in the simplest case this is
1 for all transitions). The procedure h(State,H) computes the heuristic value associated
with State and binds it to H. Pending moves are associated with continuations, and a
priority cleanup queue manages these continuations according to the priorities set forth by
the evaluation function. The priority queue is established by a cleanup at the beginning
of the search. In order to capture the continuation identified with expansion of a state, a
defer must be placed at a point after the state is determined to be a viable candidate for
a move, but before the move is made. In the pathsearch program this occurs immediately
prior to the call to move in the third clause of solve_bt. By then it is known that the state
is neither the goal state (handled by the first clause), nor one that has been seen before
(handled by the second clause). Since defer expects a priority value we must evaluate the
state and pass this value to defer as the priority to be associated with its future expansion.
Since this evaluation requires knowledge of the accumulated cost incurred in reaching the
state, we keep track of this quantity with the parameter PathCost.

The graphsearch program retains the overall structure of pathsearch, while im-
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plementing a considerably more complex algorithm. When move_with_cost is called, it
binds NewState nondeterministically to each immediate descendent of State. The call
solve_a(NewState,...) that follows either terminates with a complete solution, fails be-
cause the state has already been seen, or fails after deferring the move to this state. Each
call to move_with_cost is therefore followed either by failure or termination. Thus in
the case of nontermination, backtracking will cause NewState to be bound successively
to adjacent states. These states will in turn be discarded or added to the queue. Once
all adjacent states have been processed, control returns to cleanup, which dequeues the

continuation that moves to the state of highest priority.

3. Multi-tasking

It is well known that many applications involving deep search realize a significant speedup
when a coroutine discipline is used to alternate steps of several search processes. [13] A
simple example of this is the samefringe problem, in which the leaf elements of two trees
are compared. [17] When the trees can be searched in parallel, with comparisons made
as soon as leaves are encountered, termination is possible as soon as a difference is found.
Coroutines are a traditional method for accomplishing this.

Clark [4] and Porto [15] incorporate coroutine mechanisms into Prolog that make use
of variable annotations and a novel control regime, respectively. In this section we present
mechanisms that implement multi-tasking without special annotations or a nonstandard
control regime. Each task (or coroutine) retains control until it explicitly passes control
to a scheduler and thereby becomes idle. A first-class continuation is used to retain the
state of each task during its idle period. A scheduler chooses an idle task for dispatch,
unlike traditional coroutine systems in which the next coroutine to be resumed is explicitly
named at the time a coroutine becomes idle.

The two variations on synchronous multi-tasking in Conlog are termed multi_step
and multi_sweep. Both use a simple first-in-first-out scheduling discipline, but variations
with more complex scheduling are possible. The description of these operators requires
some terminology. We refer to the computation from the invocation of a goal to its success
or failure, or its non-termination, as a phase of computation. The terms success phase,
failure phase, and nonterminating phase will also be used. Since a goal may be reinvoked
following a success phase, it may be viewed as yielding a sequence of zero or more suc-
cess phases, each returning a set of bindings to its caller, followed by a failure phase or
nontermination phase.

Both multi_step and multi_sweep take a list of subgoals. A round-robin multi-
tasking discipline is used, with each subgoal evaluated by a task that idles between phases.
A task terminates after its failure phase, and the multi operators fail when all of their
tasks have terminated.



With multi_step, control returns to the caller after each success phase. The next
phase of the next task begins upon backtracking. Any bindings produced by a multi_step
task are visible to the caller of multi_step, and are seen by that task when it is next
invoked by backtracking. However, these bindings are not seen by the other tasks.

With multi_sweep, control returns after a complete sweep through its list of tasks, and
upon backtracking another complete sweep is made. As with multi_step, any bindings
made by a task in one phase are seen by the same task when it is resumed on a subsequent
sweep initiated via backtracking. However, unlike multi_step, none of the bindings made
by its tasks are visible to the caller of multi_sweep. (Communication is still possible via
the database.)

