TECHNICAL REPORT NO. 291

On the Occurrence of Null Clauses
in Random Instances of Satisfiability

by

John Franco

October, 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

On the Occurrence of Null Clauses

in Random Instances of Satisfiability*f

John Franco
Department of Computer Science,

Indiana University, Bloomington Indiana 47405

October 11, 1989

Abstract

We analyze a popular probabilistic model for generating instances of Satisfiability. According
to this model, each literal of a set L = {vy, 9, v3, B2, ..., vy, ¥ } of literals appears independently
in each of n clauses with probability p. This model allows null clauses and the frequency of
occurrence of such clauses depends on the relationship between the parameters n, r, and p. If
an instance contains a null clause it is trivially unsatisfiable. Several papers present polynomial
average time results under this model when null clauses are numerous (e.g. [4,5]) but, until
now, not all such cases have been covered by average-case efficient algorithms. In fact, a recent
paper (2] shows that the average complexity of the pure literal rule is superpolynomial even
when most random instances contain a null clause. We show here that a simple strategy based
on locating null clauses in a given random input has polynomial average complexity if either
n < r° and pr < In(n)/2; or n = 7%, € # 1, and pr < c(€)In(n)/2; or n = Br, B a positive
constant, and 2.64(1—e~2PP"(1428pr)) < Be=?P". These are essentially the conditions for which
null clauses appear in random instances with probability tending to one [3]. These results are an

improvement over some results in the references cited above. The strategy is as follows. Search

“This work was carried out in part at the FAW, Helmholtzstrasse 16, D-7900 Ulm/Donau, Germany.

! This work is based on research supported in part by the Air Force Office of Scientific Research, Grant No. AFOSR
84-0372.

the input for a null clause. If one is found, immediately decide the instance is unsatisfiable.
Otherwise, set variables appearing exactly once to satisfy the clauses they occupy and determine
satisfiability by exhaustively trying all possible truth assignments to the remaining literals of
the input. Because the good average case performance depends completely on the presence of
null clauses, we see this work as illuminating properties of the probabilistic model which cause
polynomial average time rather than presenting a new algorithm with improved average time

behavior.

1 Introduction

The Satisfiability problem is to determine whether there exists a truth assignment to the variables
of a given CNF Boolean expression which cause it to have value true. If such a truth assignment
exists we say the expression is satisfiable, otherwise it is unsatisfiable. The problem is NP-complete
so there is no known polynomial time algorithm for solving it. Several papers have been concerned
with the analysis of algorithms for Satisfiability that run in polynomial average time. These results
depend on an assumed probabilistic input model. One popular model is the “random-clause-size”

mode] which we refer to as M(n,r,p).

Let L = {vy,%,vs,72,...,, 7, } be a set of 2r literals. According to the model M(n,r,p), n
disjunctions (called clauses) are generated as follows: for each clause C;, for all literals [€ L, put [
in C; with probability p, independently of the placement of other literals and clauses. Notice that
it is possible to generate an empty (or null) clause using this model. The preponderance or absence
of null clauses in random instances is controlled by the product pr [3]. The theme of this paper

centers around the fact that if an instance has a null clause it is trivially unsatisfiable.

We are primarily concerned with the average running time of algorithms when null clauses
frequently appear in random instances generated according to M(n,r,p). From [3] a random
instance posseses a null clause with probability tending to 1 if the product pr < In(n)/2. However,
in the literature, polynomial average time results for this range of pr are known only if n = 7€,
5>e>0 [4;orn=1%1>¢€>.5,pr < In(n)/r*"% [4];orn=1r",7> 1,pr < (y=1)In(n)/(27)

5). Furthermore, no polynomial average time results are known for the case lim,, ;o n//T = o0
poly g «

and In(n)/2 < pr < r%; this is a large range of pr where instances usually do not have null clauses.
Also of interest is a result in [2] which shows that the pure literal rule requires superpolynomial
average time if n = 7%, 1 > € > .5, and pr > /w(r)In(n)/r*~° where w(r) is any growing
function of r. This leaves a substantial range of pr for which null clauses exist in random instances
with high probability but, up to now, no known polynomial average time algorithm exists and
at least one non-trivial algorithm requires superpolynomial average time. This situation has been
philosophically uncomfortable because one would expect that such obviously unsatisfiable instances

should be “easy” to solve on the average.

In this paper we show that a very simple algorithm for solving Satisfiability has polynomial
average time behavior when pr < In(n)/2 and n < r5; or pr < (1 — € —§)In(n)/(2¢), and n = r* for
any1>¢€>.5,6 >0;0rpr<(y-1)In(n)/(2y),and n = #” for any 4y > 1. That is, we present an
algorithm which usually runs in polynomial average time when null clauses are present in random
instances with high probability. In fact, we show that the good average performance is due only to
the occurrence of null clauses in random inputs. Thus, the results are more a study of the model

itself rather than an analysis of a practical algorithm.

2 The Algorithm

Let a variable which appears exactly once in an instance be called a unit variable. Let a variable
which appears at least twice in an instance be called a serious variable. We consider the following

algorithm for solving instances of Satisfiability:

NULL(I):

1. If I has a null clause then return “unsatisfiable”

2. Otherwise,
a. Set all unit variables to satisfy the clauses they occupy
b. for all truth assignments t to serious variables in I, if ¢ satisfies J then return “satisfiable”

3. Return “unsatisfiable”

In step (2b) NULL terminates as soon as the first satisfiable truth assignment is discovered. It

should be clear that NULL returns “satisfiable” if and only if I is satisfiable.

