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Abstract: Inverting the adage that a data type is
Just a simple programming language, we take the position
that a programming language is, semantically, just a complex
data type; evaluation of a program is just another operation
in the data type. The algebraic approach to data types
may then be applied. We make a diétinction between specifi-
cation and modelling, and we emphasize the use of first—
order identities as a specification language rather than as
a tool for model-building. Denotational and operational
semantics are discussed. Techniques are introduced for
proving the equivalence of specifications. Reynolds' lambda-

calculus interpreter is analyzed as an example.
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A definitional interpreter constitutes a Hoare-like
abstract data type in which the values consist of all
the possible program phrases to be interpreted and all the
possible data values which may arise during the course of
a computation. The functions in the data type consist of
elementary functions for manipulating the underlying data,
functions for building and decomposing program phrases,
and the "serious" functions which evaluate the program
phrases.

The success of such an enterprise, however, depends
on one's choice of a defining language. Typically, the
defining language is chosen to be a subset (often proper)
of the defined language¥ One is then left with the
task of defining the defining language, and defining the

values 1t manipulates.

It is at this point that we interject some algebra.
Instead of writing down a more-or-less "concrete" calcula-

tion in some defining language, we write a specification

for the data type by writing down a series of algebraic
identities which relate the various functions in the data
type [16, 27]1. Such a translation looks like a typical
metacircular definition, but is in fact a set of axioms
. whigh may_bé'ingérprefed by the weli-known machinery of
mathematical logic. Furthermore, by restricting ourselves

to first-order identities, we can mse the many results in

¥
( )This is called a "metacircular definition™ [381].
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universal algebra to answer interesting questions about
such specifications.

Let us consider a simple example of how first order
identities may be used as a defining language. Reynolds
[38] provides a series of interpreters for a simple lan-
guage with recursion. Each function in his interpreters
consists of a conditional expression. Each test turns out
to be a test for membership in a subtype, so the order of
the tests is immaterial. The archetypical situation in the

interpreter is:

eval = A(r;e)...

appl?(r) - apply(eval(opr(r),e),eval(opnd(r),e))

If appl?(r) is true, then r must be of the form
mk-appl[xl,x2] where x, and X, are of type EXP; then
19 opnd(r) = X, We deduce that for all x
e EXP, & e ENV,

opr(r) = x X

172

eval[mk—appl[xl,xgj,e] = apply[eval[xl,e],eval[xz,e]] (¥)
In this formulation, the concept of "sub-type" becomes
superfluous, as do the SéléCtor fﬁnctions opr and opnd.

Equation (¥) is nothing more than an axiom relating

eval, apply, and mk-appl. Scott and Strachey [43] call such

- o g ;
axioms sgmantlc equations" and use them to construct lattice-



theoretic semantics. Goguen et al. [13] interpret (%)
as saying that eval is the unique homomorphism from the
"initial algebra" with mk-appl as a binary operator to an-
other algebra A with the binary operator apply, the envi-
ronment parameter e being eliminated by a clever-choice
of carrier for the algebra A.

We adept the following interpretation for axiom (%)
A model for axiom (¥) is a set A with three binary opera-
tions together satisfying (¥) . So long as we restrict
ourselves to first-order identities like (¥) » the theory
of universal algebras gives a general construction for such
models,

In this paper, we will give some examples of specifica-
tions written in this style. We will also consider the

question of equivalence (or isomorphism) of specifications:

when do two specifications specify the same programming

language? Using these techniques, we will Justify some
well-known program transformations and show some relation-
ships between different semantic models. Other questions
which may be attacked by these methods are operational

semantics of algebraic specifications [48] and the modular

composition of specifications [4].



Section 2 gives a highly condensed summary of the
mathematical machinery. Section 3 gives a more detailed
overview of the algebraic approach. Section 4 gives a
moderate-sized example. Section 5 gives some theorems re-
lating Backus' RED languages [1] and Hewitt's actors [20].
In Section 6 we conclude with some remarks concerning re-

lated semantic methods.



2. Preliminaries

As indicated by the examples in the introduction, we
propose to allow a variety of implementations of a semantic
theory by defining an implementation of a theory to be a set
A with operations Q@ , satisfying some identities A .

In terms of universal algebra, the set of implementations

of the semantic theory presented by (Q,A) is just the
variety (or equational class) of (Q,A)- algebras. Further-
more, one would like to characterize a semantic theory
independent of the details of its presentation, so that
different theories may be compared. Again, universal alge-

bra supplies such an object, called an algebraic theory. *

2.1 Universal Algebra

In this section, we summarize those portions of univer-
sal algebra which we will use explicity. The reader seeking
a tutorial on these matters should consult [6, 13, 15, 447].

Our basic model of "a set with additional structure"
is a universal algebra [6, 15]: a set A with a set of
functions A" > A . One almost always deals not with a sin-
gle such algebra but with a class of algebras and "structure-

preserving maps" (commonly called homomorphisms) between

them. In order for this notion to make sense, some cor-
respondence must be established between the sets of functions

in different algebras, or between the functions in an al-
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gebra and the function names in the specification. This

is done as follows:

Let ® denote the nonnegative numbers 0,1,2,... . A
ranked set is a map Q:S > w for some set S . If
S €35 , we say Qs 1is the rank of s . Alternatively,
if @ =n , we say s 1is an n-ary member of S . When
no ambiguity results, we will write Q for 8§ : .85
if s e , then Qs e w . We will often specify @

by its graph: e.g., 8 = {(+,2),(e,1)} .
If Q 1is a ranked set, an Q-algebra A consists of
a set, called the carrier, also denoted A , and for each

s € 2 a map AS:AQS S B

_Example. Let ={(+,2),(e,1)}, A=y, A+:m2+m:(xay) px’ and

Ae:t_.u—lrm:() B2

If A and B are Q-algebras, a morphism (or homomorphism)

from A to B is a map f:A - B such that for all s e @ ,
1f 98 =n and (aj,...,a ) € A" | then

f(As(al,...,an)) = Bs(fal,...,lap)

