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Abstract

This report briefly describes the functional programming language Daisy,
it’s underlying computational model, DSI, and a hypothetical architecture,
LiMP, for their implementation. Daisy is a simple list processing language,
derived from Pure Lisp, which inherits a call-by-need semantics through
its use of a suspending constructor. DSI is the hetergeneous ‘data space’
of suspensions and manifest graphs, modeling concurrent task execution
on a a parallel virtual machine. LiMP stands for List Multi-Processor; an
MIMD architecture for parallel graph processing. The primitive mecha-
nisms of LiMP are explained, and the evolution of the machine model from
language oriented research is discussed.
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1. Introduction

The article “CONS should not Evaluate its Arguments” [FrWi76a] was one of
several papers to appear in the mid 1970s on the subject of laziness in Lisp-like
languages. The approach offered by Friedman and Wise was operational. They
presented an interpreter, for Pure Lisp in Lisp, in which the elementary operations
of Lisp are subverted to make list construction non-strict. CONS is a special form
that initializes the fields of newly allocated list cells with suspended valuations.
Suspensions are coerced to manifest values by the list-access primitives, CAR and
CDR. An otherwise standard Lisp interpreter using these primitives delivers a call-by-
name semantics, safely optimized to call-by-need if there are no side-effects [Wi82].

Suspensions quickly turned from simple closures to processes and subsequent
publications reflect the metamorphosis. The two motives were parallelism and in-
determinacy. The transparency of suspensions makes them an tempting way to
involve parallelism in language execution. Since the result of a suspension is de-
termined When to schedule suspensions is simply a resource-management problem
[FrWi78b]. At the same time, efforts to address “systems programming” problems
raised the need for a concurrency construct. The approach was to endow date with
a quality of indeterminacy by introducing ferns, or lists ordered by need [FrWi80a,
FiFr84 (Chapter 5)]. The understanding is that the ordering is determined by con-
current evaluation: The suspensions—really “tasks” now—that comprise a fern’s
content compete for promotion in list.

Though the evolution of suspensions from delay-like objects [He80] to future-
like objects [Ha85] is evident in published work, the mechanics suspending construc-
tion its implications for architecture is not. Elements of architecture are scattered
among articles about applicative language and style, leading Vegdahl’s taxonomy
to list “Friedman and Wise’s Reduction Machine” as a largely unspecified object
[Ve84]. This paper assembles the architectural aspects of this work, as seen in the
relationship of three objects.

The first is Daisy, a mutation of (pure) Lisp, also related to the dialect Scheme.
Daisy is a lazy-list processing language, hence also a lazy list-processing language,
based on lambda notation. It is presented here, in part, to explain representation
techniques that have been explored in the implementation of its interpreter. Daisy’s
virtual machine architecture will be of interest to language and processor designers,
quite apart from notions of parallel execution that are developed in this paper.

The second object is DSI (Data Space for the Interpreter) a model of list
multiprocessing. DSI is Daisy’s virtual machine. It maintains the transparency
of suspended computations and is therefore a process management system. DSI
models an idealized machine in which each suspension is a processor running of
its own volition. An implementation of DSI, over which Daisy is now implemented,
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multitasks suspensions in a demand-driven fashion. Section 3 develops the interface
between DSI and its processors as a small collection of storage transactions.

The third object is called a LiMP (for a List MultiProcessor). LiMP is a logical
structure, whose purpose is to expose desiderata for a parallel implementation of
DSI. The LiMP presented here has qualities in common with data flow architec-
ture (communication via buffered routing) reduction systems (demand drive) and
general purpose MIMD hosts (uniform global addressing). The elements of LiMP
architecture described in Section 4 have to do with resource allocation. It is shown
that the communication network contributes in essential ways to the balanced and
timely dissemination of space resources. A weighted approach to demand propa-
gation suggests that scheduling a dynamic and unbounded number of processes on
fixed number of processors can be accomplished in a fully decentralized fashion.

LiMP remains, in Vegdahl’s words, a “paper design only.” It is one of many
architectures considered for the implementation of DSI, to determine whether sus-
pending construction is a viable approach to parallelism. However, its description
exposes design issues of general applicability to related architectures and languages.

2. Daisy

Like Lisp, Daisy is a spelling out of expression representations. Daisy’s “s-
expressions” are different because tags are used to accelerate interpretation. A
tagged reference is called a citation. The reference is a pointer unless the tag is [2],
or directive, in which case the remaining content is data. Other citations refer to
three storage formats, uniform cells with zero, one, or two citations.

o[l = [ & [MO=] ®- [T 10=]

directive  nullary citation unary citation binary citation

Binary cells have four distinct tags; ¢ € {{1],[L],[4] [F]}.

Figure 1 diagrams how the seven tags are used to represent Daisy expressions.
The second column in the figure gives Daisy’s syntax. Directives denote machine
actions, such as arithmetic operations and display primitives. Numerals represent
numbers. Messages denote errors and print names. Literals are binary cells con-
taining a print name and a citation to an assigned value. “Top level assignment” is
currently permitted in Daisy’s implementation. The names of primitives (e.g. add)
are thus initially bound to their operations (e.g. the ADDITION directive). Quota-
tions are assigned literals without print names; the directive QTE means spell-me-
as-a-quotation to the display primitives. The binary objects are indistinguishable
except through their citations; compare the list object [E ! E;] with the applica-
tion object By : Ey. Since application is expressed in infix, parentheses are used for
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precedence. Parenthesized expressions are represented as applications an identity
operation, IDY, which also means parenthesize-me to the display primitives.

A partial language definition is given in Figure 2.2. ((E)), is the value of expres-
sion E in environment p. Daisy is lexically scoped; functions are values. “Record
descriptions” like [closure p X E] are figurative; for instance, the closure of
\X . E is actually represented as

[F]l—| P Fl—> X E

The function A gives meanings of representative values when they are applied. A
inherits the environment of an application in order to execute pseudo-operations
like let, rec, and val.

Daisy treats errors as values (or perhaps anti-values). An erron—represented
by message cells—is the result of an error and is treated as a detected divergence.
That is, any computation that uses an erron is erroneous. There are currently no
provisions for error recovery in Daisy.