3 The Analysis

To simplify the analysis, we show that the expected number of steps executed in NULL is bounded
by a polynomial in n under several conditions. Since the complexity of each step is polynomially
bounded, the average running time of NULL must then be polynomially bounded under those

conditions as well.

Let I-(z) denote the event that the input contains exactly = serious variables. Let I>(z) denote
the event that the input contains at least = serious variables. Let I; denote the event that the
input contains a null clause. Let T'(n,r,p) denote the average number of steps executed by NULL
given that instances are generated according to model M(n,r,p). Then, since the number of steps
required by exhaustive search on an input with exactly z serious variables is at most 2%, we can

write

T(n,r,p) < Pr(ly)+ i 2% . Pr(Is A I-(z))

=1
r—1
< 14 QPT(I‘;, A 12(1)) + Z O P'P(.ﬁb A 12(.1.‘ 4 1))
z=1
|3.82u) il
< 3+ > 2=-Pr(ly)+), 2°-Pr(Ix(z+1))
z=1 z=|3.82u|+1
|3.82] r
= 3+) 2°-Pr(ly)+ Y, 271 Pr(Iy(x)) (1)
z=1 :|:=L3.82,uj+2

where p is the mean number of serious variables in an instance.

First, we obtain a bound on the second sum in (1). Since variables are placed independently in
&
clauses, the number of serious variables in an instance is binomially distributed. By the Chernoff

bound for binomial distributions [1], Pr(I>((1+ B)u)) < e=A*u/3 3 > 0. Thus,

T]
Y 251 Pr(lx(z)) < 3 gSertelagtiu
z=|3.82u)+2 z=|3.824)+2

f‘irst, suppose n =7, 1> € > .5, and pr < (1 — € — 6)In(n)/(2¢) for any (1 —€)? > 6§ > 0. Then
pn=pr*=pr-r*"' < (1-e—§)In(n)r="!/(2e).
But, r*~! = n{¢=1)/¢ Therefore, pn < (1 — € — §)In(n)n(=1)/</(2¢). This implies
In(2)(7.64(pn)(pr) + 1/n) < In(2)(7.64(1 — € — §)In*(n)nl"1)/€/(2¢)? + n~1)
< (1— f)nle1H0e 4 o1 (5)

for large n. Since 1> ¢ > .5and (1—¢€)* > 6> 0, (e —1)/e > —1 and (5) is less than n{c-1+6)/¢ jp
the limit. But e=2P" > ¢=(1-e=6)In(n)/e — p(e—148)/c 54 (4) is satisfied.

Now, suppose n = 7%, b > € > 0, and pr < (1 — §)In(n)/2. Then, proceeding as above,
limn_,e0 In(2)(7.64(pn)(pr) + 1/n) < 6n~1. But, in the limit, 6n~! < né~1 = ¢~(1-8)In(n) < —2pr
satisfying (4).

The remaining case, pn — 0 and pr < 7, is straightforward. O

Theorem 2 NULL runs in polynomial average time if n/r = B, where 8 is a constant greater

than 0, and 2.64(1 — (1 — p)?P"(1 + 28pr)) < Be~ 2",

Proof:
Since p< 1,1/(1-p) > 1. Then = (1-(1-p)**(1+2pn/(1-p)))r < (1—(1-p)**(1+42pn))r.
Thus, (3) is polynomially bounded if

—ne~?P" 4 In(2)(3.82(1 - (1 — p)*™(1 4 2pn)))r
—Be™? 4 2.64(1 — (1 - p)*7(1 + 28pr))

In(n) =

In(n)/r. (6)

=
<

The theorem follows. O

According to Theorem 2, NULL has polynomial average time if 2pr < In(8) — In(2.64) (this is
fairly tight if 8 is large). If § = 1 then NULL has polynomial average time if pr < .37.

Theorem 3 NULL runs in polynomial average time ifn = 17, v > 1, and pr < (y—1)1n(n)/(27).

Proof:

Sum (2) is bounded from above by 27(1 — (1 — p)?")" < e~ " +n(2)r If 5 = 17 and pr < 1
then —ne=?P" 4 In(2)r < —r%e~2 4 In(2)r — —oco. Hence, the sum (2) is polynomially bounded.
Now suppose n = 77 and 1 < pr < (y—1)In(n)/(2y). Then e~™ 7" +n(2)r is holynomially bounded
if r < ne~?7"/In(2). This is satisfied if r < r7e~2P"/1n(2). This is equivalent to In(2) < r¥~le=2rr
But this is satisfied by the hypothesis because e=2P" > n=1+1/7 = p=(v-1) g

5 Acknowledgements

Thanks to Paul W. Purdom for suggesting this problem.

References

[1] Angluin, D., and Valiant, L. G., “Fast probabilistic algorithms for Hamiltonian circuits and match-
ings”, Journal of Computer and System Sciences, Vol. 18, (1979) pp.155-193.

[2] Bugrara, K., Pan, Y., and Purdom, P W., “Exponential average time for the pure literal rule”,
SIAM J. Comput Vol. 18, No. 2, (1989) pp. 409-418.

[3] Franco, J., “On the probabilistic performance of algorithms for the Satisfiability problem”, Information
Processing Letters, Vol. 23, (1986) pp. 103-106.

[4] Purdom, P. W., and Brown, C. A., “The pure literal rule and polynomial average time”, STAM J.
Comput., Vol. 14, No. 4, (1985) pp. 943-953.

[5] Purdom, P. W., and Brown, C. A., “Polynomial average time Satisfiability problems”, Information
Sciences, Vol. 41, (1987) pp. 23-42.

