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Abstract

The depth-first control behavior of most logic programming languages, such as Pro-
log, is powerful but inflexible. The language Conlog extends Prolog with extra-
logical operators that allow alternate control behavior to be expressed, while re-
taining a default depth-first behavior. In this paper we describe Conlog’s primitive
control operators, which allow the programmer to bind the current success or failure
continuation to a variable and invoke it at any future time. These continuations are
first-class objects that may be stored in the database. Together with an operator for
dynamically restoring database bindings, this allows a variety of control behavior,
including variations on breadth-first search and multitasking, to be conveniently
expressed. A denotational semantics of Conlog is presented that accounts for the
intensional nature of continuations, as opposed to the extensional character of other
Prolog data. Cut is also expressed in a unique way, and a careful treatment of the
traditional assert and retract operations is included.
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1. Introduction

Logic programming, as exemplified by Prolog, implements deductive inference on
Horn clauses through an efficient but inflexible depth-first control structure. The
extra-logical cut operator provides limited ability to prune the search tree, but does
not alter the depth-first character of the search. Other control strategies, such
as variations on breadth-first search, can be achieved using interpretation (meta-
programming) or self-modifying programs, but this generally results in inefficient
and obscure programs.

Meta-rules have also been proposed to control clause and literal selection, and
these may be used to implement breadth-first search. [9] However, this technique
is based on a fixed set of properties reflecting the state of the interpreter. As a
result, it is not possible to use data-dependent heuristics, as in Algorithm A. [16]
The restriction to a fixed set of properties for meta-control is critical. If control
and logic were not divorced in this way, constant reinterpretation of the meta-rules
would be required.

The language Conlog is an extension of Prolog that includes several novel extra-
logical operators. These operators allow alternate control strategies to be directly
expressed within the framework of Prolog. The programmer benefits from the
efficiency and power of a default depth-first search control regime, while at the same
time retaining the ability to obtain radically different control behavior as needed.

In this paper we describe the primitive control operators of Conlog. These
operators provide the ability to capture, or reify, the control context at any point
in a program and return to this context at any future time. The captured control
information is encapsulated as a continuation that may be manipulated as first-class
data with unlimited extent. Continuations may thus be bound to logic variables
and stored in the database.

Continuations abstract the control context in which the “future” of compu-
tations would normally be played out. Languages that support backtracking are
readily modeled using two continuation types: success continuations that continue
forward progress and failure continuations that perform backtracking. In logic pro-
gramming, the control context includes the choice points used when backtracking
and, for failure continuations, the current bindings of logic variables.

In some applications the limited scope of logic variables requires that contin-
uations be stored in the database. Unfortunately, the traditional Prolog database
is global (unscoped), which may makes it difficult or impossible to maintain the
appropriate environment for computations involving continuations. This has moti-
vated a Conlog operator that provides dynamic database protection. This operator
automatically restores database bindings of a given relation, R, when control leaves
a given goal, G. Since any assertions to R by G have dynamic extent, they may be
viewed as belonging to a “hypothetical world” constructed by G.

Though first-class continuations are a general abstraction of control, their low
level makes it difficult to directly abstract common paradigms of control behavior.
In a companion paper we present the high-level control operators of Conlog, which
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allow control patterns such as breadth-first search and multi-tasking (coroutining)
to be conveniently expressed. [20] These high-level operators may be implemented
as primitives, or they may be programmed using the low-level operators introduced
in this paper.

A denotational semantics of Conlog’s primitive control operators is presented
in this paper. This semantics is based on earlier work, notably that of Jones and
Myecroft [13] and de Bruin and de Vink [4], but is unique in its treatment of the
operators introduced here. Of particular interest is the intensional treatment of
continuations as data, which contrasts with the extensional nature of other data
and influences the semantics at several points. The semantics also makes use of the
dynamic database to express cut in a novel way and provides a careful treatment
of the traditional assert and retract operations.

The next section presents the Conlog operators for accessing and invoking first-
class continuations. Section 3 describes the database protection operator. Section
4 contains the denotational specification of Conlog. Section 5 contains concluding
remarks. Familiarity with Prolog, first-class continuations, and the techniques of
denotational semantics is assumed. [6,11,21]

2. First-class continuations in logic programming

In this section we introduce the extra-logical operators csc, cfc, cut_to, and throw.
The csc and cfc operators reify success and failure continuations, respectively,
while the cut_to and throw operators are used to invoke reified success and failure
continuations, respectively.