Example: Scatter Search

To illustrate the use of multi_step, we present a binary tree search procedure that uses
a novel search pattern, which we refer to as a scatter search. If T is a (possibly infinite)
binary tree with a value associated with each leaf, then SS(T) = (v1,...) indicates that
the scatter search of T visits leaves in the order indicated by the (possibly infinite) sequence
of leaf values. With this notation, scatter search may be characterized by the following
rules:

(a) If T is a leaf with value v, then SS(T') = (v),

(b) If T is an interior node with sons L and R, SS(L) = (l,l,,...), and SS(R) =
(r1,72,...), then SS(T) = (l1,r1,l,72,...), provided the sequences (l1,ls,...) and
(r1,72,...) are the same length. If one of SS(L) or SS(R) terminates before the other,
then SS(T') continues with the remaining sequence. For example, if (l3,l,..., I,)} is
shorter thaw (ri ra,...); then SS{T) =5 (b, v b5, conlys P Pkl sods
In a scatter search each interior node performs an alternating merge of the leaf se-

quences of its children. That is, it polls its children in sequence from left to right (as in
breadth-first search). Interior nodes deliver one leaf node value each time they are polled,
unless there are no remaining leaf nodes, in which case the node reports failure and is ig-
nored. The result is a type of breadth-first search in which computation time is distributed
over the tree in a fair manner that assesses a unit of time for each leaf and no time for
visiting interior nodes.

A simple implementation of scatter search may be obtained using multi_step. Using
the same tree representation as before, we have:

ss([LIR], X) :- !, multi_step([ss(L, X), ss(R, X)1).
ss(X, X) :- .

From the definition of multi_step we see that the right-hand side of the first clause will
produce bindings for X that alternate between those produced by ss(L,X) and ss(R,X),
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as required. For example, consider the tree [[a|[blc]]|[[dle]|[£f[glhl]], which has
the form

The call ss([[al[blc]llI[[dle]l[£I[glhl]1]1]) is equivalent to

1 multi_step([multi_step([ss(a),

2 multi_step([ss(b),

3 ss(c)1),

4 multi_step([multi_step([ss(d),

5 ss(e)])]),

6 multi_step([ss(f),

7 multi_step([ss(g),

8 ss(h)1D1D1D1)

The order in which leaves are visited is indicated by the following list of line-number:leaf-
letter pairs: 1:a, 4:d, 2:b, 6:f, 3:c, 5:e, T:g, 8:h.

Example: Parallel Tree Walk

A more elaborate example illustrating multi-step is a solution to the branch and
bound problem described by Lindstrom [13]. We are given two trees T and T, with
positively weighted nodes. The problem is to determine the tree that contains the path
with the least total path weight without necessarily computing the path weight itself. The
simplest approach is to compute the best path weight in each tree and compare results.
The individual path weights can be computed using a branch and bound approach to cut
off secarch on a path that exceeds the optimal computed so far. A better approach is to
alternate between trees each time a path that beats the current optimal is found. This
way, if one of the trees runs out without finding a better value we can terminate without
having to complete the search of the other. The solution is shown in Figure 5 as the
relation optimal(T1,T2,Winner). Trees T1 and T2 are represented as three element lists,
consisting of the node weight followed by the left and right descendants. Winner is bound
to either T1 or T2 depending on the outcome.
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Implementing this strategy requires the ability to alternate control between two back-
tracking contexts. The searches are managed by the procedure best_path. best_path
uses the accumulating parameter SoFar to hold the weight accumulated on the way down.
The parameter Weight holds the final weight value of a completed path. Search cut-off
relies on the relation best/1, which asserts the current optimal value. In the first clause
we have reached a tip node, so we bind Weight accordingly and return. The second clause
represents a cut-off: the accumulated path weight at the current node exceeds the cur-
rent optimal. We return, binding Weight to the incomplete path weight (which will be
rejected). The final two clauses carry the search into the left and right subtrees, respec-
tively. The weights returned by these searches are compared with the current optimal, and
search continues until either a better value is found or the tree is exhausted.