Here are some Daisy expressions and their Lisp counterparts.

F:[A] (F A)
\X.E (lambda X E)
[Eo ! Eq] (cons Ey FE;)
[El E, E;] (1list E, E; E3)
Gy P & Al (cond (P C) (true A))
let:"[[X; X5] (let ((X; E;)
[E, E,5] (X, E3))
E] E)

However, Daisy’s semantics is essentially normal-order because its cons is “lazy;”
the value of [Ey ! E;] is a list whose head is ((Ey)) whether or not E; has a value.
Neither Ey nor E; is evaluated unless and until the list is accessed. Hence, an
application expression, such as F': [E; E»], develops call-by-name arguments, exe-
cuting the text of ¥ outside the valuation of E; and E,. For example, an alternative
conditional can be developed by coercing truth values to list-accesses.

head = \[H ! T]. H
tail = \[H ! T1. T
AnIF = \[P C A]. (if:[P head tail]):[C ! A]

In a prettier syntax,

head[H 'T] « H.
tail[H!T] <« T.
AnIF[P C A] < (if P then head else tail)[C ! A]
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Thus, it is reasonable to embed recursions in argument structure, rather than in
conditional structure, as in

SEARCH = \[Key Tree Fail].
let:[ [Left [Ide Value] Right]

Tree
if:[ nil?:Tree
Fail
same?: [Key Ide]
Value
SEARCH: [Key Left SEARCH:[Key Right Faill ]
]

]
In a prettier syntax, the Daisy expression above might be expressed as

SEARCH(Key, Tree, Fail) «
let
[Left [Ide Valuel Rightl= Tree
in
if (Tree = Nil) then Fail
else if (Key = Ide) then Value
else SEARCH(Key, Left, SEARCH(Key, Right, Fail))

As noted earlier and illustrated above, formal arguments, such as [Left [Ide
Value] Right] need not be flat lists*. As illustrated above, the formal argument
X in a function expression (\X . E) is, in general, a tree of literal identifiers.

(Arg) :==1Ide | [1 | [Arg! Argl

As usual, cascading dots are suppressed. Environments bind identifiers to their
corresponding positions in arguments, according to

(10 = {3, £ iwicn
”[[Xo?xlj] =p [‘af{(lv)] [hejg(v)]

* Binding is deferred, so that structural mismatches are not erroneous unless they
are used. Even so, the let-binding of Tree in SEARCH might better be declared after
the nil?-test.
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head and tail are field-access primitives that are erroneous if applied to atoms or
errons. They are developed in more detail later. In representation, environments
are maintained in two distinct structures, a formal environment of bound identifiers
and an actual environment of their associated values. If F and A are a formal and
an actual environment, and pis [F Al, then

p[;] would be [[X ! F] [v! A]]

Identifier look-up has two phases: construction of a probe, or combination of heads
and tails, and then application of the probe to the actual environment.

LookUp(I, F, A) = (Probe(I, F, (Mv.v), (M. ERROR)))(A)

where

Probell, ack ) = { 42 £1=7

nek, ifI#JorJ=I].
Probe(I, [Xo!X11, ack,nak) = Probe(I, Xy, [ack ; head],
Probe(I, X1, (ack ; tail), nak))

If m; and 7y are probes, [m;; ;] is their composition, Av.my(71(v)). The represen-
tation of a probe, called a trajectory, is an encoding of [my;...;7,]. Since Daisy is
a lexically scoped language most trajectories can be computed prior to execution,
but they aren’t.

The non-strict list constructor permits creation of infinite structures and also
recursive data definition. If inc is an increment operation, two ways of defining a
list-of-all-numbers are

rec:"[ Z (\N. <N ! Z:inc:[N1>) Z:0 ]

and
rec:"[ Z <0 ! Mapi:[inc Z]> Z]

The alternate delimiters <...> are simply for emphasis; they have the same meaning
as [...]. In prettier syntax, these would be

Z(0) where Z(N) <« [N!Z(N +1)]

and
Z where Z = [0 ! Map,(inc, Z)].

Map1 applies inc to every element of Z and might be defined as

Mapl = \[F [V ! Vs]]. <F:[V] ! Mapi:[F Vs] >
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Both versions of Z return the value [0 1 2 3 ...], which, if printed in the usual way,
produces the answer “[0 1 2 3 ....” The answer can be printed (in bounded space
[FrWi76b]) because the sequence Z has enough initial content to define the whole
sequence. This can be seen by symbolically expanding the definitions. A form of
construction functional, called functional combination by Friedman and Wise [78a],
is implicit in the application of a list (See Figure 2.2). It is a generalization of Map1.
The data recursion above is equivalent* to

rec:"[ Z <1 ! [Qinex]:[Z]1> Z]

[inc *] evaluates to a non-terminating list of INCREMENTATION operations. A style
of expression reminiscent of Lucid [WaAs86] is prevalent among Daisy programers.
Iterations are embedded in recursively defined structure. For instance, one is more
likely to see the fibonacci function defined as an indexing operation on a sequence,

FIB = \N. rec:~[ [U V]

[ <1 1 ¥>
<1 ! [add*]:[U V]> ]
N:F

]

than its function counterpart,

FIB = \n. rec:"[ F
\[U V W]. if:[ zero?:U V FIB:[dcr:U W add:[V W]] ]
F:[n 1 1]
]

With lists representing sequences, the first expression says

FIB(n) = fn where fo = fi = 1 and fiys = f& + frs1
The second expression is the loop

FIB(n) « F(n,1,1)
where
F(u,v,w) « if (u = 0) then v else F(u — 1,w,v + w)

Application is strict in both function and argument; hence, Daisy is not inher-
ently a lazy language. For instance, the expression (\X.3) :rec:~[Z Z Z] diverges

* Well, almost. Unary operations cannot be used in functional combinations.
This point is discussed in [Jo84].
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because rec:~[Z Z Z] diverges, but (\X.3):[rec:~[Z Z Z]] safely produces 3
because its argument is in a list.