The operator cfc is called with an unbound logic variable and returns with
the variable bound to the current failure continuation, represented as a first-class
object. Reified continuations have indefinite extent and may be asserted into the
database as fact arguments.

The operator cut_to takes a single argument, which must be a variable bound
to a reified continuation object. The continuation represented by the object replaces
the current failure continuation. This is analogous to the behavior of cut, which
replaces the current failure continuation with the failure continuation of the current
relation’s entry point. If backtracking causes the new failure continuation to be
invoked, it will continue from the point at which the continuation was created.
When the continuation is invoked, logic variable and protected database bindings
are restored to the values current at the time the continuation was created.

The following program illustrates the use of cfc and cut_to.

p(X,Y) :- X = 3, cfc(FC), F =.. [fail_cont, FC], asserta(F), q(Y¥).
pX,Y) :- X = 4.
g(Y) :- Y = 5, retract(fail_cont(FC1)), cut_to(FC1), fail.

Invoking p first binds X to three, and then binds FC to the current failure con-
tinuation, which begins by unbinding X. Next a structure is constructed, with the
=.. operator, that has functor fail_cont and the reified failure continuation as
its argument. This fact is then asserted into the database. The call “q(Y)” first
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binds Y to five and then binds the reified continuation to FC1, by matching the rela-
tion fail_cont in the database. The fail_cont relation is then retracted, making
further access to the continuation impossible. Finally, FC1 is invoked by first us-
ing cut_to to substitute it for the current failure continuation and then executing
fail to initiate backtracking. This returns control to the first clause of p at the
point following the binding of X to three (so that Y is no longer bound to five), and
proceeds by revoking the binding of X to three. The computation then enters the
second clause of p.

The csc operator takes an unbound logic variable and a subgoal. It binds the
variable to the current success continuation (represented as a first-class object),
which is the success continuation of the csc call, and then calls the given subgoal.
If the subgoal succeeds, the success continuation is implicitly invoked.

Finally, the throw operator takes a logic variable, which must be bound to a
reified success continuation, and invokes this continuation. This effectively forces
success of the subgoal associated with the csc statement that created the contin-
uation. Logic variable bindings and choice points established by the subgoal are
retained. Thus subsequent failure will back control into the subgoal. However, a
subsequent cut in the rule containing the success continuation’s csc statement will
cut the choice points of the csc subgoal as well as those of the rule.

For example, consider the following program.

p(X) :- csc(SC, q(SC,X)), fail.
plX) = cscl(SC, ql(BC.X)), 1.
q(SC,Y) :- Y =1, throw(sC).
q(sc,2).

Invoking p first binds SC to a reified success continuation and then invokes the
subgoal q(SC,X). The subgoal returns with X bound to 1, but then fail sends
control back into q. The first clause of q then fails and the second clause binds X
to 2. Fail then sends control back into q, which now fails, causing the first clause
of p to fail. The second clause of p then calls q again. This time p succeeds with
X bound to 1 when control returns, but the choice points of p and q are cut first.
Thus if control fails back into p, it will fail without trying the second clause of g.

In Prolog, user defined procedures have an extensional representation that may
be manipulated and printed. However, in most procedural languages they do not.
This is for reasons of abstraction and efficiency, and is in keeping with the usual
intensional treatment of functions in mathematics. For similar reasons continuations
should not have an extensional representation, in either traditional languages or in
the context of logic programming. The intensional nature of continuations means
that they have no external representation; they cannot be printed as results or
decomposed. Furthermore, equality of such intensional objects is undecidable. Thus
to maintain the abstract nature of continuations we feel that unification should not
be used to determine if two continuation objects are the same. Consequently we
add the restriction that reified success and failure continuations unify only with
unbound variables.



3. Dynamic database

Logic variables do not always suffice for recording continuations. The automatic
restoration of logic variable bindings, when failure continuations are invoked, may
prohibits the use of logic variables for communication between independent pro-
gram threads. Thus the database must at times be used to communicate continua-
tions. (Stylistically the database may also be preferable, even when it is possible to
communicate through logic variables, for its use may reduce the need for extensive
parameter passing.) Unfortunately, the global character of the database is problem-
atic. In addition to the possibility of accidental naming conflicts, there is a problem
when a procedure that makes database assertions is called recursively. Care must
be taken not to confuse assertions made at different levels of recursion.