If A and B are Q-algebras, their product A x B
is the Q-algebra whose carrier is the Cartesian product of
the carriers of A and B , and whose cperations are per-

formed componentwise. The projection maps e, :A X B > A

1
and e2:A X B » B are then Q-algebra homomorphisms.
If Q:S > w 1is a ranked set and X is any set (as-

X
2

fined to be the smallest set V c (SuX)+ such that

sumed disjoint from S ), the set W of Q-X-words is de-



() X e ¥

(I1) 3 Ws 0O , then s & V

(144} 3£ Qs

n and WisewssW, € Vs

then swl...wn e V

A string in WX may be regarded as a tree in prefix Polish

Q
notation, or alternatively, as a term with function symbols
from @ and variables from X . The set W§ may be made
into an fi-algebra Fé by setting, for each s & S ,
X X\0s X
" . . i
_ﬂs.(WQ) > WQ'(Wl""’wQS) b Swl"'wgs . If A is any

Q-algebra, and f is any function X » A , then f can be
extended uniquely to an Q-algebra morphism f*:Fg - A , and

every morphism Fg + A dis of this form. Since for any set

A there is exactly one function f:¢ »A (the one whose

graph is empty), Fg is an initial Q-algebra: if A 1is

any Q-algebra, there exists exactly one morphism hA=F$ - A .

If w e wg and f:X =+ A we may think of f#(w) as the

element of A denoted by the word w wusing interpretation
f for variable symbols.

It will be convenient to choose standard variables X .
For ne w let [n] denote the alphabet {xl,...,xn}
([01.=¢) . Let VW, = \ Jy [n]

new Q
Example. Let Q={(+,2),(e,1)}. Then a typical element of

g[g] 1s  ++x,%X,X,. If A 1is as in the previous example,

and f:d21>w 1is given by f(x1)=2, f(x2)=3, then f*(++x1x2x2) =

W

3
(2%)° = 8% = 512,
An n-place Q-identity is an element of W

[n] [n]
M

If A is an Q-algebra and & is an n-place {-identity, we

say 6 holds in A iff for every f:[n] - A ; f*(ew(ﬁ)) s
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f*(eg(ﬁ)) - If A 1s a set of Q-identities, we say a
holds in A iff every & e A holds in A . A class K.

of Q-algebras is an equational class (or variety) iff

There exists a set A of identities such that A e K

iff A holds in A . We say K is the class of (2,4)-
algebras, and that (Q,a) 1is a presentation of K . If

there is any (Q,A)-algebra with more than one element in
its carrier, there are (Q,A)-algebras of every cardinality;
consequently a variety is usually a proper class (not a
set). The class of (Q,A)-algebras forms a category whose
morphisms are the Q-algebra homomorphisms. The category of

(2,4)-algebras has an initial object.

The "algebraic approach" to data types, as presented in
[16, 141 is to specify a data type by a presentation (Q,A).
One may distinguish several points of view concerning the
significance of such a presentation. The ADJ group [147
regards (Q,A) as a presentation of the initial (2,A)-algebra.
We hold that the significance of the presentation is that the
identities A tell the programmer what equalities he can
expect an implementation of this data type to obey. (A similar
position is taken by Guttag [171). Thus the class of models of
(R,A) is just the class of (2,A)-algebras. (For more discussion
on this point, see Section 6 infra).

Now, if one adopts this latter position, one cannot deal
solely with the initial algebras, since two distinct equatienal

classes can share the same initial algebra. For example, the
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one-point group is initial both in the equational class of
groups and in the equational class of abelian groups. We,
therefore, introduce the machinery of algebraic theories to help
deal with equational classes. One may think of the presentation
(2,A) as presenting the initial (2,A)-algebra and read Tﬂ/a

as denoting this algebra; this is a reasonable (initial)
approximation, although this interpretation will make nonsense

out of the proofs.

2.2 Algebraic Theories

Evidently, equational classes pose set-theoretical
difficulties, so it is convenient to have a smaller object
as a representation of a class (as ZF ordinals represent
order types). There objects are categories called algebraic
theories. Again the reader is referred to [30, 35] for
tutorials on the concepts of category, functor, and algebraic
theory.

If C 1is a category, C(a,b) denotes the set of arrows
or morphisms from object a to object b . If f e C(a,b)
and g e C(b,c) , their composition, a member of ela,e),
is denoted g.f . If f e C(a,b) then dom(f) = a and
cod(f) = b . Sets will denote the category whose objects
are all sets and whose arrows are all functions.

An algebraic theory is a category T whose objects are

the non-negative numbers 0,1,2,... and in which the object
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n 1s the categorical product of the object 1 taken n

times. If T 1is a theory, and f fn e T(k,1) . then

13"3

the product morphism in T(k,n) is denoted [f £l  »

1,ov,n

We write e; for the projection morphisms.

If @ 1s a ranked set, then the free theory 'I‘Q may
be constructed by standard methods with Tﬁ(n,l) = Wénj .(*)
Tg(n,l) consists of trees whose nodes are elements of the
ranked sets, whose leaves are either constant operators (i.e.
whose domain is 0) or projection operators with domain n,
and in which domains and codomains match appropriately through-
out the tree. Composition in Tﬂ i1s substitution of trees
for leaves labelled by projection operators. TQ(n,m) consists
of m-tuples of trees in Tg(n,l).