When best_path successfully returns with a new path weight it is guaranteed to beat
the current optimal. This value replaces the current asserted value as the new optimal. The
relation assert_best(T,TNum) changes the database relation best accordingly whenever
a completed search of a path in T returns with a new optimal value. If, on the other hand,
best_path fails, assert_best asserts the relation done (TNum), where TNum is a tag (either
1 or 2) identifying the tree.

multi_step is used to alternate between search phases in the two trees. Following a
search phase in one of the trees either a new best value has been asserted, or the search
has ended in failure. In the first case the new best value becomes the value used by the
next phase of the other tree for further comparisons. Otherwise, the program terminates,
declaring the other tree as containing the global optimal path weight. Thus following each
phase of multi_step it is necessary to check for termination in the tree most recently
searched. The relation check_for_completion(T1,T2,Winner) does this by checking the
database for the done relation and binding Winner to the tree that has not terminated.
If neither tree has terminated, check_for_completion fails and control backtracks into
multi_step for the next phase of the next tree.

The top level procedure optimal (T1,T2,Winner) initializes the best relation to “in-
finity” and sequences the multi_step-controlled search of trees T1 and T2 with a call to
check_for_completion.

Example: Samefringe

To illustrate multi_sweep we provide a solution to the samefringe problem. [17] Given two
trees, possibly with different internal structures, we are interested in determining whether
the sequence of nodes visited by depth-first traversal of the trees is the same. An efficient
solution searches the trees in parallel so that termination is possible as soon as an unequal
pair is found. This requires search procedures that are capable of being suspended, as each

element is found, while retaining their control state.
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optimal(T1,T2,Winner) :-
retractall(done/1),
retractall(best/1),
asserta(best(100000)),
multi_step([assert_best(Ti1,1), assert_best(T2,2)]),
check_for_completion(T1,T2,Winner).

assert_best(T,TNum) :-
best_path(T,0,Weight), retract(best(_)), asserta(best(Weight)).

assert_best(T,TNum) :- asserta(done(TNum)).
check_for_completion(T1,T2,Winner) :- done(1), Winner = T2.
check_for_completion(T1,T2,Winner) :- done(2), Winner = Ti.
best_path([R, [], []1],SoFar,Weight) :- !, Weight = R + SoFar.

best_path([R,LSon,Rson],SoFar,Weight) :- best(Best), Best < SoFar + R,
!, Weight = R + SoFar.

best_path([R,LSon,Rson],SoFar,Weight) :- NewSoFar = R + SoFar,

best_path(LSon,NewSoFar,WLeft), best(Best), WLeft < Best,
Weight = WLeft.

best_path([R,LSon,Rson],SoFar,Weight) :- NewSoFar = R + SoFar,
best_path(RSon,NewSoFar,WRight), best(Best), WRight < Best,
Weight = WRight.

Figure 5. Parallel Tree Walk

We start with a standard left-right tree traversal program, called is_fringe_element.

Returning to the tree representation used in scatter search, we have:
is_fringe_element([LIR], X) :- is_fringe_element(L, X).
is_fringe_element([LIR], X) :- !, is_fringe_element(R, X).

is_fringe_element (X, X).

If we proceed as in the previous example with the call

multi_step([is_fringe_element(T1, X), is_fringe_element(T2, X)1).

X is bound alternately to successive fringe elements of T1 and T2. Unfortunately, this
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does not allow us to compare fringe elements. Instead we use multi_sweep to cycle
through a phase of is_fringe_element for each tree before returning to the caller for
comparison. Since multi_sweep does not include the caller in the binding scope of its con-
stituents, we must assert a database entry following each search phase. We use the relation
fringe_element (X, N), where X is the element, or exhausted if the tree is exhausted,
and N is a tag (either 1 or 2) identifying the tree. The procedure fringe performs this
task for a given tree and tag.

fringe(T, N) :- is_fringe_element(T, X), asserta(fringe_element (X, N)).
fringe(T, N) :- asserta(fringe_element(exhausted, N)).

Now each phase of the call

multi_sweep([fringe(T1, 1), fringe(T2, 2)])

asserts two entries into the database corresponding to the next two fringe values, or
the sentinel value exhausted once either of the trees runs out. Upon return from
each multi_sweep phase we retrieve the asserted elements, retract them from the
database, and succeed only if they are equal. This check is performed by the procedure

same_fringe_elements:

same_fringe_elements :-
fringe_element(X,1),
fringe_element(Y,2),
retractall(fringe_element/2),
X =Y.