In the absence of continuations that outlive their dynamic context, the latter
problem may be handled by recording a database binding in a local variable and
then retracting the database binding upon entry to a recursive procedure. The old
binding may then be re-asserted before the procedure returns. For example, in the
following program schema procedure p may use the argument of foo’s database
binding to communicate information to procedures that it calls.

p :- retract(foo(Save)), ..., asserta(foo(x)), ..., P, ---»
retract(foo(New)), F =.. [foo,Savel, asserta(F).

When called, p saves the current argument of the initial clause of foo in the variable
Save, retracts the old clause, and then asserts a new clause before calling itself
recursively. Before p returns to its caller, the process is reversed to restore the old
clause of foo.

This technique is not reliable in the presence of first-class (success or failure)
continuations. Control may pass out of the dynamic context of a procedure through
invocation of continuations without restoring database bindings. The same problem
arises in other programming languages, such as Scheme [18], that support first-class
continuations. The solution is to provide a dynamic environment whose bindings are
restored when a continuation is invoked to their values at the time the continuation
was reified. Rather than providing a separate dynamic environment in Conlog,
we achieve the same effect with the protect operator, which dynamically protects
database bindings. Protected database bindings may be viewed as entries in a
dynamic database environment that shadows the global database. (This is the
technique by which database protection is modeled in the semantics of Section 4.)

If R is a relation name and G is a goal, then a call of the form protect (R,
G) saves the current database binding of R and calls G. The saved binding of R
is restored whenever control leaves G, either through success, backtracking, or con-
tinuation invocation. If control returns to G through backtracking or continuation
invocation, the binding is returned to its value at the time control left the context.
Thus the rest of the program is protected from manipulation of relation R by G,
and G is protected from manipulation of relation R by the rest of the program.

Dynamic database bindings may be used to implement cut for a given procedure
p as follows. First p is renamed within its own definition, say to pi. Then p is
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redefined to be an auxiliary procedure that uses the procedure cut_call to invoke
pl. Within p1 the cut operation is performed by calling the procedure cut, which
retrieves the current cut continuation from the database, where it was stored by
cut_call, and installs it with cut_to.

pltl;e: o ¥0) i~ cut_call(pi(El,: ««ytndd.
cut_call(G) :- cfc(CutFC),
protect(current_cut/1, (retract(current_cut(X)),
S =.. [current_cut, CutFC],
asserta(S), call(G))).
cut :- current_cut(CutFC), cut_to(CutFC).

cut_call first reifies the failure continuation of the forthcoming call of G. The
relation current_cut (with arity 1) is then protected. Within the scope of this
protection any existing binding of current_cut is retracted and a new binding is
asserted that includes the reified continuation, after which the goal G is called. The
retracted binding of current_cut is restored by the protection mechanism when
control leaves goal G with success or failure.

4. Denotational semantics of Conlog

In this section we present a denotational semantics of Prolog, extended to include
the cfc, cut_to, and protect operations. This semantics also treats cut in a novel
way and is careful in its treatment of assert and retract.

An abstract syntax for Conlog is given in Figure 1. For every variable V' in
the (countably) infinite set of variables Var, Var is assumed to contain, for each
natural number 7, a distinct variable denoted V(®) and referred to as the renaming
of V at level n. This domain allows an already renamed variable, say V() to be
renamed again. Each renaming yields a distinct variable, so for example V("2)(m)
and V(m2)(m) are distinct. Variables may be represented by a base variable (one
that has not been renamed) with an associated list of renaming levels.

A new renaming level is used for each access to the database, and asserted
clauses may include variables. As a result, the present semantics requires the ability
to rename already renamed variables. For example, when the procedure

p :- asserta(a(X)), a(Y).

is called, it is first retrieved from the database, at which time X is renamed, say to
(™). a(x(™)) is then asserted as a fact. When this fact is retrieved by the goal a(Y),
X(™ is renamed again, say to X(™ (™) before being bound to Y(™. In a semantics
without database assertion, only base variables need be renamed. [4,13]