For example, let S={val,alt} 0={(val,2), (alt,3)}. Then

alt[el,valtel,e2],val[el,eg]] € TQ(3,1)

[el,valtel,e33,va1[el,e2]] € To(3,3)
and the composition of these two morphisms is

alt[el,valiel,val[el,eBJ],val[el,val[el,e2]]] € TQCB,I)

If T, 1s a free theory, the ranked set Pairs(R) is

ECE, ) m) | 2.8 & Tg(n,l)}
An Q-identity is thus an element of Pairs(Q) . If
A ¢ Pairs(Q) we will often write (f,f') € Ao for CCE 87 ),

n) e A . A theory-functor is a product-preserving functor

between theories.

(*)In P s the projection morphisms e e Tg(n,l) are just the

trees x, € Wén]. We will therefore use e; and Xy interchangeably.

i
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If A 1s a set of identities, we constrmct a formal

system Ea » Whose formal objects are pairs (f,£') such

that 1" e T (n,m) for some n and m . We denobe bhis
formal object (f,f'):n + m in order to make n and m

explicit. The system Eé is defined as follows:

Axioms: If ((L,£'),n) € A , then F(f,f'):n » 1 EA

For any f e TQ(n,m) 5 F(f,f):n > m ER
Rules: (f,g):n > m ES (f,g):n > m (g,h):n > m o
(g,f):n + m (f,h):n > m
(g.g)im > k (f,£')in>m (h,h):p » n 5O
(E.Feh,g.EY.H)p & K
(Bl y)am = 1y, 408 . f1 Jim > 1 -

([fl,..,fn],[f'l,..,f'n]):m > n

A theory may be presented by (2,4) , where § 1is

& ranked set (of generators) and A is a set of Q-identities.

(4,2) presents the theory T where T(n,m) = Tﬂ(n,m)/Eﬁ(n,m),
where Eﬂ(n,m) = {80) | (Pt v m 458 theorem of

E,} . It can be shown that the set T(n,1) 4is the cavrier of
the free (Q,A)-algebra on n generators. One may therefore
think of the algebraic theory as representing an equational
class K by all of the finitely generated free algebras in X.
This generalizes the initial algebra representation, which
attempts to represent the class by 1ts free algebra on no

generators.
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It'is easily confirmed that Ea preserves composition
and products, that T is a theory, and that the functor
F:TQ +~ T sending each morphism to its equivalence class
is a full theory functor. T is often denoted Tﬂ/a

If T 1is a theory, a T-algebra is a product-preserving
functor A:T » Sets . The underlying set of the algebra
is A(l) (we often write A for A(1l)) . To each morphism
£ e T(n,m) there is a map Af:A(n) » A(m) ; since A is
product-preserving, Af: A" s Am . The T-algebras and na-
tural transformations between them form a category T-Alg.

The major result about algebraic theories is:

Theorem 2.1 The category of (Q,A)-algebras. is isomorphic

to the category of Tﬂ/ﬂ-algebras. I

Corollary 2.1 Let (Q,A) and (Q',A') be two presentations.

If T./A and Ty,/A' are isomorphic theories, than the
category of (Q,A)-algebras and (Q',A')-algebras are iso-
morphic. B

Thus, to show that two presentations define the same
class of algebras, we need only show that they present the
same theory. This is often simpler than a direct proof.
Ariother interpretation of Corollary 2.1 1s that distinet
equatienal classés always have distinet theories: it is this

property that initial algebras lack, as noted above.
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Corollary 2.2 Let 1i:T - T' be a theory functor. Then

there is a forgetful functor from T'-Alg to T-Alg.

Proof. ©Let i:T - T' be the theory functor
Then the forgetful functor sends A:T' + Sets to Aei:T -
Sets. ®

For example, the theory of monoids is a subtheory of
the theory of groups. Hence to every group tThere is a
underlying monoid. See [35, pp.148-149] for generalizations

and numerous examples of this result.
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3. The Method

A programming language 1s to be modelled by a Hoare-
like abstract data type in which the intended values consist
of all possible program phrases and data values, and in
which the operations include functions for manipulating
program phrases and data values and functions for evaluating
program phrases. The conventional Scott-Strachey approach
adopts this view; following [21], one might prove the cor-
rectness of a implementation of a language using an "abstrac-
tion map" A whose target was an appropriate lattice.

It seems desirable, however, to maintain a stronger
separation between "specification" and "implementation"
or "model" [32]. It was Parnas [36] who first showed that
one could write a specification of a data type (or module)
independently of any implementation by concentrating on the
interactions between the operations on the data type.(*)

By simply refusing to write down a set of "values", this
approach distinguishes itself from methods which merely
provide a "model" or mathematical implementation as a
standard. This approach has proved very powerful for
practical problems [39, 40].

The algebraic method writes a specification for a data
type by writing down a set of identities for the operations
of the data type. Thus "speeification" is identified with
"presentation". From a presentation, we get a theory which

¥
(_)cf: "Category theory asks of every type of Mathematical

object: What are the morphisms?" [30, p.30]




I

is a representative of the class of all models

of the specification, that 1s, the class of

all algebras of the theory. For the purposes of this paper
we identify &= . d g "model" with "al-
gebra™. - - Although some restrictions (e.g. nondegeneracy)
might be placed on this identification, such restrictions
seem to depend only on the theory and not on the specifica-
tion [48].

The theory immediately gives a denotational semantics
for the language: the initial algebra of the theory. Every
phrase in the language has a unique meaning in the initial
algebra, and these meanings satisfy the identities listed
in the specifications. Furthermore, since a great deal is
known about equational classes of algebras, we can use this
body of knowledge as the need arises. This denotational
semantics is derived automatically from the theory without
the imposition of delicate a priori choices of domains,
ete. [32].