T1 and T2 will have identical fringes only if each success phase of the multi_sweep combi-
nation asserts values that pass the test imposed by same_fringe_elements. The relation
for_all(P1,P2) introduces precisely this control structure: the for_all succeeds only if
every success of P1 is followed by a success of P2. If P2 ever fails, then for_all also fails.

samefringe(T1, T2) :-
for_all(multi_sweep([fringe(T1, 1), fringe(T2, 2)1),
same_fringe_elements).

for_all(P1, P2) :- not(call(P1), not(call(P2))).

4. Operators That Generalize Cut

From the perspective of continuations, a cut replaces the current failure continuation with
the failure continuation associated with the point of entry into the current procedure.
First-class continuations allow cut to be generalized, giving the programmer the ability
to choose the failure continuation that is to be installed. Since the scope of variables is
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severly limited in Prolog, it is convenient to use an indirect means of referencing these

continuations.

In this section we present three operators, mark_region, mark and cut_to_mark,
that generalize cut using a mark queue to record failure continuations. Invoking
mark_region(T'ag, G) calls goal G with a fresh queue identified by T'ag. The scope of the
mark queue is similar to that of a cleanup queue; it is active while G is being evaluated,
except when shadowed by another mark_region call with the same tag. The operations
mark (T'ag) and cut_to_mark(T'ag) both reference the active queue indicated by Tag. (It
is an error if such a queue does not exist.) The goal mark(T'ag), which always succeeds,
reifies the current failure continuation and enqueues it on the currently active queue in-
dicated by Tag. As with cut, cut_tomark(Tag) also succeeds, but the current failure
continuation is replaced by one that dequeues a failure continuation from the indicated
queue (if the queue is nonempty) and invokes it. We refer to this as invoking the top mark.
If the queue is empty, then the failure continuation of the mark_region call that created
the queue is invoked. Note that the queue is not consulted until control backtracks to the
cut_tomark point. Cut can be implemented with these operators by preceding each call to

a relation containing a cut with a call to mark_region, and replacing cut by cut_to_mark.

We illustrate the use of the mark operators with the following program schema:

pl :- mark_region(tag, p2).
p2 :- ql1, mark(tag), g2, g3, cut_to_mark(tag), q4, fail.

The mark operation following q1 enqueues the current failure continuation, which will
backtrack into q1. Execution proceeds with q2, 3, cut_tomark(tag), and q4. fail
initiates backtracking by invoking the current failure continuation. If control backtracks
to the cut_to_mark point, the continuation enqueued by mark is invoked, causing control
to backtrack into q1. Backtracking through q2 and g3 is avoided.

Control diagrams may be used to graphically illustrate the behavior of control op-
erators. (3] Each box represents a goal. Boxes are connected by thick and thin arrows,

representing success and failure continuations, respectively. For example, the program

schema
P pid, pd2, ... PlE; PIOFL ... -
p :- p21, p22, ....p2m ...

may be represented by the following control diagram.

p11 4 4 plz > ... — pin ﬁpimi-ﬁ .....
P2l | Ap2z [ - p2m [ ==




Notice that the failure continuation from p11 turns into a success continuation on entering
p21. The effect of cut in the modified schema

p o= pll, pl2, ... plz, !, pintl
P i< p21; 922, i wnsP2W s

is shown by the following control diagram:

.“Bll ' > P12 [ weeun ::lpin '_'|p1n+1p .....

p21 [t N P22 [ =enes p2m —

To illustrate the behavior of the mark operators, we augment the control diagrams
with representations of mark queues. Mark queues are depicted as follows (the front of the
queue is on the left):

OO0 ~O

We assume that operations are being performed in the context of a single mark queue.

Figure 6 illustrates several sequences containing mark and cut_to_mark, including the
previous example that defined procedures p1 and p2. The effect of mark is to enqueue a
continuation on the mark queue, while cut_to_mark redirects a failure continuation arrow
so that it points directly to the mark queue. It points to the queue rather than to a specific
queue element, because the continuation to be invoked on failure is not selected until the

failure occurs.

It is natural to ask whether there is need for a mechanism that enqueues success
continuations rather than failure continuations. One would probably not want to queue
the current success continuation because it is about to be executed. Instead, suppose one
wants to continue at this time by executing goal q1, but enqueue a continuation that will
allow the computation to continue by executing goal q2 in the current control context.
This is effectively enqueueing a success continuation for g2.