Relation identifiers include the cut (!) and list construction (.) operators. It is
presumed that arity information is encoded in relation identifiers in the translation
from concrete to abstract syntax. Constants include the empty list ([1). Facts are
treated as clauses with the body true. Term* and Clause® indicate sequences of
zero or more terms and clauses, respectively. An empty term sequence is associated
with unparameterized relation identifiers, including cut.
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Keyword ::= true | fail | and | or | call | cfc | cut_to | protect
| csc | throw | asserta | assertz | retract | « | =
Ve Var  Variable identifiers (includes V(™ for all V € Var)
Re Relid  Relation identifiers (includes ! and .)
F € Functor ::= Keyword | Relid
K e Const ::= Var | Functor | [1 | ...
S € Structure ::= Functor(Term®")
I E Term ::= Const | Structure
G e Goal ::= true | fail | Relid(Term*) | Term; = Termsy | call (Var)
| Goal; and Goal, | Goal; or Goaly | retract (Term)
| asserta (Term) | assertz (Term) | protect (Term, Goal)
| cfc (Var) | cut_to(Var) | csc(Var, Goal) | throw (Var)
C €  Clause ::= Relid(Term") + Goal
Program ::= Clause®; Goal

Figure 1. Abstract syntax

The domain equations are given in Figure 2. D, denotes domain D lifted
by addition of a bottom element. D* indicates the domain of finite sequences
of elements from domain D. x and + denote smashed product and coalesced
sum, respectively. The domain Den of denotable values is a generalization of Term
that allows success and failure continuations to be recorded in substitutions and
databases.

A relation is represented as a sequence of 4-tuples, one for each clause of the
relation. Each 4-tuple contains the sequence of values representing the terms of
the clause’s head, the value representing the clause’s body, the denotation of the
clause’s body, and an index which, if non-zero, identifies a deleted clause. The value
representing the body is used only by retract.

Though substitutions are abstractly partial functions, we represent them as
total functions by extending their ranges to be disjoint unions including domains
containing the unique element unbound. Natural numbers are used to record vari-
able renaming levels, as in structure sharing implementations [3,4], and as unique
indices for the global database. The next unused number is passed to failure con-
tinuations. The first renaming level passed to goal denotations is the level at which
the goal was accessed in the database.

Dynamically bound denotable values are recorded in the global database, where
they are indexed by numbers. If a relation identifier is dynamically bound, the
dynamic database maps it to the associated index number. Relation identifiers
that are not dynamically bound are fixpoints of the associated dynamic database
(modulo injection into the Did domain).

The Dcont domain is that of specialized continuations used by the auxiliary
function delete. Answers are lists, constructed by X, of answer substitutions. These
lists may be either finite (terminated by fail) or infinite, in the manner of Jones and
Mycroft [13]. Answer substitutions normally map variables to terms or to unbound,
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m,n € N = {0,1,2,..% Natural numbers
Struct = Functor, x Den* Structured values
b€ Den = Const; + Struct + Fcont + Scont ~ Denotable values
pE Rel = (Den* x Den x Gden x N)* Relations
o € Subst = Var — (Den + {unbound}, ) Substitutions
L€ Did = Relid; + N Database indices
Be€ Ddb = Relid — Did Dynamic databases
v€ Gdb = Did — Rel Global databases
¢ € Fcont = Gdb - N — Ans Failure continuations
£ € Scont = Fcont — Subst — Ddb — Fcont Success continuations
m€ Gden = N — Scont — Scont Goal denotations
k € Dcont = Rel — Subst - N — Ans delete continuations
Ans = (Asubst x Ans, ) + {fail}, Answers
Asubst = Var — (Term, + {fail, unbound}, ) Answer substitutions

Figure 2. Domain equations

which indicates that the substitution does not associate a value with the given
variable. However, answer substitutions may also return fail, indicating the value
associated with the given variable contains a failure continuation and thus cannot
be represented as a term.

The valuation functions are given in Figure 3. Braces are used for grouping,
while parentheses and angle brackets are used to indicate product and sequence
construction, respectively. Z indicates a sequence of elements from domain z. §
indicates concatenation of the sequences, while = : p abbreviates (x) § p. Z(;
represents the element of sequence Z with index 1.

The program valuation P calls the goal valuation G with a global database into
which the clauses have been loaded by the clause valuation C. All global databases
are formed by functional extension of this database. The initial dynamic database
Bo is the identity function on relation identifiers. If a global database does not bind
a given relation, then <y, associates it with an empty relation sequence. This causes
predicates referring to the relation to fail. The initial failure continuation ¢q returns
fail, terminating an answer list. The initial success continuation £, constructs
an answer list headed by an answer substitution and followed by the answer list
obtained by invoking the failure continuation ¢. The auxiliary function ans (see
Figure 4) converts the substitution o passed to & into an answer substitution.
Numerous domain injections and projections, such as the injection of () into Rel
and fail into Ans, have been omitted for clarity.