Daisy views a peripheral device as a producer/consumer of stream-like charac-
ter lists. Interactive Daisy is essentially

Daisy = \Prompt. screen:issues:[val *]:[parses:console:Prompt]

Daisy is a composition of primitives. Console produces a character list from the
operator’s key strokes; parses filters that stream into Daisy expressions; [val *]
maps valuation over the parsed input; issues turns the resulting value-stream into
a character stream; and screen displays it on the operator’s terminal screen.

A final Daisy construct has been omitted from this introduction, for want of a
simple compositional description. An indeterminate constructor, builds a list whose
order is determined, on demand, by concurrent valuation of its elements. The sooner
an element-expression produces a result, the earlier its value occurs in the resultant
ordering. These objects, called ferns and mentioned in Section 1, encapsulate con-
currency (or indeterminacy) as a quality of data, just as a suspending constructor
encapsulates qualities of laziness.

A formalization of ferns has proven to be more elusive than usual for such
things, because ferns mush coexist with “deterministic” data and also are intended
for implementation under fairly weak exclusion constraints. Their published expla-
nations have always been operational [FrWi80b]. As an example of their use, the
program below sketches a conditional which simplifies according to “(p — z,y) =
z” when z and y are equivalent list structures [FtWi78c, Jo77]. Assume an expres-
sion DIVERGE, whose valuation does not terminate. The function GUARD converges
only if its predicate is true. The operation same? tests for atomic equality.

GUARD = \[P V]. if:[P V DIVERGE]

GIF = \[P C A].

let:"[ H GIF:[P head:C head:A]
let:"[ T GIF:[P tail:C tail:A]
| in <-- This is a comment.

head:{ if:[P C A]
GUARD: [ same?:[C A] C ]
GUARD: [ and:[1ist?:C 1list?:A] <H ! T> ]
}
1]
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3. DSI

DSI is the vehicle for Daisy interpretation. It is a heterogeneous space of
suspended computations and manifest values. To execute, a computation requires
a state, its registers and a control-point; and a context, the location where it resides.
A context is a citation with a field designation, “head” or “tail.” A suspension is a
record of state, lacking only a context to be run as a computation. In representation,
suspensions and values are distinguished by an exists-bit within the fields that cite
them. That is, if the content of a field is a computation, its exists-bit is false and
the field contains a pointer to the a suspension.

Computations do graph processing, and DSI represents their store. It admits
the following operations:

o New obtains a citation to unallocated storage. New cells are always initialized,
and the operation is usually expressed as [* ! ].

o Suspend(State) obtains the suspension of a computation. A suspending cons
looks like [suspend(Stateq) ! suspend(State;)]

o Sting(Contezt, Value, Condition) is a storage update, which deposits Value at
the location Contezt, provided Condition is true at that location. Condition
1s a simple test, always a test of the exists-bit in this paper. Stinging is often
expressed as, for example,

sting-head Citaiion with Value unless it exists

The suffix “-head”, turns Citation into a Contert and “it exists” refers to
the Contezt’s exists-bit is set.

o Converge( Value) stores the result of a computation in its context, in place of
the computation’s suspension.

o Head(Citation) returns Citation’s “CAR field” if it is manifest. If the field
contains a suspension, the caller is blocked until it becomes manifest, and the
cited suspension becomes a computation whose context is Citation’s CAR.

o Tail(Citation) is like head(Citation) except that the context specifies the “CDR
field.”

The presence of other computations is transparent to any individual, except

when they are created. The interaction of computations is governed by field access,
through the probes head and tail.

The recursive language specification in Figure 2 transforms to a sequential
graph-reduction interpreter, using techniques detailed in [Jo84, Ch. 5]. The Daisy
interpreter is outlined in Figure 3. The actual implementation unfolds VALUE at
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several points. In particular, its LIST is actually a loop approaching the specifica-
tion

([Eo Ey ... Enl) = [(Eo)) (B1)) ... (En)]

Each parameter is a citation whose name connotes its type. Exp is an expres-
sion; Env an environment; FVal and AVal are values; Ctx is the execution context;
and Cmd is a stack-like object, and used to implement recursion. The construct
“per B viz ...” is a generalized case-statement with actions predicated on tests
against local variables. For example, VALUE performs a different action depending
on the tag in the citation Exp.

Though Figure 3 has a functional form, it is essentially a register-transfer
description. The branch RETURN([closure EnvExp], Nil, Cmd, Ctx) could be

written as a parallel assignment

Ctl CONTINUE
Exp = [ [closure Exp Env]
Env (1

where Ctl is a program-point—the “micro-PC.” Each right-hand term involves an
elementary operation on state or a storage transaction.

Daisy interpretation is the primary influence in the DSI process design—what
has until now been called a “computation.” It contains a program register; three
general citations accounting for Exp, F'Val, AVal, and Env; a display of the contin-
uation, (e.g. [converge Env' Cmd']), and a context (a citation plus a bit). Local
control is governed by tags, actions (e.g. converge), and the status of information
processing operations. Figure 3 shows a logical process structure, the portion rep-
resented in a suspension, and a possible architecture for physical implementation.

3.1 Concurrency in DSI

As it has been described, Daisy is a deterministic language in which the invo-
cation of suspensions results from the execution of linear trajectories against actual
environments. Hence, the dependence among computations is linear and stack-like.
At any point, there is only one suspension that needs to be run, the one exposed
by the most recent head or tail. Prospects for concurrency arise in several ways,
including the three mentioned below.

Multiple Outputs. A direct source of concurrency is the presence of several output
devices, placing parallel demand on the data space to produce answers. These might
be physically distinct, as in a time-sharing environment; or logically distinct, as in
a multiple-window terminal, or both. Such systems exhibit independent sources of
true need in the list space, exposing many suspensions simultaneously.
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Explicit Concurrency. The fern was mentioned in Section 2 as a form of expressed
concurrency. There are many possible variations, such as a collateral-cons, which
has deterministic order but whose elements are concurrently evaluated.

Implicit Concurrency. This is the transparent infusion of “speculative” compu-
tation, probing suspensions when need is anticipated but not exhibited. Assuming
the there are no side effects, arbitrary suspensions may be executed without chang-
ing a program’s meaning (Even if side-effects are permitted, suspensions can still be
run in parallel). Thus, a system with extra processors may invoke suspensions us-
ing criteria other than pure demand. However, the idea is to keep from indefinitely
committing processors to unneeded computations, as these might consume them.