The algebraic method gives not only a denotational
semantics, but also an operational semantics. Operational
semantics, beling computational in nature, is dependent on
how quantities are represented. Hence the operational
semantics is presentation-dependent. Given a presentation

(2,A), we construct an operational semantics for (Q,A) as
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a tree-rewriting system on TQ(O,l) as follows [48]:

Define the set of Mﬂ of A-moves on TQ(O,l) as the set

of all pairs (f.g.h, f.g'.h), where (g,g') e A.

Proposition 3.1 [48]. Let (Q,A) be a presentation

such that MA has the Church-Rosser property, and let
teTQ(O,l). Then t is equivalent under E, to some M,-normal
morphism t' iff (t,t') belongs to the reflexive, transitive
closure of M,. B

Thus a morphism in TQ(O,l), (that is to say, a tree)
is transformed into a normal form by successive rewriting
via the moves Mﬁ. The proposition asserts that under the
easily satsified Church-Rosser condition [29], this intuitive
operational semantics is consistent and complete (at least
for terminating computations) to the denotational semantics
given by the identities. We shall see some examples of
this in Section 4. (For generalizations of this proposition,
see [U48]; for some well-illustrated examples, [17]; and
for more on tree rewriting systems, [33].)

In Section 5 we consider questions of the form: "When
do two specifications specify the same class of models?"
Such questions are complicated by the fact that one often
deals with specifications using different sets of symbols.
Corollaries 2.1 and 2.2 give a technique for attacking
this problem: If two specifications yield isomorphic theories,
then the model classes are isomorphic (that is, they are

as close to equality as one might reasonably desire). If
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(b) TLet AT = A = {(u.u'.#9)} v &(uu" 3} «» In
Eﬁ s we have
(tjt') EC (U.,U.'.t'} ES
(¥t u! ") Y.kt u)
ET
(n*.t.0)
s, ES
(v, %)
So  A' ¢ Ej and B, ¢ EA . Conversely, in Ei,
we have '
G EC
(& 1" 1) a®.t.a'. )
ET
R
So A ¢ Eﬁr and E& 8 'EA' . OO0 E& = JE&,
(e) Let Q' = Qu{s} and A' = A¢{(s,t)} . Construct

theory functors F:TQ/& > TQ,/&' and G:TQ,/Q'+TQ/& as follows:
for ve @, let Fv = v and Gv = v , and let Gs = Gt

Since A ¢ A' , F is well-defined on Tg/ﬁ . Similarly

G respects every identity in A' . Hence F and G are
well-defined theory-functors. For v e Q@ , FGv = v and

GFv = v , so G and F are inverses on terms in WQ i

Then FGs = FGt =t = s (in TQ/A). So G and F are inverses,

and TQ/& is isomorphic to TQ'/&' .B
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4. Examples of Algebra Semantics

4.1 Reynolds' Applicative Language

Since we started out with a single line from Reynolds
[38], it is appropriate to complete the example.

Convention. Let ID denote a set of identifiers.

Upper-case bold-face symbols (Q, SUCC,...) will be used for

particular identifiers. Upper-case italic symbols (I,I',...)
will be used as metavariables ranging over identifiers (e.g.
for every identifier I,...). Lower-case boldface symbols

(eval, cond,...) will be used for particular elements of @

other than identifiers. Lower-case italic symbols (opr,opnd,

env,...) will be used in place of €15-.,6 as projections.
The syntax of the defined language is given in [38]

by "abstract syntax" which amounts to the following:

Definition. Let ID be a set of identifiers, and let

8 be given by:

identifier : 1 = 1

const 2 L 1
appl 2 > 1
lambda 2 = A
cond : 3+ 1
letrec : 3= X
An expression i1s a member of wéO] ;

The symbols in @ act like the constructor functions

of [38]. We will see that the selectors and classifiers are
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unnecessary. JSimilarly unnecessary are the subtypes of

expressions. In [38], the first argument to lambda or

letrec must be an identifier, and the second argument to

letrec must be of the form lambda. We prefer to allow

these arguments to be unrestricted, causing a run-time error
only when they become crucilal. The compile~time restriction
could be simulated using many-typed theories [10,13] at the
expense of a yet more rigorous propaedeutic in Section 2.
The relation between single- and many-typed theories will be
discussed in Section 6.

Definition. Let Q' = 2 u {eval:2 - 1, initenv:0 - 1} .

An expression D is executed by starting a computation

with eval.[D,initenv] :

We now begin analyzing Reynolds' Interpreter I, shown
in Table 4.1. Our motto is taken from Dijkstra: "Programming
[islthe art of the judicious postponement of decisions." (¥) Thus
any line of the interpreter which we do not know how to
interpret as an identity we will defer; if we evidently
need a defining language feature we will introduce a symbol
for the feature. In both cases we will introduce refinement
axioms when we figure out what additional properties are
needed.

No axioms are needed for branches I.2 or I.3. The pro-
per disposition of constants will be known only when we

specify the elementary operations on them. Similarly,

(¥)"Notes on Structured Programming." In Dahl, 0.J.,Dijkstra,
E.W., and Hoare, C.A.R. Structured Programming. Academic Press;
London, 1972, p. 67.
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although I.3 is cast in terms of a functional application,
we know that an environment is less general than a function
(in particular, it expects identifiers as arguments) so we
need not immediately deal with the problem of higher-order
quantities. So again we wait until we learn more about the
nature of environments.

Line I.4, however, forces us to meet the question of
functional application. Now, in the category of sets, the
set YX of functions X > Y has associated a function
apply:YX x X+ Y given by apply(f,x) = f(x) . Any set
S which has the same cardinality as YX can serve as

X+ Y Dby using the correct application funetion S x X + Y .