The clause valuation loads program clauses into the global database. Each
clause of the form R(f) «— @ is represented as a triple consisting of the sequence
of values representing T', the value representing G, and the denotation of G. The
(postfix) auxiliary function | performs down conversion, returning the value associ-
ated with a term, while | returns a sequence of values obtained by down converting
a sequence of terms. The triple is placed at the end of a sequence denoting those
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P . Program — Ans

PIC; G] = G[G10&boo0Be{CICIo}1

where &y = ApoByn.(ans o, dyn), o = Ayn.fail, 0o = AV.unbound, Bo = AR.R,
and o = Ae.()

C : Clause™ — Gdb — Gdb

ClOly =

CIR(T) — G : Cly = CICly, where ' = 7[R = 7[R] § (T4, G, GIG], 0))]
G : Goal — Gden

Gtrue mé =€

Gltail Jmépof = ¢

GIR(T)|mépaBy = alt pbmédo By, where p = v{B[R]} and §=TJ

GITs = Ty]médop = {w{oo’}ﬁ, if o' = mgu(T1 ™o, T, (™o) # fail;

o, otherwise.
G[G1 and Ga]mé = G[G1]mé’, where &' = G[G2]mé
G[G1 or Go]mépof = G[G1]m¢’ o B, where ¢' = G[Ga]mpo B

GIGImepapB, if oV (™ + unbound;
Glcall (V)méo = and G = goal(aV(m)T) # fail;
?, otherwise.
(continued)

Figure 8. Valuation functions

clauses of the relation R that preceded the current clause in the program’s clause
list.

The goal true causes the current success continuation to be invoked.
(G[true]mé = £ is equivalent to G[true [mépofyn = {poByn.) Similarly, the
goal fail results in invocation of the current failure continuation.

In response to predications of the form R(f), the alternation auxiliary function
alt is invoked with the result of looking up the relation denoted by R. alt fails given
an empty relation. Otherwise, it attempts to unify the value sequence § associated
with T and the value sequence 61 representing the head of the first clause of the
relation. Before unification 81 is renamed at a new level n and § is renamed at
the level m of the predication and any variables bound by the current substitution
o are replaced by the values indicated by o. If unification succeeds, returning
substitution o', the denotation m of the clause’s body is invoked. 7 is passed the
new indexing level n, a modified success continuation ¢’ (discussed below), a failure

continuation ¢’ that will attempt to unify & with other clauses of the relation, a
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EpaBy, if (R,6,68') = unparse Tom
Glasserta (T)|méo By = and G = goal{§'1} # fail,
¢, otherwise.
where ¢+ = B[R] and 7' = y[¢ — (5, Gl,G[G],0) : v¢]
EpaBy', if (R, 5,6 ) = unparse Tom
Glassertz (T')lmépofy = and G = goal{6'1} # fail;
7, otherwise.
where ¢ = B[R] and 7/ = [t 7§ (5, GL,6[C1, 0))]

Glretract (T)|méo By = { delete {7;}()5{(;&7}&, if (R, 61, 8') = unparse Tom;
7, otherwise.

where . = B[R], § = §' : 81, k = fiz f./\pa’_?:z.ﬁqé’{aa’}ﬁ{'y[e — p|}n, and

¢' = fix g.\yn' delete {find{y:}{n — 1}}()é{g7}fn'

Glprotect (T, G)mépofyn = { GIG)mE doB'v'{n+ 1}, if Por Q;

oyn, otherwise.
where § = o{T | Var}{™, ¢’ = ApoB1.£¢0 B, B’ = B[R +— n], 7' = v[n — v{B[R]}],
P = “TE Var, § # unbound, § E Relid, and R = § | Relid,” and
Q = “TE Relid and R = T | Relid.”

Glete (V)ImEgof = { ff{"“’}@ if o’ = mgu((V1™0), (¢ in Den)) # fadl;

otherwise.

Gleut to (V)]mégop = {g{av(m) |Feont}of, oVt EBcont;

9, otherwise.
Glese (V,G)|mépo = {gﬂGﬂm€¢{UJ’}ﬁ, i)fthae;;s?gu((Vl{m)o.>, (6)) # fail;

where = £'in Den and & = Ao B EdeB

. {oV(™) | Scont}¢popB, if oV (™ EScont;
Gleteon(V]|mkgol { o, otherwise.