This may be accomplished by invoking a relation q defined as follows:
q :- mark(tag), !, qi.
§ = g2

The failure continuation enqueued by mark(tag) will backtrack into q2 as desired. This
alternate path is deleted from the current control context by the following cut, and then
control proceeds to q1. For the enqueued continuation to be invoked, it must first be
installed as a failure continuation using cut_to_mark. To model success continuations,
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a) qi, mark(tag), q2.
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b) q1, cut_tomark(tag), q2.
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c) ql, mark(tag), cut_to_mark(tag), q2.

— at '_l_" q2 [ q3 l_’lq«a ——lrail
Y

d) q1, mark(tag), q2, g3, cut_tomark(tag), g4, fail.

Figure 6.

which take control as soon as they are invoked, it is only necessary to fail immediately
after installing the enqueued failure continuation. The idiom for invoking a simulated
success continuation is thus

, cut_to_mark(tag), fail.

Figure 7 illustrates the behavior of the conjunction p,q,r, with p and r arbitrary proce-
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Figure 7.

dures and q defined as above. When either q1 or g2 succeeds, control passes to r, while if
either fails, control returns to p, which is the desired behavior.

The above example demonstrates that with the ability to manipulate failure continua-
tions one also effectively has the ability to manipulate success continuations. Thus a similar
queue mechanism for success continuations is unnecessary. Since failure continuations ex-
press possible future computation paths that will occur only upon failure, enqueuing them
(with mark) or installing them (with cut_to_mark) does not immediately affect the current
path (though they may be forced to take effect immediately, as with fail above). Success
continuations do not have this delayed behavior, and thus it does not seem possible to
simulate failure continuations given success continuations.

5. Implementation

The operators described in the previous section have all been implemented directly as part
of our Scheme embedding. However, a variety of more direct and efficient implementation
methods are possible. The main requirement is that provision be made for heap allocating
control and binding information when necessary, and for the restoration of variable bindings
when continuations are invoked [7, 16]. In particular, it should be possible to extend the
Warren Abstract Machine [20] to support these operations.

In this section we demonstrate that it suffices for an implementation to support the
mark operators, for these may be used to implement cleanup, defer, multi_step, and
multi_sweep. The mark operators may in turn be implemented directly, or in terms of
low-level operators (see the appendix).

The set of low level operators consists of (1) an operator for binding the current failure
continuation to a logic variable as a reified first-class object; (2) an operator for invoking
reified failure continuations; and (3) an operator for dynamic control of database bindings.
The latter operation allows queues of failure continuations to be maintained in the database
with dynamic scope. Variations on the operations described in this paper, such as the use
of priority rather than fifo queues, may be obtained using these operations. The ability to
bind continuations to logic variables has a wide ranging effect on the language semantics,
since continuations are functions and it is unreasonable to endow them with an external
representation. (If the mark operations of this paper are implemented as primitives, rather
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than using the low-level operations, this complication does not arise.) As mentioned earlier,
the low level operations are also more difficult to use. These factors place further discussion
of them beyond the scope of this paper.

5.1 Implementing the cleanup Operators

In the following discussion of the implementation of the cleanup operators we limit our-
selves to the version that employs a first-in-first-out queue. An analogous implemention
with priority queues can be made using a corresponding priority queue version of the
mark operators. In the implementation of cleanup and defer, each cleanup queue corre-
sponds to a new mark qucue. Since cleanup queues are not tagged, we use a unique tag,
cleanup_queue, to identify them.

The call cleanup(G) creates a new active cleanup queue. The queue is consulted only
when backtracking returns control to the cleanup point. The cleanup procedure simply

creates a new mark queue and executes a sequence that first cuts to this queue and then
calls G:

cleanup(G) :- mark_region(cleanup_queue,
(cut_to_mark(cleanup_queue), call(G))).