Hence we introduce a new symbol apply:2 + 1 and write

eval .[appl.[opr,opnd],env] = apply.[eval.[opr,env],

{4.2.1)
eval.[opnd,env]]

Again, we will refine apply as more becomes known about the

requirements on it.
Line I.5, calling evlambda, is likewise left free.

Lines I.6-7 are straightforward:

eval .[cond.[p,x,y]l,env] = choose.[eval.[p,env],

eval.[x,env], (4.1.2)

eval .[y,env]]
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which surface when we try to evaluate an identifier in line I.3.

By unwinding Reynolds' interpreter, we discover:

eval.[identifier.probe,ext.[vble,value,env]] = (4.1.7)

choose.[eg-id[probe,vble],value,eval.[identifier,probe,env]]

eval.[identifier.probe,extrec,[vble,value,env]] =

choose.[eg-id.[probe,vble], (4.1.8)

eval,[value,extrec, [vble,value,env]],

eval.[identifier.probe,env]]

For every identifier I,

eg-id.[I,I] = true (234.1+9)

For every pair of distinct identifiers I,I',
eq-id.[I,I'] = false (84.1.10)

A1l that remains is to specify constants and the actions of
identifiers in the initial environment. We introduce Ek:o =2 =il

for each k € W as numerals. Then we have
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eval = A(r,e). SR
(const?(r) + evecon(r), Ye?
var?(r) » e(r), I.3
appl?(r) » (eval(opr(r), e))(eval(opnd(r).,e)), I o
lambda?(r) -+ evlambda(r, e), I.5
cond?(r) -~ if eval(prem(r), e) 1.6
then eval(cone(r), e) else eval(altr(r),e), .7
letrec?(r) -+ letrec e' = T .8

i e T —— T —————————————— — —— ——— o St i S S ————

in eval(body(r), e')) .10
evlambda = A(L,e). Aa. eval(body(L), ext(fp(L), a, e)) T il
ext = A(z, a, e). Ax., if x = z then a else e(x) 1.12

Table 4.1 Reynolds' Interpreter I

apply.[eval.[identifier.SUCC,initenv],n ] = 04y (Shat.11)
agglg.[apglx.[eval.[identifier.EQUAL,initenv],g ]’EJ]

} ttue if k = j (Sh.1.12)

falsc if k£ j (Si1-13)

Following[38], we leave the constants unspecified. One choice

would be to introduce constants gk: 0+ 1L for ke w atid let
eval.[const.gk,env] = o, for every k € w

4,2 Another set of axioms

If the preceding axioms seem reminiscent of Reynolds'

Interpreter I1, we may introduce the abbreviations
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et 2 > 1

interpret: 1 =+ 1

:

eveon: 1 ~ 1

closure: 3 = 1

eql: 0 #+ 1
gg2: 1 %1

via:

et.[vble,env] = eval.[identifier.vble,env]

03

|

interpret.[exp] = eval.[exp,initénv]

evecon. ¢ = eval.[const.c,env]

closure.[vble,body,env] = eval.[lambda.[identifier.vble,body],env]

suce = eval.[identifier.3UCC,initenv]

successor.a = apply.[succ;al]

eql = eval.[identifier .EQUAL,initenv]

eg2.a = apply.[egl,al
equal.[a,b] = apply-.[eg2-.a,b]

We may do some folding and unfolding to obtain the follow-
ing set of axioms, which 1s the analogue of Interpreter II and,

by Theorem 3.1, presents the same theory as that of Example 4.1:

interpret.exp = eval.[exp,initenv] h,2.1

eval.[const.c,env] = evcon.c h.8.2
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eval.[identifier.vble,env] get.[vble,env] 4.2.3

eval.[appl.[opr,opnd],env] apply.[eval.[opr,env],

eval.[opnd,env]] b2

eval.[lambda. [identifier.vble,body],env] = closure.[vble,body,env]

Ll'.gu
ﬁvg;f[cond.[p,x,y],env] = choose.[eval.[p,env], ’
eval.[x,env],
eval.[y,env]] .2.6

eval.[letrec.[vble,value ,body],env] =

eval.[body,extrec. [vble,value,env]] 4odsT

apply.[closure.[vble,body,env],a] =

gg@i.[body,gég.[vble,a,env]] 4.2.8
%EEEX'[SuCC’a] = successor.a 4 2.9
apply.[eql,a] = eq2.a 4.2.10
apply.[égg.a,b] = gggg;.[a,b] 4.2.11
ggg.[SUCC,initenv] = suce h.2.12
get. [EQUAL,initenv] = egl $4.2.18

e .

get [probe,ext.[vble,value,env]] = choose.[eg-id. [probe,vble],

value,

et.[probe,env]]
= 4h.2.14

get.[probe,extrec.[vble,value,env]] =

choose [eg-id.[probe,vblel],

eval .[value,extrec [vble,value,env]],

get .[probe,env]] 4.2.15

choose .[true,x,y] = x h.2.16

choose.[false,x,y] = ¥ . 2. %8
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For every identifier I
eq-1d.[I,I] = true Sk.2.18
For every pair I,I' of distinet identifiers

eq-id.[I,I'] = false S4.2.19

For every k € w

gval.[const;gkgenv] = B Sh,2.20
successor.n, = n, .4 Sh.2.21

For every j.k & w

egual.[gj,gk] = (“true if j = k Sh.2.22

‘i false if g £ % Sk.2.23

\

This differs fromeeynolds' Interpreter II in three

specifics. First, 1t includes specification of the relevant
features of the defining language. Second, recursive en-
vironment extensions created by a letrec need not save the
body of the letrec-expression. (This may be deduced from
the code of égg, which mentions only dvar(letx(e)) and
dexp(letx(e)) , but is not reflected in the abstract syntax
for REC). Third, arbitrary declaring subexpressions are
allowed. The restriction to lambda-expressions might be

accomplished by changing 4.2.7 to

eval.[letrec-[name,lambdaf[var,pbody],body],env]