Figure 3. Valuation functions (continued)

substitution obtained by composing o with ¢’, a dynamic database ' extended for
cut (discussed below), the current global database v, and the next unused indexing
level n + 1. If unification fails, it is only necessary to invoke ¢'.

The success continuation £’ with which a clause is invoked is identical to the suc-
cess continuation £ of the call except in one respect: the current dynamic database
is replaced by the dynamic database that was current when the clause was entered.
Thus the success continuation of a clause is closed over the dynamic database,
while the success continuation of a conjunctive goal is not closed over the dynamic
database. This is necessary to support our implementation of cut.

The standard way to support cut in a continuation semantics of Prolog is to pass
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mgu : (Den* x Den*) — (Subst + {fail}, )

Most general unifier. Success and failure continuations unify only with unbound
variables. Definition omitted.

goal : (Term + {fail}, ) — (Goal + {fail}, )

Natural embedding of Term into Goal. goal preserves the token fail, and returns
fail if the given term is not the prefix form of some goal. Definition omitted.

—(™) : (Den x N) — Den and (Den* x N) — Den*

Rename, at level n, all variables (both previously tagged and untagged) in a value
or sequence of values. Definition omitted.

| : Term — Den 71 :Den — (Term+ {fa:l}, )
Kl=K KT =K, ¢1 = fail

. W . fail, if there exists an ¢ such that g(i)T = fail,
F(6f), otherwise.
(continued)

Figure 4. Auxiliary functions

each goal denotation a cut continuation, as well as success and failure continuations.
[2,4,7,8,15,17,22] This is avoided in our semantics by dynamically binding the cut
symbol, !, to a specially created relation when invoking a goal denotation. This
relation has a single triple containing an empty sequence and a value representing
true (as if cut were a fact with arity zero) and a special function with the type of
a goal denotation. This function takes a renaming level m, a success continuation
¢, and a failure continuation ¢;, and invokes £ with the failure continuation ¢ that
was current at the time the current relation was entered. ¢ thus replaces ¢; as
the current failure continuation when cut is encountered. This approach is possible
only when a dynamic binding mechanism exists, since when exiting a relation the
cut continuation of its caller must become the current cut continuation.

The auxiliary function mgu returns the most general unifier of two value se-
quences, or fail if no unifier exists. It is standard except for the added specification
that failure continuations unify only with unbound variables. A semantics that al-
lowed failure continuations to unify with themselves would be reasonable. However,
since intensional functions cannot be tested for equality, and failure continuations
do not have an extensional representation in our semantics, additional machinery
(such as a store semantics or pairing continuations with unique tags) would be
required for continuation equality to be meaningful.

The equality goal involves unification of value sequences obtained by down con-
verting, renaming and substituting two term sequences. If the unification succeeds
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unparse : Term — Subst — N — ((Rel x Den* x Den) + {fail}, )

(R,8,6"), if TE Structure and T|(™ = pattern
unparse T'on = or TE Var, § = O'{Tl("’}} # unbound, and § = patiern;
fail, otherwise.

where pattern = (., (<, (., {((., (R:g))?(' 6, TN

ans : Subst — Asubst
_ [ unbound, if o{V©®} = unbound;
e { o{V(®}1, otherwise.

alt : Rel — Den™ — Gden

alt ()émépo = ¢
alt (B, 82,7, : pYomegapyn = { 716 LW I 1L BT 7 e =0,
where &' = ApoB1.Edo B, ¢' = alt pgmféaﬁ, gl = mgu(g(m)a, 51(“)),

B =p[! — n],and 7' = v[n = (({), true |, Am¢1.£¢,0))]

delete : Rel — Rel — Den* — (N — Ans) — Dcont — N — Ans
delete () pbipr = ¥

delete {(61, 64, m,n') : pl}p&/mn =
{ k{p § ((61,62,m,m) § p1)}o’'{n+1}, if o’ # fail and n' = 0;
delete p1{p § ((61, 62, m,n'))}0%pkn, otherwise.

where o/ = mgu(g, {62 : 51}(“))
find: Rel > N — Rel

find{(81,62,m,n) : p}n = {

o, if n = n’;
findpn, otherwise.