We shall now look at the other side of the DSI interface, the side concerned
with managing processes. Suspensions—considered as representations—are sub Jject
to operations of creation, resumption, preemption, and completion.

Creation is expressed as suspend( Computation), as earlier. The typical initial
suspension in Daisy interpretation is (E)),, “Evaluate expression F in environment
Env, then converge.” This is VALUE(E, Env, [converge] ) in Figure 3. The
typical suspension is a preempted process; the six registers of Figure 3, though
usually fewer than six are active. In any case, the operand Computation is relatively
small, often one or two citations.

Resumption is encapsulated in an action called coaxing. To run, a processor
needs a suspension and its context; but the suspension is cited by its context. The
instruction

coax(Contezt)

schedules a suspension for bounded execution*. The variations coax-head( Citation)
and coax-tail( Citation) make contexts from their Citations and coax them.

The completion of a process is to converge, or displace itself with a value.

converge( Value) =
sting Contert with Value unless it exists;
stop.

Context refers to the caller’s context-register. If a suspension can have more than
one context, convergemust become a loop. The meta-instruction stop represents

*

To coax originally meant “run the suspension for a while, now” [FrWi80a,
FrWi80b]. However, decoupling the scheduling event and eventual execution was
considered as early as [Jo77], and done by [JoKo80]
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the deactivation of the running process. A process may relinquish its processor by
detaching:

detach( Computation) =
sting Contezt with suspend(computation) unless it exists;
stop.

The sting advances the state of the detaching process. The updates in convergence
and detaching are conditioned on the presence of a suspension at the target location.
A conditional-write is sufficient to coordinate all concurrency in Daisy programs,
although a test-and-set would be useful. It must only be assured that values can-
not regress to suspensions. Sting is a slightly weaker operation than test-and-set
because it is a kind “store” and not a kind of “fetch.” The necessary synchroniza-
tion of Daisy’s concurrency in DSI can all be localized to storage [FrWi78b]. Wise
incorporates a sting implementation in his CMOS design of a self managing heap
segment [Wi85b].

Probes are deterministic in the sense that the probing process is blocked until
a value appears. One way to express this is with persistent coaxing:

coerce( Context) = repeat coax(Context); block
until Contezt! exists

It is fundamental that processes are insulated from direct contact with each other.
They interact through contexts.

head( Citation) — repeat coax-head(Citation)
until Citation’ head exists;
{return} Citation' head.

The suggestion of busy-waiting is not necessarily metaphorical. In a parallel im-
plementation, where it is unlikely that perfect knowledge of process dependence
can be decentralized, coaxing is the communication of “need” for a result in DSL
Repetitive coaxing, or coercion, communicates absolute need on behalf of the caller,
modulo need for the caller. For example, in ferns a probe coaxes all the elements
until one converges. Determinate element-computations concurrently probe their
environments, coercing still more suspensions. When an element is found, the ini-
tial probe is satisfied and demand ceases. Without a supply of need, the remaining
computations cease their probing activity.

At the virtual-machine level, probing is the only means a process has of affecting
another process. After creating a suspension, there is no alternative but to place it
in a data cell. As in Figure 3, a “lazy” cons looks like

cons( Computationo, Computation,) =
[(suspend(Computation,) ! suspend(Computation,)].
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Other varieties of construction place values in one or both of the fields. A stream-like
constructor would first perform Computationy and then allocate a cell

cons( Computationg, Computation,) =
{perform Computation, with result V,}
[Vo ! suspend( Computation,)] .

4. A LiMP

LiMP is a hypothetical MIMD architecture, built from List Storage Elements
(LSEs) and List Processing Elements (LPEs). These are connected by a rectangular
routing network of buffered Routing Elements (REs). Figure 4 is a picture of over-
all architecture. Each of the elements actively contributes to DSI computation. The
LSEs are not just passive storage; the LPEs are not just processors; the REs are not
just switches. The nature of computational activity in LiMP is developed gradually
as the DSI primitives are implemented.

Together, the LSEs comprise a shared, multiported heap of binary list cells.
Each is responsible for a region of the heap space, and the regions partition the
whole. An LSE locally maintains a free space of uncited cells in its region. It
responds to storage transactions for fetching, updating, and allocating. In addi-
tion, LSEs initiate activity among the LPEs, as is discussed later. Similarly, the
LPEs maintain a space of available suspensions. Each LPE allocates, schedules,
and executes suspensions in its own region. LPEs and LSEs have roughly the same
internal structure, depicted in Figure 4. Within each is a processor, called a Pro-
cess Management Unit (PMU) in LPEs and a Storage Management Unit (SMU)
in LSEs. The PMU contains the architecture of Figure 3(b) with additional state
for swapping suspensions. The external behavior of an LPE, at its interface with
the routing network, is a sequence of fetches, stores, and allocation requests. In-
put and Output devices are specialized LPEs; connecting connect directly to the
routing network. Inputs produce and Outputs consume lists, using ordinary list
manipulation primitives.

The connection network is a system of buffered REs, which carry instruction
objects between the process space and the list space. These objects are of uniform
size, representing elementary storage transactions. The network is rectangular; a
system with N LPEs and N LSEs has Nlog, N REs. For simplicity, assume b = 2, so
that an RE surrounds a 2 x 2 cross-bar switch with staging capabilities. A ba.nya.n
[TrLi79] configuration of REs for LiMP is attractive because it provides uniform
addressing with identical routmg algorithms in each RE. It is logically extensible
to the limit of a fixed address size. There is a unique path between any origin and
destination, so that the order of point-to-point communications is preserved if RE
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buffers are first-in-first-out. Destination-address bits determine successive switch
settings. The address (M - 27) +n, n < 29, selects LSE M regardless of its point
of origin. As destination bits are consumed, the RE records the message path to
recover the originating address. That is, if an object originates from LPE P, the
destination (M -27) +n is transformed to (P~' -29) 4+ n by the time it reaches LSE
M. If a response is required it is routed along the path P~!.