The invocation of cleanup(p) is illustrated in Figure 8(a).

defer must fail immediately, while enqueueing a success continuation that returns to
its caller. At the end of the last section we developed a programming idiom that can be
used to queue an alternate success continuation. We abstract this idiom with the procedure
now/if_cut_to. The call now/if_cut_to(tag, pl, p2) resultsin an immediate call to p1,
while enqueueing a call to p2 on the mark queue identified by tag. The latter call is invoked
through a future cut_to_mark(tag). Both calls are followed, upon success or failure, by a
return to the caller of now/if_cut_to.

now/if _cut_to(Tag, P1, P2) :- mark(Tag), !, call(P1).
now/if _cut_to(Tag, P1, P2) :- call(P2).

To implement defer we let P1 be fail. The enqueued continuation will be invoked
either by cleanup, in the case of the first defer, or by other deferral points that control
has backed into. Thus upon return to the defer point a cut_to_mark is used to ensure that
if control subsequently backs into the defer, it will pass to the next deferral point. P2,
then, is cut_to_mark(cleanup_queue).

defer :- now/if_cut_to(cleanup_queue, fail, cut_to_mark(cleanup_queue)).

Figure 8(b) illustrates the sequence cleanup(p), where p :- p1, ..., pn, defer, q.
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b) cleanup(p), where p :- pl, ..., pn, defer, q

Figure 8. Implementation of cleanup and defer

5.2 Implementing the multi Operators

The implementation of multi_step is more complicated. Once again, a mark queue with
a unique tag, multi_queue, is created as the first step in creating the multiprocessing
kernel. Into this queue are placed a sequence of success continuations containing code that
runs the phases of each task. The latter will be implemented as the procedure dispatch.
Queue initialization is performed by the procedure multi_scheduler, which iterates down
the list of task goals [p1, ..., pnl, using now/if_cut_to to enqueue calls of the form
dispatch(P) for each task. When this iteration terminates, processing of the tasks begins
by invoking the top mark of the queue. This is accomplished with the following rules:

multi_step(Plist) :- mark_region(multi_queue, multi_scheduler(Plist)).

multi_scheduler([]) :- cut_to_mark(multi_queue), fail.
multi_scheduler([P\|Plist]) :-
now/if _cut_to(multi_queue, multi_scheduler(Plist), dispatch(P)).

The purpose of dispatch is to process one phase of its argument each time it is
resumed, save a continuation for the next phase, and use cut_to_mark to cause the next
phase of the next task to be invoked if backtracking returns to this point. Once the final
phase of the task is reached, a cut_to_mark causes the next phase of the next task to be

invoked immediately. These requirements are achieved by the following steps:

(1) perform a cut_to_mark to dispatch the next task when P fails ,
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Figure 9. dispatch control diagrams for multi_step implementation

(2) invoke P,
(3) mark the failure continuation that resumes P, and

(4) perform a cut_to_mark to dispatch the next task when backtracking returns to this
point.

This may be coded as follows:

dispatch(P) :- cut_to_mark(multi_queue), call(P),
mark (multi_queue), cut_to_mark(multi_queue).

Figure 9 illustrates dispatch(P) at its first phase, at an intermediate phase, and at its
failure phase.

If P succeeds in its first phase, processing continues into the caller of multi_step,
but with a failure continuation that will invoke the top mark rather than backtrack into
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P. The failure continuation, which is about to backtrack into P, is put at the end of the
queue (Figure 9(a)). When this item reaches the front of the queue and is invoked, it
processes the next phase of P and continues in the same way, marking the next failure
continuation and proceeding into the sequel with a failure continuation that will invoke
the top mark (Figure 9(b)). When P finally fails, the initial cut_to_mark invokes the top
mark without enqueueing any further reference to P, effectively deleting P from contention
(Figure 9(c)). When all tasks have completed, invoking the top mark on an empty queue
causes backtracking to proceed from the point of definition of the queue, which was upon
entering multi_step.

multi_sweep is implemented analogously to multi_step, with two major differences.
First, dispatch becomes dispatch_sweep, which differs by performing a fail at the end of
its sequence, causing the computation to proceed immediately into the next task. Secondly,
multi_scheduler becomes multi_sweep_scheduler, which creates the analogous queue of
dispatch_sweep calls, but enqueues a sentinel process dispatch_sentinel following the
final dispatch_sweep process. This process runs only after a complete cycle of tasks has
executed. When it does, it first checks the queue to see if it is empty. If it is, indicating
that all of the processes have failed, then dispatch_sentinel fails, terminating the call
to multi_sweep. Otherwise, it returns control to the caller. When control returns to
dispatch_sentinel upon backtracking, it enqueues a failure continuation for another call
to dispatch_sentinel following the next sweep through the remaining processes, and then
invokes the top mark.