Figure 4. Auxiliary functions (continued)

with substitution ¢/, then the success continuation is invoked with, among other
arguments, the composition of ¢’ with the current substitution. Otherwise, the fail
continuation is invoked.

Evaluation of conjunctions is accomplished by evaluating the first subgoal with
a success continuation that evaluates the second subgoal if the first succeeds. Sim-
ilarly, disjunctions are handled with a failure continuation that tries the second
goal if the first fails. This failure continuation is closed over (contains) the current
substitution ¢ and dynamic database B, while the success continuation created by
and does not close over ¢ or 8. It is this that gives substitutions and dynamic
databases their dynamic character. In the absence of database assertion, failure
continuations may close over the indexing level, allowing indexing levels to be reused
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upon backtracking. [4] However, since assertions are not normally retracted upon
backtracking, indexing levels cannot be reused in the current semantics.

In a call goal, the value bound to the given variable is up converted to obtain
the term to be called. Up conversion translates the value upon which renaming
and substitution have been performed back to a syntactic form. It fails if the value
being converted contains a failure continuation, since continuations do not have an
extensional representation. If up conversion succeeds, the resulting term is coerced
to a goal by the auxiliary function goal. This coercion may also fail, since not all
terms represent goals. If the goal coercion succeeds, the resulting goal is evaluated.
The call fails if the variable is unbound or if up conversion or goal conversion fails.
Unlike North’s treatment of cut [17], a cut in a called goal cuts across the call
(installs the caller’s cut continuation). To make the cut continuation of the called
goal be the fail continuation of the call, all that is required is to update the global
database as in 7' of the auxiliary function alt.

The argument to asserta, assertz and retract must either be a clause or
a logic variable bound to a value of a form that could, with one exception, be up-
converted to form a clause. The exception is that values representing “terms” in the
clause’s head may contain continuations. The auxiliary procedure unparse returns
the clause’s relation identifier R and values representing the “head” and goal of
the clause. If the clause is indicated by a variable binding, then these components
must be extracted from a value whose structure is that of values constructed by a
Prolog term of the form [:-, [RIT],G], where R is bound to the relation name, T
is bound to the head term list, and G is bound to the goal. This value is composed
of a number of product and sequence constructions, as indicated by pattern. The
notation § = pattern indicates that the value § matches the form of the pattern,
and instantiates the pattern variables.

For asserta and assertz, a new triple representing the asserted clause is then
added to the relation by functionally extending the global database. They differ
only in that asserta inserts the triple at the head of the relation sequence, while
assertz inserts it at the tail.

For retract, the delete auxiliary function is called to search the relation se-
quence indicated by R for a clause that matches the values derived from the head
and body terms. delete is called with a special success continuation and the failure
function 6. The success continuation x receives a new relation sequence p, a new
substitution ¢’ resulting from the match, and a new indexing number n. x invokes
the success continuation & of the retract goal with the new failure continuation ¢/,
a new substitution formed by composing the old substitution with ¢’, the dynamic
database, a global database extended to record the deletion, and the new indexing
level n. The deletion is recorded by entering the current index n in the deleted
4-tuple. The fail continuation ¢’ uses find to locate this tuple and then attempts
another deletion on the remaining tuples of the relation.

Because ¢’ retrieves the current database binding, ¢, of the relation, it is possi-
ble to delete a tuple added by assertz since the last deletion. This conforms makes
it straightforward to maintain queues using assertz and retract. However, the
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set of rules that may possibly match a goal is determined at the time the goal is
called (and is not affected by assertions or retractions that may occur during eval-
uation of the goal or between success of the goal and subsequent backtracking into
the goal). Lindholm and O’Keefe refer to this as the logical view of dynamic Pro-
log code, and argue that it is superior to immediate update and implementational
views. [14]

Matching is performed by unifying the head and tail values with the values in
the relation triples after the latter have been renamed at a new level n. If unification
succeeds, k is invoked with a relation sequence that has had the matching triple
removed, the substitution ¢’ from the unification, and a new indexing level n + 1.
If the end of the relation sequence is reached without finding a match, the failure
function ¢ is invoked.