An RE’s external behavior is identical to that of an LSE on its “LPE side”
and conversely. A minimal LiMP configuration is a single LSE and LPE, directly
connected. It is extended by introducing REs within the banyan configuration until
there are enough places to put additional elements.

The goal in computation is to trade turnaround against throughput, as in
data flow architectures [DeLoBe80]. That is, the elapsed time of an individual
transaction is offset by increasing the number of transactions done in parallel. The
dominant factor in elapsed time is buffering in the routing network, but because
of the buffering, the involvement of processing elements is small. The profile of
an individual transaction is expressed as u-©-v. © stands for the delay incurred
by routing an object from its origin to its destination; u gives the involvement of
the originating element and v the involvement of the target. The involvement in
a transaction is u + v if both participants can be gainfully employed during the
routing delay. The elapsed time of a transaction is u + © + v. The unit is the
time it takes to stage an object between adjacent REs. This is a function both
of electrical protocols and also the degree of blockage in the network. Profiles are
woefully approximate.

We begin the implementation of DSI on LiMP by looking at basic storage
transactions.

4.1 STINGs and RSVPs

A STING requires the routing network to convey a conditional store operation
from the originating LPE toward the destination LSE. The typical STING object is

[sting Condition Location Content]

which represents the instruction sting Contezt with Value unless Condition. Con-
dition is one of a fixed set of simple tests on the target content. The “store” is
inhibited by the destination LSE if the condition is false when the STING arrives.
There is no acknowledgment of the store.

An LPE (or RE) can issue a STING and then proceed without acknowledgement,
provided the STING is guaranteed to reach its destination before any subsequent
transaction by the same process with the same destination. As was noted earlier,
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this requirement is logically satisfied by a banyan network. In the absence of side
effects, a STING establishes the assertion

{Location 1= Content V - Condition}.

This is enough to implement Daisy because contention can be arbitrated in storage,
as discussed earlier,

An RSVP requires the routing network to carry a “fetch” instruction to the
destination LSE, and to return the target content to the originating LPE, assuming
it exists. Typical RSVP objects are

[head Location] and [tail Locationl]

The elapsed time in an unblocked routing network is twice the length of the path
between the parties to the transaction, say P = 20 = 2InN, where N is the num-
ber of processors. It is reasonable to assume that RSVP transactions dominate in
graph processing programs. Hence, an LPE executing a single process would make
headway of about %’ at best.

Thus, take P to be the maximal degree of multiplexing an LPE can do in its local
process space.

This is similar to process pipelining in HEP architecture [Sm78], and is also
discussed by Halstead as a direction for Multilisp [Ha85]. The true degree of mul-
tiplexing cannot reach P because this would flood the routing network, increase
blockage, and degrade performance. It is essential to leave enough “holes” to ame-
liorate blockage.

With multitasking, an LPE manifests a set of active processes and must main-
tain the status of their pending RSVPs. An LPE need only associate each process
with the location whose content it awaits. The LSE’s response to an RSVP,

[headof Origin-Offset Content]

includes the local offset of the content being returned. The REs reconstruct the
region address by recording the path of the response. The concatenation of LSE
region and offset gives the original location.
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4.2 The NEW sink

A NEW instruction object, [new Citation], requests a fresh citation. The ef-
fective elapsed time for NEWs is minimized if the routing network participates in
storage allocation. Each RE contains a register for a citation to one new cell.
When this buffer is empty and the RE is idle, it issues a NEW instruction to either
of its LSE-side ports. New citations thus migrate from LSEs toward LPEs as traffic
permits. The network becomes a reservoir of available cells, or NEW sink [Jo81].

Staging new citations in the network accomplishes several ends. If the NEW sink
is filled, NEW transactions are serviced in unit time. Allocation is fully distributed,
so that no global coordination is needed to synchronize accesses to “free space.”
Surges in allocation are dissipated by the network reserve. There is a path from any
LPE to all LSEs; the sub-network servicing a given LPE is a full binary tree of REs.
A heavy drain draws citations from throughout the list space, spreading accesses
to all the LSEs. Since new citations are the media for future graph processing, the
effect is to delocalize structures emanating from a given computation. If an LSE
is unable to supply new citations—either because it has none or because it is busy
with STINGs and RSVPs—those that can take up the slack. “Hot spots” in the heap
partitioning cool off as computation advances in the graph space.

The degree of potential parallelism in LiMP cannot be measured simply by
counting processors and memory banks. One must also include the participation
of the routing network. Where an LPE is multitasking, the effective headway ap-
proaches 20N, where © =~ In N is the unidirectional network delay. A STING has
profile 1- ©-1; a (successful) RSVP has profile 1- ©-1- ©- 1; and a NEW has profile 1- 1
because REs anticipate allocations in a NEW sink.

4.2 The Process Sink

Processes ob jects—suspensions—are allocated in the same manner as free cells,
except that it is the LPEs which are the allocators. They provide new-suspension
citations to a process sink in the routing network. These resources migrate toward
the LSEs, the network being a reservoir to dissipate demand by consumers. As
in the NEW-list sink, the reservoir is supplied by less active allocators, with the
effect of involving them in present computation. An LPE schedules and multitasks
suspensions it has allocated in its own region of the process space.

To put this all together, let us consider the history of an individual process, 3,
created by a second process, a, and probed by a third process, . The suspensions
of @, B, and v are at locations A, B, and C in the process space and are run by
processing elements, LPE4, LPEg, and LPEg. Suspension B will have context N
from the storage element LSEy. Scenarios for the creation and coercion of 8 are
shown in Figure 4, which depicts the involvment of the four elements.

16
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At the outset, the network has already absorbed citations to a new cell, N,
and a new suspension, B. The creation scenario is initiated by a, active on LPE,.
LPE4 first obtains the context N from the NEW-list sink. It then issues a STING,
[suspend B NI. After that, LPE may proceed, perhaps continuing the execution
of o. When [suspend 8 N1 arrives at LSEy, citation B is obtained from the NEW-
suspension sink and is stored at location N. LSEy immediately issues [create 3]
to the network; this is also a STING transaction. When [create B] arrives at LPEg,
B is recorded in the suspension B. If both sinks are populated, the transaction profile
is

1.1-2.0-3-0-1

Figure 4(b) is a coercion scenario. Process v in processor LPEgexecutes an
RSVP, [head N]. The initial RSVP reaches LSEy, where it 1s determined that the
target field is suspended. LSEy issues [coax B NJ, which is routed to LPEg; the
operand N is the execution context for 5.