= eval .[body,extreck .[name, var,pbody,env]]

and 4.2.15 to

get .[probe,extreck .[name,var,pbody,env]] =

choose .[eg-id .[probe,name],

closure .[var,pbody ,extrecd .[name,var ,pbody ,env] ]

‘ggg.[probe,envjj
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4.3 Operational Semantics
We show a brief example of the operational semantics
of Section 3 applied to the axioms of Section 4.2. Here

is how the evaluation of ((AXX) 3) proceeds:

interpret.[appl.[lambda.[identifier. X identlfler X] (1)
const.cBJ]
= eval.[appl. [lambda [1dentif1er X, 1dent1fier X], (2)

const. c. ] initenv]

= apply. [eval [lambda. [identlfler X 1dentifier X] initenv],

eval.[const.c_ ,initenv]]

=3
= apply.[closure.[X,identifier.X,initenv], (4)

eval.[const.gg,initenv]j

= apply.[closure.[g,identifier.g,initenv],23] (5)
= aval, [identlflgf_g EEE_[§ Q3,£2333§v]] (6)
= get.[X,ext.[X, n3,3;3_3§~e”1}_\{_]] (7)
= choose. [leld [X X] n3,get [X 1n1tenv]] (8)
= choose.[true,g3,get.[gjinltenv]] (9)
= P (10)

=3

Most of the steps were merely instances of the axioms.

From (3) to (4), the first occurrence of eval is rewritten,

——

and from (4) to (5), the remaining instance of eval is

similarly rewritten. In both cases, the rewrite site is

in the interior of the expression. The step from (3) to
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(4), for instance, is the move (f.g.h.,f.g'.h) where

f= apply.[erﬁval.[const.c initenv]

A et

g = eval.[lambga.[idgntifier.el,ezj,eSJ

g'= closure.[el,e2,e3]

h [X,identifier.X,initenv]

Here (g,g') is just axiom 4.2.5 (Recall that in the earlier
statement of 4.2.5, wvble, body, and env were just mnemonics
for e

e and e3).

17 "7
What if we had written AXZ instead of AXX? Then

at steps (9) and (10), we would have gotten égg.[ééginitenvj,
to which no moves are applicable in our operational semantics.
This value may be read "the value of g in EEEFGQY’ whatever
that means." But all is not lost. Under many circumstances,
this 1s a useful property. In the presentation of Section

4.1, the expression

eval.[identifier.SUCC,initenv]

the value of SUCC in initenv, whatever that means", plays

a crucial role. Though by itself it might be taken for an
error value, when given as the first argument to gggig‘it

acts as the successor function (See S4.1.11). Apply thus is

capable of recovering from this "error".

Such error terms are the rule, not the exception: when-
ever something is required which is not iImmediately under-
stood in terms of previous analysis, we leave it free and
then rely on .later functions to recover from the error.

This happened on numerous occasions in Section 4.1. 1In °
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Section 4.2 we introduced abbreviations for several such
constructs. One which persisted was gﬁgﬁgg.[vble,value,env],
which is read "the environment obtained by extending env
by binding vble to value recursively, whatever that means."
It became the job of %gg to successfully recover information
from such an "error".

This feature allows a flexible treatment of errors
[12,14]. To invoke a LISP analogy: our ERRSETs do not
return nil on an error; they return the erroneous expression

itself. Thus one can drive an entire system on errors,

as does QLISP [37].



=33

5. Models of Application

As an example of the use of semantic theories, we
examine the "complete applicative language" model of
Backus [1], and the actor model of Hewitt [20]. We will
show that the semantic theory consisting of "interesting"
programs in the Backus Model is just a free theory; con-
sequently there are no nontrivial computations in a com-
plete applicative language except those introduced by
clever primitives.

Let T be a ranked set. We think of Yy € ' as a
pattern into which substitutions are made. A typical n-ary
pattern might be "form a vector of n elements". Backus
calls this a "constructor syntax". Let § = Tu{(ap,2)}

u {(u,1)} be the ranked set obtained by adjoining to T
a special 2-ary symbol ap (for application) and a l-ary
symbol u (for evaluation).

For each k & w , let = [u.eq,..,u.ek] € Tﬂ(k,k)

My

Definition. Let B be the theory generated by

3%

under the following axioms:

Bl) for each ye T, u.y = YeUpy

B2) wu.ap = H.ap.u,

Those axioms are due to Backus [1]. Bl says patterns

are evaluated componentwise; B2 says the value of an
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application depends only on the values of its components;

and B3 says evaluation is idempotent. We will fix T

and write B for BP .

Lemma 5.1 MWy = Uy

Proof S T [u.el,..,u.ek],[u.el,..,u.ek]
e [u.u.el,..{u.u.ek]
[u.el,..,u.ek] i
Lemma 5.2 If Ty =%k , u.y = LER RS

Proof: M.Y = H.u.y = HeY ety ]

Lemma 5.3 If t e B(n,k) then uk.t = uk.t.un

Proof: By induction on the construction of Q-words @

Of the morphisms in B , the interesting ones are

thos2 which are the result of an evaluation:

Definition. Let ﬂB(n,m) c B{n,m) Dbe given by

uB(n,m) = {um.t|t e B(n,m)}

Lemma 5.5 wuB , with composition inherited from B ,
forms a category.