Figure 10 contains the implementation of multi_sweep. We are assuming the existence
of the relation queue_empty(tag), which succeeds if the queue with tag tag is empty.

6. Conclusion

Languages that are based on a depth-first control strategy, such as Prolog, are valuable in
solving problems for which depth-first search is suitable. However, for problems requiring
other forms of control a built-in depth-first control strategy becomes an obstacle to program
design. This often forces the choice of a traditional imperative or functional language for

such problems. Though the control strategy of these languages is less powerful, it is more
malleable.

To retain the depth-first control behavior of Prolog, while making other forms of
control behavior readily accessible, we have developed Conlog—an extension of Prolog
with additional control operators. These operators use first-class continuations to record
the current control state at appropriate times so that control may easily return to previous
states. In this paper we have presented the high-level extra-logical operators of Conlog,
which may be used to obtain non-blind backtracking and multi-tasking control behavior.
We have also shown how these may be implemented using a set of intermediate-level
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multi_sweep(Plist) :-
mark_region(multi_sweep_queue, multi_sweep_scheduler (Plist))).

multi_sweep_scheduler([]) :-
!, now/if_cut_to(multi_sweep_queue,
(cut_to_mark, fail), dispatch_sentinel).
multi_sweep_scheduler([P\|Plist]) :-
now/if_cut_to(multi_sweep_queue,
multi_sweep_scheduler(Plist), dispatch_sweep(P)).

dispatch_sweep(P) :-
cut_to_mark(multi_sweep_queue), call(P),
mark (multi_sweep_queue), cut_to_mark(multi_sweep_queue), fail.

dispatch_sentinel :- queue_empty(multi_sweep_queue), fail.
dispatch_sentinel :-
now/if_cut_to(multi_sweep_queue, cut_to_mark, dispatch_sent inel).

Figure 10. Implementation of multi_sweep

operators based directly on first-class continuations.

These operators cause minimal disruption of accepted Prolog programming techniques.
Insertion of cleanup (non-blind backtracking) operators into ordinary depth-first search
programs converts them to breadth-first search. The user need not be concerned with
details of control management other than assigning priorities to alternatives if they are
required. A valuable characteristic of Conlog’s multi-tasking operators is that their tasks
are represented as ordinary Prolog-style procedures. Furthermore, synchronization is based
on phase completion—a notion that is natural to logic programming. Conlog introduces a
minimum of new mechanism of which the programmer must be aware, but allows concise

expression of control behavior that is awkward to express in Prolog.

In conjunction with standard Prolog, these operators are powerful tools for specifying
complex search strategies. Subproblems for which depth-first search is appropriate may
take advantage of the Prolog’s default control mechanism, while other forms of control
may be obtained using operators employing first-class continuations.
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Appendix

An implementation of the mark operators using the lower level operators cfc, cut_to, and
protect defined in [10] follows:

mark_region(Tag, G) :-
Gl =.. [create_mark_queue, Tag, G], name(Tag, Tagstr),
append(Tagstr, "/1", Tagstrl), append(Tagstr, "/2" Tagstr2),
name(Tagl, Tagstrl), name(Tag2, Tagstr2),
protect(Tagl, protect(Tag2, G1)).

create_mark_queue(Tag, G) :-
cfc(FC), F1 =.. [Tag, .1, F2 =.. [Tag, _, _1,
retractall(F1), retractall(F2),
F3 =.. [Tag, FC, final], asserta(F3), call(G).
mark(Tag) :- cfc(FC), F =.. [Tag, FC], assertz(F).

cut_to_mark(Tag) :- .

cut_to_mark(Tag) :- F =.. [Tag, FC], call(F),
retract(F), cut_to(F), fail.
cut_to_mark(Tag) :- F =.. [Tag, FC, finall, call(F), cut_to(F), fail.
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