Should LSEy return a negative acknowledgment of the attempted fetch? To do
so would help LPE¢ adjust its local schedule but add traffic in the routing network.
It is assumed that there is no acknowledgement.

When [coax B NJ arrives at LPEpg, it schedules 3 for finite execution. If B8
produces no value, and v remains active, another [head N1] is issued by LPE¢, re-
sulting in another [coax B NJ] from LSEy to LPEg. The cycle may even overlap.
When B does converge, it deposits its value at location N. This value is returned
by LSEx to LPE¢, once it arrives. The coercion profile is

1.0:2.0.-5°.1.0-1.0.1,

where z is the number of coaxes required to coerce 8 to existence and § > 1 is
the multitasking overhead. If Tj is B’s execution time, total involvement is on the
order of 3z + Sz + Ty, with elapsed time adding 2(z + 1)©. Clearly, suspension of a
computation is a poor way to implement a subroutine call in LiMP. Even supposing
we can make 2, the degree of polling, zero, so that every RSVP is successful, the
best elapsed time to coerce a suspended computation greater than 40, which is the
time it takes to transfer relevant contents to their locations, and involves about ten
instructions among the involved parties. In DSI, on the other hand, the costs of a
subroutine call and a suspension invocation are much closer, and it is a reasonable
design objective to bring them to equality. We shall next look at three approaches
to the minimization of 2.

The LiMP allocation tactics discussed so far achieve three important goals.
First, anticipatory allocation in the NEW sinks reduces bottlenecks in allocation.
The cost for this improvement is the need for regularity in representations. An RE
could not anticipate needs for variably sized objects. Second, the NEW sinks spread
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allocation so that LiMP is statistically self balancing. The reservoir tends to draw
processing and storage resources where they are more readily available. Since newly
allocated resources embody present computational activity, activity on the whole is
distributed among LSEs and LPEs. Third, assignment of processors to processes is
a function of system configuration; it transparent to software. As the two scenarios

illustrate, no process ever has direct reference to another; the interplay is exclusively
maintained by LSEs.

4.3 Scheduling LiMP

The optimal scheduler for DSI runs those processes at the “leaves” of the
dependence graph revealed by heads and tails. This set of suspensions is called the
fringe. LiMP has the problem of mapping physical processors to a potentially larger
fringe set of processes. Perfect knowledge of the fringe is unlikely without a shared
representation, and a goal in LiMP is to do decentralize this kind of information. In
the extreme, we assert that scheduling should be fully decentralized, so that each
LPE maintains a local schedule. If not, The Schedule becomes a critical resource
and access to it a critical section.

The coercion scenario in Figure 4 illustrates a first approximation to decentral-
ized scheduling: an LPE runs a suspension provided an incoming coax has exhibited
a need for it. Demand-driven computation is very sensitive to how well need can be
propagated. Both elapsed time and involvement are compounded when suspensions
arrange themselves in chains, each coaxing the next. The optimization problems
are to safely minimize the number of suspensions and to minimize coaxing with-
out overcommitting processors. In DSI, the former means using strict versions of
cons where possible. Hall’s strictness analysis develops this perspective [Hall87];
the issue is not pursued here.

One way to make coercion more efficient is to propagate more need with every
coax. A demand coeflicient is incorporated in each instruction object. An RSVP
carries some or all of the originator’s reserve of demand. Should the targeted content
exist, its LSE returns this quantity to the originating LPE. Otherwise, it is sent to
cited suspension, telling how far to run. Suspensions accumulate demand if they
are shared.

Demand is a resource depleted by execution, and propagated by probes. It is
the bound on how far a process may run. Output devices have an inexhaustible
supply, meted out in finite chunks. A polling device refreshes demand, so that,
concurrent with substantive computation, need is continually emanating toward
the fringe. The demand coefficient has other uses. It can contribute to routing
decisions in heavy traffic. It can be a factor in local scheduling, and the total
demand absorbed by an LPE should be a measure of resistance to NEW requests.
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4.4 Speculative Computation in LiMP

Indirect demand propagation is a global mechanism for speculative compu-
tation. In [FrWi76b], Friedman and Wise proposed that processing resources be
applied in the vicinity of “important” computations. As they describe it, idle
sergeant processors search for suspensions that are close to colonel computations.
The sergeants coax computations in the hope of producing values just in advance
of colonels’ accesses. The idea is exploit locality; a printer, for example, is likely to
coerce both fields of every list cell it visits. Thus, when The Printer visits the head
of a list, a sergeant would do well to coax the tail. The problem in this scheme is
determining proximity* to a colonel without getting in its way by tying up a critical
LSE.

The sergeant /colonel effect is attained by a local LSE mechanism, which diverts
a portion of the demand coefficient. On receiving the instruction §[head Citation]
with demand coeflicient §, the LSE coaxes both of Citation’s fields demand coeffi-
cients totaling §. In the event that the two cited suspensions are in different LPEs,
one is given to a needed computation, the other a speculative one. Since this is the
desired condition, process allocation should be spread, adding to the rationale for
a NEW-Suspensionsink. Since Cons suspends two computations in rapid succession,
the suspensions are likely to be drawn from different regions of the process space.

No individual coax can cause divergence because the demand coefficient is fi-
nite. The average number of coaxes needed in coercion may be brought beneath one
if a coax is associated with the creation of a process. A speculative cons includes
a demand coefficient in the [suspend * *] instruction object. The coefficient is
incorporated by the LSE in the ensuing [create x], which must also carry a con-
text, telling the allocating LPE to run the suspension as soon as it is initialized.
With luck, the suspension will converge before ever being coaxed.

The demand-driven computational scheme for LIMP can decentralize schedul-
ing decisions, propagating demand from its source in proportion to the strength of
the need. A polling discipline seems a reasonable approach to maintaining collective
knowledge about the fringe of essential computations, without resorting to a cen-
tral scheduling agent. A demand coefficient can also be used to engage processing
resources in speculative computations.