Proofly IF uk.t € uB{(n,k) and B -8 € uB(m,n) , then
uk.t.un.s = uk.t.s e uB(m,k) . Hence upB 1s closed under
composition. Associativity is inherited, and we claim that
M € uB(k,k) 1is an identity arrow. M = uk.l > 80 U, €

uB(k,k) ; to verify that is a left and right identity,

My
we note uk.(uk.t) = uk.t and (un.t).uk = un.t B
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Lemma 5.6 uB 1is an algebraic theory.

Proof: H.e; € ﬂB(n,l) is the i-th projection func-
tion: u.ei.(u.tl,...,u.tn) = u.u.ti = u.ti [ ]

Alternatively, we may think of u as a "bug" which
"activates" a node; axioms Bl and B2 cause bugs to propagate
downward in the tree; axiom B3 then prevents accumulation
of bugs. If t e B(n,l) then wu.t 1is equivalent to a tree
in which every node has exactly one bug attached to it. We

state this formally as follows:

L be defined inductively by

Definition. Let W} ¢ wéﬂ

- - - '
(i) if 1 <1 <n , then ne, € Wn

(ii) if s € Q and s = yu and w c . LW € Wﬁ s

N [ Qo

T
then uswl...wﬂs € wn

(1ii) nothing else.

[n]
Q

Wﬁ is the subset of trees in W with exactly one

above each node.

Lemma 5.7 If <t € Wgn] , then there exists a unique

t' e Wﬁ such that (ut,t') 1is a theorem of E&.

Proof: By induction on the construction of t : 1if

t = » then uei € wé . If t = ow ...wp s then

1 1

EAF{ut,ucgwl...uwp) by axiom B2 and Lemma 5.1. By the induc-

tion hypothesis, there exist t&,...,té > Wﬁ such that

Eﬁ}{wi{ti). Hence (ut, ucti...té) is also a theorem of E,.
For uniqueness, let H:(Qu[n])¥*¥ > (Qu[nl])* given by

h(u) = A (the empty string), h(s) = s (seQ-{ul) ; h(ei)=ei

for eie[n]. Then h is injective when restricted to
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T - ' -
Wn , and if (wl,wg) e Eﬂ , then h(wl) = h(wz) by an

easy induction on the construction of EA . B

Lemma 5:8 The map W! = uB(n,1) given by t' > [t']
mod EA is a bijection B

Let F] be the free theory generated by T v {(ap,2)}.

Theorem 5.1 P! and uB

r are isomorphic algebraic

r
theories.

Proof: Let fn:wg?] > w£n3 be given by
fn(xi) = uxy
fo(s) = Uus I's =0
fn(swl...wm) = ps-f(wl)---o-f(wm) I's = m (where -
denotes concatenation of strings).
£, 1s evidently a bijection wg?]+ W , SO by Lemma 5.8 it
extends to a bijection WE?] - uBr(n,l) , and extends

componentwise to a family of bijections fnm:Ff (n,m) - uBP(n,m) .

A routine calculation shows the fnm are functorial.

£ WE?]

so the functor is product-preserving and hence an isomorphism

Furthermore, x, is sent to [uxi] = H.X; € ﬂB(n,l) 5
of theories. @

The content of Theorem 5.1 is that once a computation
gets started, the u's rapidly get distributed to all the
nodes in the tree, so one can equally well assume that the
u's are always present and therefore ignore them. We next
discuss actor theories, which are theories of typeless appli-
cation in the style of thé'lambda—calcﬁlﬁs. wé call these

theories "actor theories" because they seem to be
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the semantic theories corresponding to Hewitt's actors
[20 ]«

Definition. Let X be any set. The free theory of

actors with primitive actors X 1s the free theory gener-
ated by {(x,0)|xeX} v {(send,2)} , and is denoted B

An AX—algebra C 1is a set (of "actors"), with dis-
tinguished elements Cx for each x € X and a binary
operation Csend (transmission) such that Csend(a,b) is
the actor which results from sending the message b to
target a . We write <a b> for send(a,b) and we make
the convention that transmission associates to the left;
thus <a

e @ > = <<, ..<A. A,> a.>...a.> .
n & %n

1’ 1 72 3
Let Ul be the underlying set of the ranked set T

Theorem 5.2 uB is a subtheory of A

T
Proof: Since uB

ur -

r is a free theory, we define a mor-

phism of theories F‘:uBF > A by F(EE) = send 3 if

ur
s =n , F(s) = <s Xl"xn) . F 1s injective on mor-
phisms. @

This map fails to be an isomorphism because the actor

s may receive any number of messages while in uB it is

restricted to precisely TI's arguments.

One reason for interest in actor theories is that they
*
constitute a "universal"( ) class of implementation theories

in the following sense:

*
( )Here the word "universal" is used in the sense of
"universal turing machine" rather than "universal arrow" [30,p.55].
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Theorem 5.3 Let T be any theory. Then there is an

actor theory A with a theory functor i:T-A.

Proof: Let (Q,A) be a presentation of T, and let
UR be the underlying set of Q. Define a morphism of theories
h:TQ - AUQ by h(s) = <s €q-c-€ > if Qs = n>0 and h(s) = s
if Qs = 0. Let A' = {(h(f),h(g))|(f,g) e A}, and let

A= Ayo/A'. Now if f,g e TQ(k,m) and (f,g) ¢ E,, then

&3
(h(f),h(g)) € Epr (as may easily be verified). Hence the

functor TQ % 8 - AUQ/A' factors through TQ/A = T:

uQ

T, —— To/A =T

11

!
hl
A

Thus, for any theory T, we may create an actor theory

A such that every model of A is also a model of T.
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6. Conclusions and Relation to other work

The approach we have presented is in some measure an
outgrowth of the definitional interpreter approach of
[24, 28, 38], with sequencing and subtypes removed from the

defining language. However, by providing a mathematical

semantics for the defining language, we ameliorate the
standard objections to metacircular definition while main-
taining (we hope) the clarity of the meta-circular style.
Furthermore, algebra semantics allows definitions which are

not simply transcriptions of meta-circular definitions.