The first argument of a protect goal is a term that must either be a relation
identifier (after the necessary projection to Const, Functor, and Relid) or a variable
denoting a relation identifier. The second argument, a subgoal, is evaluated with
an extended dynamic database that maps R to a new index n, and an extended
global database that maps n to a copy of the current binding of R. The success
continuation &' of the goal evaluation is closed over the old dynamic database so
that the previous binding of R is restored if control returns with success. The
previous binding is also restored if control backtracks out of the goal evaluation
by invocation of the failure continuation ¢, since failure continuations are always
closed over the dynamic environment.

The cfc goal unifies the result of down converting, renaming and substituting
the given variable V' with the result of injecting the current failure continuation
¢ into the Den domain. If the current substitution does not bind V, or binds it
to an unbound variable, this unification will succeed and the resulting substitution
o’ will bind V to a value obtained by injecting ¢ into Den. In this event the
success continuation ¢ is passed the composition of ¢’ with the current substitution.
Otherwise, the goal fails.

The cut_to goal fails unless the binding V(™) of the given variable V in the
current substitution is an injected failure continuation. If it succeeds, £ is invoked
with the failure continuation obtained by projecting V(™) into the Fcont domain.

The csc goal is similar to cfc except that the given variable is bound to the
result of injecting a success continuation into the Den domain. This success contin-
uation, ¢’, is the same as the current success continuation, &, except that it is closed
over the current dynamic database, 8. Following successful unification, the given
subgoal is invoked with the success continuation ¢ and an extended substitution.

The throw goal is similar to the cut_to goal. However, a success continuation,
rather than a failure continuation, is extracted from the given variable. The ex-
tracted continuation is then invoked by passing it the current failure continuation,
among other arguments.

In this semantics, goals fail in the event of errors. This avoids the need to
specify an error handling mechanism. In some cases, such as the failure of up
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conversion, it would be appropriate for an implementation to raise an error if a
suitable mechanism were available.

5. Conclusion

The depth-first control regime of Prolog and most other logic programming lan-
guages supports concise and efficient solutions to problems for which depth-first
search is appropriate. However, such a control regime often proves to be an ob-
stacle in solving problems requiring more sophisticated control behavior. We have
addressed this problem by proposing extra-logical extensions of Prolog for (1) reify-
ing the current success or failure continuation and binding it to a variable, (2)
invoking a reified continuation (installing it in place of the current success or failure
continuation), and (3) protecting named relations so that their database bindings
are automatically restored on backtracking.

Our reified continuations are “first-class” objects that may be stored in the
database. These extensions may be used directly, or to implement higher-level op-
erations that abstract recurring patterns of control behavior. They allow variations
on breadth-first search and multiprogramming to be implemented efficiently without
resort to meta-level programming techniques.

We have presented a denotational semantics of Prolog that includes these ex-
tensions. Expressing the reification of success and failure continuations is straight-
forward. However, for reasons of abstraction and efficiency we do not feel it is
appropriate for continuations to have an external representation or for equality of
continuations to be defined. Since traditionally Prolog data have external represen-
tations and a well defined notion of equality, the addition of reified continuations
has ramifications at a number of points in the semantics. It is also notable that a
dynamic database allows the cut operation to be expressed without an additional
mechanism.

First-class reified continuations allow the control structure to branch, forming
a tree, rather than being limited to a stack. This is a consequence of the ability to
invoke them after control has left their dynamic context. When first-class contin-
uations are provided in functional and imperative languages it is also necessary, in
general, to abandon traditional stack implementation techniques and heap allocate
control information. The high cost typically associated with heap storage manage-
ment has limited acceptance of first-class continuations. However, recent implemen-
tation experience with Scheme [5,12] and ML [1] has demonstrated that this cost
may often be reduced to a few percent. This is accomplished by optimizations such
as the use of a stack at most times, with control information being copied to the
heap only when first-class continuations are created, and by particularly efficient
garbage collection techniques. Current work is demonstrating that such techniques
may be used to provide efficient implementations with logic continuations.

In logic programming languages first-class failure continuations pose an addi-
tional implementation concern: when a failure continuation is invoked it is necessary
for logic variable bindings to be restored to the values they had when the continua-
tion was created. With a dynamic database mechanism, protected database values
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must similarly be restored when a continuation is invoked. Though this is most sim-
ply accomplished, as in our semantics, by “deep binding” substitution and dynamic
database information, “shallow binding” may be required for efficient implementa-
tion. In previous work we have developed a state-space mechanism that restores
shallow bound logic variable bindings when first-class continuations are invoked
[10,19], and similar techniques may be used to restore database bindings.
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