* Distance from The Printer has come to be called the O’Riley metric, after the
character Corporal Walter “Radar” O’Riley in the motion picture M*A*S*H ( ),
later a television series. Corp. O’Riley, a company clerk, earned his nickname by
carrying out orders before they were given, answering the telephone before it rang,
and so on.
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5. Summary

Daisy exists for two reasons, examination of the thesis that functional pro-
gramming is a practicable vehicle for mundane applications and exploration of a
specific operational model of parallelism, based on suspending construction. The
architectural aspects of this work, presented here, have little motivation unless it
can also be shown that general purpose programming can be done in a purely func-
tional setting. Our formulation of the question is this: If a programming had to be
done on a functional vehicle, what kind of “culture” would evolve? What flavors of
operating systems and programming environments would develop? If assignment
statements did not exist, would it be necessary for programmers to invent them?
The majority of articles reporting this work address these kinds of questions.

Our experience tends to support the thesis that functional programming is
practicable, provide certain issues are resolved in architecture. Performance is one,
of course, but beneath that is maintaining a functional view of the world. For
instance, a purely functional system must present a functional view of the peripheral
environment. A substantial amount of software in DSI’s implementation is devoted
to overriding the conventional behavior of input /output. Despite the effort however,
an alarming amount of overhead in Daisy execution is due to device management.
What this reveals to its implementers is their own naiveté in thinking that language
execution is the keystone of process design.

Even so, the DSI process process is tailored to language interpretation. The
virtual-machine employs tags in order to begin interpretation of an object before
looking in that object. We suffer the fates of all who experiment with tags: chronic
indecision about how to use them; simultaneous desires for more and fewer, resolved
by overloading; the effort of their explanation; and persistent conviction that they
make good sense in architecture. In Daisy interpretation, tags are used to dis-
criminate syntactic entities (i.e. expressions), semantic entities (e.g. closures), and
machine actions (e.g. tests and operations). Only the first is presented here. There
is little reason to promote Daisy’s specific uses for tags; in fact, their meanings have
often changed.

In DST’s third implementation done in 1980, the main design goal was to carry
the transparency of suspensions to a target level. If suspending construction is
transparent to language specification, or any specification for that matter, it could
Just as easily be transparent to implementations. It is essentially the 1980 design
that is reported here, although the implementation has since been superficially
revised. The sequential machine that interprets Daisy cannot access suspended
computations, except to create them. A probe must resolve to a value before it
arrives in a register. Thus, programming at machine-level in DSI is just as oblivious
to the presence of processes as is programming in Daisy.
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The hardware goals in this work are far less ambitious than a LiMP. DSI is now
implemented with multitasking in ‘C’ and assembly, a successful head takes roughly
fifty instruction bytes on a VAX host. It could probably be done in ten to twenty
bytes, three to five instructions, to verify the operand, retrieve the content, test the
exists-bit, and branch around the escape for suspension-access. All this could be
done with parallel hardware monitoring transactions with memory. It is a near-term
goal implement this mechanism, STINGs, and Figure 3 for a single-processor system.

LiMP is a metaphor to help us think beyond hardware archetypes. Though its
physical realization is, perhaps, plausible, its true purpose is to expose questions
of general import in parallel architecture research. Some of these are summarized
below.

e More attention should be given to designing parallel systems oriented toward
heap manipulation. The prospective benefits include opening the way to parallel
symbolic computation and reducing the intellectual effort needed to choreograph
parallel storage usage. One way to dynamically resolve storage contention is to
disassociate information from its location. A program advances by producing new
data instead of overwriting old data. A system that balances itself according to
resource allocations may avoid the serialization caused by “hot spots.” Even if
arrays are the best way to engineer physical storage, it does not necessarily follow
that concatenating arrays is the best way to organize parallel storage, nor that
vectorization of sequential processes is the best route to parallel programming.

e It is not just data that is communicated in a parallel system. Hardware is
needed to support resource management. In Section 4 we have looked at allocation
tactics for three resources: data, processes, and processors. The NEW-list sink and
NEW-suspension sink dissipate fluctuations in consumption. This is a basic quality of
dataflow architecture turned around*; outputs are routed toward producers rather
than inputs toward consumers.

The logical device of buffered routing is not fundamental to LiMP behavior.
Current guesses at the crossover point, at which gross performance with buffered
routing might surpass circuit switching, are in systems with more than 128; and
the number seems to rise with experience in implementation. It is hard to imagine
engaging that many processors to advantage in a typical functional program. A ©
of 7 or 8 is a high price to pay for a simple iterative loop. However, even if routing
is circuit-switched, a NEW sink effect can be built in by presetting paths to available
sources.

® Demand propagation is an viable approach to decentralized scheduling. LiMP’s
communication network is also a purveyor of need, disseminating scheduling infor-
mation to decentralized schedulers. In general purpose contexts, demand driven

* The mechanism similar to the NEW sink is briefly mentioned by Ackerman for
dataflow computer memories [Ac77, Section 5.0.5].
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computation is a dual to data-driven computation; each basks in the light of the
other’s dispair; each seeks design compromises in the direction of the other’s ad-
vantages. The blessing of demand-drive is its inhibition of supply, its curse is the
propagation of need, and its compromise is speculative computation. Parallel ve-
hicles must find general ways to localize and distribute the judgement of when to
apply processors to processes. Here too architecture must play a role.

o Attain random access to shared space. Some preliminary simulations of LiMP
communication show that NEW sinks have the describe effect of balancing allocations
and hence subsequent activity [Jo80]. Some experiments showed that better physical
locality, supported by pairing each LPE with a preferred LSE, degrades routing
performance by protracting the non-local transactions. The problem was resolved
by randomizing routing priorities; making locality moot.