6.2 Initial Algebra Semantics

Another body of work to which algebra semantics 1is
related is that of Goguen, Thatcher, Wagner, and Wright
("the ADJ group"). The idea of their "initial algebra
semantics" [13] is to specify a particular Q-algebra
as a "semantic algebra." The unique theory functor from
the initial Q-algebra to the semantic algebra is identified
with, say, eval. A priori this seems similar to the approach
of Knuth [22] with synthesized attributes only (although
inherited attributes can be handled as well [5]).

A major conceptual difference between our scheme and
that of [13] (which also uses Reynolds' language as an
example) is that we make eval a morphism inside the theory

presented by the specification, rather than a functor between
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theories. This view avoids any cleverness required to
interpret the axioms for eval functorially; indeed, there
seems to be no reason to presume that the axioms will be
interpretable functorially at all. With our interpretation
of eval, a programming language is just an "abstract data
type" in the style of [27, 16, 11, 14] in which eval is
Just another operation.

At this point an issue of philosophy arises. What
does a presentation (Q,A) actually present? We hold with
Guttag that a presentation specifies a class of models
(the (Q,A)-algebras); the theory TQ/A is a tractable repre-
sentative of this class. The alternative position, adopted
by the ADJ group [14], is that (Q,A) presents a particular
algebra, namely the initial (Q,A)-algebra. The major drawback of
this view is that it blurs the hard-won distinction between
specification and modelling.

Modelling, furthermore, leaves some doubt about which
features of the model are required to hold in an implementation.
For example, 1f a model includes some "partially defined"
values, which of these are the implementor required to
include? Thus a model alone is not sufficient to determine
the class of correct implementations. Indeed, distinct
equational classes of algebras may have identical initial
algebras (e.g. groups and abelian groups both have the one-
element group as initial).

A different objection, argued by Lehmann [26] is that
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if we are concerned solely with modelling, one can do
quite well with much less algebra. The virtue (or saving
grace) of the algebraic approach we have espoused, as we

see it, is precisely that it is a specification language:

it is a logical calculus which delineates the properties
which a correct model or implementation must have. We are
currently exploring the general relationship between speci-
fications, models, and implementations in a language-inde-
pendent setting.

An interesting technical difference is the use by the
ADJ group of many-typed (or many-sorted) theories, contrasting
with our use of single-typed theories. When 1t 1s clear
what the sorts are, many-sorted theories are attractive.
In modelling attribute grammars, for example, one can choose
to have one sort per nonterminal [10]. In modelling data
types, one can look at theories which are equivalent but
not isomorphic (for nondegenerate single-sorted theories,
the notions coincide) [11]. On the other hand, in our examples
i1s not so clear what the sorts should be. Furthermore,
the proof theory (E&) for many-typed theories is just the
same as ours, except that certain trees are disallowed as
wffs. Programs which contain type errors are syntactic
errors under a many-sorted regime; in our system the programs
run until the error "comes to light" and no deduction is
possible. We think of this as a run-time error. A syntactic

error which never impedes the course of the program may never

it
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be detected. (This may be either a feature or a bug!).
Thus our system is "lazy" in the sense of [8, 18].
A comprehensive treatment would, of course, involve many-
sorted theories and a more thorough treatment of errors
(e.g. [12, 14]1). 1In this paper we have used only single-
sorted theories both for simplicity and to illustrate how
errors may be treated in the absence of additional machinery.
A simllar contrast occurs in the lambda-calculus
between the "static" domain construction of 131 and the
"dynamic" construction of domains as retracts [L2]. The
relation between single-and multiple-typed theories needs to
be studied more systematically.
6.3 Denotational Semantics
We may relate the algebraic approach to Scott-Strachey
semantics both on philosophical and technical issues.
Philosophically, the Scott-Strachey semantics has been
far more concerned with modelling than with specification.
Because we are concerned with specification first, we wished
to avoid the a priori introduction of specific domains
(see [32] for a statement of similar concerns). By choosing
the specificatlion language of first-order identities, we
were able to construct the domains directly from the equations
in a non-creative fashion.
Technically, what we gave up for this was the ability
to do unrestricted inductions. Now, algebra semantics is

operationally adequate to model every computable function
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(via Reynolds' language or by implementing the CUCH directly
with axioms like <K X y> = x); an important question is
whether the semantics gives enough machinery to prove deeper
properties of programs without reintroducing some a priori

(and possibly operationally irrelevant) ordering structure.

Even if the answer is negative, we helieve that algebra
semantics is worthwhile as an example of a specification

language with both well-defined denotational and operational
semantics. The method of canonical term algébras F14F is a

good start in this direction, indicating how initiality can

recapture some of the necessary inductions.

When one adds lattice-theoretic models to the picture,
additional questions become askable. One can readily define

a fixed-point or paradoxical combinator Y wvia:

<x <Y x>> = <Y x>

but there is no guarantee that the fixed-point so defined
is "least", since neither theories nor their algebras have
ordering relations imposed on them as yet. For example,
one could implement Y as the "optimal fixed point" of
Manna and Shamir [31]. If one wishes least fixed points,
then additional structure 1s necessary. This may involve
structures such as continuous algebras [13], uclones [U45],
iteratively closed theories [U46], iterative theories

[2, 7, 9], or primitive recursive theories [447. All of these
structures are considerably more sophisticated than those
considered here, and much mathematics remains to be done
before the relations among these various ideas are fully

understood.
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