The simulations just mentioned modeled a cruder architecture than the LiMP
described in Section 4, and they were driven by a simple intuitive estimate of LPE
behavior. The continuation of this work must proceed on the three interdependent
fronts named in the title. To converge on a parallel architecture for functional
programmming, we must know more about functional abstractions of parallelism. As
speculations about architecture confront electronic realities, models of parallelism
must reflect them. This work is more important in its means than its end. The effort
to describe hardware support for purist languages exposes basic issues of general
import.
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Numeral 42 [N]—|  42’s repr.
Message | exror07| Mj—|e|r|r|o| [M—1——|r|0|7|¢)| NiL
Literal Daisy (T]—| [M] value

D|alils| M———|¥|¢|d|¢| N

NiL [1 [1]—| # NIL
Quotation ~E [1]—|p| Qe E
List [Eo! E4] [L]—| Eo Ey

FEs: Eil -—> Ey -———->‘ . -——> Ey NiL

[Ex*] L}-| E
Application Ey:E; [a]—| Ey E,
(E) [aA]—|p| DY E
Function \X.E [Fl—| X E

FIGURE 1. Daisy Expressions and their Representations.
In the second column, variables E and X are expressions. Function parameter X

is expected to be a tree of identifiers.
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((D»p =D
(N)p=N
(), =10
("E),=E
(DY, = (B,
(10 = (), e len bl i

)
(\X.E)), = [closure p X E]
(( [Eo E; ... EnJ))p = [«EC'»p «El} p - «En»p]
([Ex ' Ed)p = [(Er),! (Ee) o]
« [Eo *] »p = [«Eﬁ»p *]
Aadd = Alu vlp.(u+v)
Aval = Avp . (v),
AN =Alvy v; ...Jp.wvn
Alclosure p' X E] =Advp. (E)p' [;{]
Alet = A[X E, Elp. (E)p [((E)?) °]
rec = ') where pl:P[;{]
A AX E4 Elp. (E)p', wh {v _ (),

v;, if p; # [1 and p; = [1 for j < 4,

Aif = Alpo vo ... w, if p; =[] for all 3.

Pn v wlp. {

Alvo ' v1] = Allug 'uil.. . Jp . [ (Avolud...Jp) ! (Awilul...1p) 1

FIGURE 2.

((£))p is the value of expression E in environment p. Variables D stand for directives,
N for numerals, I for literal identifiers, E for expressions, and X for function argu-
ments, lower case variables stand for values. Environment extension is expressed as
P [:] The formula Alz yl.€ says the argument is a list of two elements, z and y.

The Daisy Language

26
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VALUE(Exp, Env, Cmd, Ctx) :
per Tag(Exp) viz

: CONTINUE(Exp, [1, Cmd, Ctx)

: CONTINUE(Exp, [1, Cmd, Ctx)

: {Error}

: LOOKUP(Exp, Env, Cmd, Ctx)

: CONTINUE([closure Env Exp]l, [], Cmd, Ctx)

: LIST(Exp, Env, Cmd, Ctx)

: VALUE(head(Exp ), Env, [arg Exp Env Cmd], Ctx)

FEEEEEE]

LIST(Val, Env, Cmd, Ctx) : CONTINUE(cons(Val, Env), [1, Cmd, Ctx)

_ [ suspend(VALUEy(Val, Env, [converge], )
{COHS( Val, Bav) = ! suspend(VALUE;(Val, Env, [convergel, x)]

VALUE,(Val, Env, Cmd, Ctx) : VALUE(head(Val), Env, Cmd, Ctx)
VALUE(Val, Env, Cmd, Ctx) : VALUE(tail(Val ), Env, Cmd, Ctx)

APPLY (FVal, AVal, Env, Cmd, Ctx) :
per Tag(FVal) viz

: {Construction Functional}
: VALUE(TextOf (FVal), ExtendClosure(FVal, AVal), [restore Env Cmd], Ctx)

[o] . EXECUTE(FVal, AVal, Env, Cmd, Ctx)
: {Indexing operation}

: {Error}

[1] : {Error}

: {Error}

CONTINUE(Val, Env, Cmd, Ctx) :
per Cmd viz
[converge]: {store Val at Ctx}
[arg Exp Env' Cmd'l: VALUE(tail(Exp ), Env', [apply Val Env' Cmd'], Ctx)
[apply Val' Env' Cmd'l: APPLY(Val', Val, Env', Cmd, Ctx)
[restore Env' Cmd']: CONTINUE(Val, Env', Cmd', Ctx)

FIGURE 3. Daisy Interpreter Outline.
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Context

CMD = [Action Cmd’ Citation]

b

1w ]| Citation
: Citation
:I:Rz ; Citation
[T =]
microprogram point
Suspension
List Space I/'F
{/}
A
) : CTX
¥
aLu [T
N :
_— ] A: K
7] (o
) RO
Ir4| Y H
command L
& control |V e N !
"*-«..____’) : R1
= A T
instuction ] 1y T
) B R3
r M
control 1
store
microprogram
sequencer
"'\/

Process Space I/F

FIGURE 4. A DSI Process
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List Space
LSE | [LSE| === LSE | [LSE| ==-
LY rd LY Fi
\ 7/ X/
RE RE
RE RE
' Routing Network .
: :
/
RE RE RE RE
RE RE RE RE
L.\ F A g L% A
LPE | | LPE V0 | | LPE LPE V0 LPE| ==°~*
Process Space
—
= Shared heap
A —{urensE |—{irense |- region
processor
micro- bufferd
program RE crosshar processor
Process heap LSE/LPE LSE/LPE | S
Eaglon | A |
LSE

FiGure 5. A LiMP
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(A) A CREATION SCENARIO
LPE4 LSEn LPEp

N — [new] B — [new]

[suspend N f]
[new B] {N := B}
[create B]

(B) A COERCION SCENARIO

LPEc LSEy LPEpg
[head N]
[head N]
[coax B N]
................... g
{run B}
[head N1
[head N] [head N]
[coax B N]J]
[head N] [head N] [coax B N]
[coax B N] {run 8}
[head_N][headN] ....................... [CoaxBN] ....................
[coax B N] {B converges}
[sting N Vgl
[head N] [sting N Vjl [coax B N]
{[N] := Vg} [sting N Vgl

[headof N Vgl

[headof N Vgl [sting N Vj]
{inhibited}

FiGure 6. LiMP EXECUTIONS.






