TECHNICAL REPORT NO. 286

How Daisy is Lazy
by
Steven D. Johnson

August 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

TECHNICAL REPORT NO. 286

How Daisy is Lazy
by
Steven D. Johnson

August 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

How Daisy is Lazy*

Suspending Construction at Target Levels

Steven D. Johnson
Computer Science Department
Indiana University

Abstract

This paper derives a virtual machine description supporting the programming
language Daisy, a lazy descendent of Pure Lisp. The derivation isolates the sequen-
tial task entity for concurrent graph reduction based on suspending construction, a
demand-driven scheme in which task creation is a transparent byproduct of record
creation. This development carries the slogan, “lazy machines make languages lazy,”
from the level of metainterpretation to the level of a compilation target. Key instruc-
tions are developed, and scheduling is abstractly considered from the task entity’s
point of view. The treatment is a prelude, both to a future compiler definition, and
to an orthogonal study of scheduling. Here, the main purpose is description, and
the motive is to propose a modeling framework for comparing related constructs,
such as delays, futures, and engines.

*This research was supported, in part, by the National Science Foundation
under grants numbered MCS 82-03978, DCR 84-05241, DCR 85-21497, and MIP 87-
07067

HOW DAISY IS LAZY

1. Survey

Daisy exists to explore concurrent graph reduction based on suspending con-
struction. In this paper, its underlying task model is isolated from details of lan-
guage implementation on the one hand, and from task scheduling on the other. In
the process, the implementation of suspensions is explained. An underlying mo-
tive is to establish a modeling framework for comparing related constructs, such as
delays, futures, and engines. Subtle operational differences among these kinds of
objects should be characterized, in order to find good generalizations for symbolic
multiprocessing architecture.

Daisy is a lazy list processing language, implemented by a graph reduction in-
terpreter. “Lazy” modifies “list” in the previous sentence. In [Friedman& Wise76],
Friedman and Wise presented an interpreter, for Pure Lisp in Lisp, in which the
primitive list operations are altered to make list construction non-strict. CONS ini-
tializes the fields of new cells with suspended evaluations. Suspensions are coerced
to values by the list-access primitives, The result is a call-by-name semantics, safely
optimized to call-by-need if there no side-effects.

From the outset, suspensions were considered as tasks; their transparency made
them attractive for parallelism, especially in functional programming (e.g. [Fried-
man& Wise78a]), and also led to a data oriented treatment of indeterminacy (e.g.
[Friedman& Wise80]). A graph multitasking system, with Daisy as the surface lan-
guage, was developed to demonstrate and explore these results.

The starting point is an abbreviated language definition in Section 2. Though
language implementation certainly influenced suspension representation, it is or-
thogonal to their implementation. This orthogonality is fundamental to the work:
a lazy (or concurrent, or indeterminate, etc.) CONS makes Lisp lazy (or concurrent,
or indeterminate, etc.); and similarly for other graph processing languages.

The exposition carries this principle below the level of language interpretation:
A compiled language L inherits property P from the target machine. In Section 3,
data operations are developed, in the course of refinement to store semantics, by
an ad hoc extraction of combinators. An abstraction of global concurrency is then
introduced and informally discussed. Between the language implementation and
the scheduler lies a sequential task entity. Section 4 defines key instructions of its
command oriented assembly language.

The treatment mimics Wand’s method of compiler construction, where op-
erations are identified as combinators [Wand82]. It also mimics Clinger’s use of

HOW DAISY IS LAZY

functions on state to model instructions [Clinger84]. However, these are metasyn-
tactic comparisons because a compiler is neither defined nor proven. This work
represents a step toward characterizing a concurrent target machine by precisely
stating the interface between local and global control. This is a prerequisite to a
compiler definition.

The conclusion explains the degree of transparency at the target machine level,
sets the scene for future treatment of scheduling, and explains the direction of this
work. Throughout, the paper discusses how suspensions differ operationally from
related task constructs.

2. Daisy

Figures 1 through 3 define the core of the Daisy language. Errors are values and
function closures are modeled as objects, interpreted in application. By convention,
a variable is reserved for each semantic type; elementary coercions, injections, and
projections are suppressed. The underlying formulas in the final paper will be
mechanically type-checked. Figure 4 illustrates most of the syntax presented, and
shows that functions are values, scoping is lexical, and data structures may be
recursively defined. A more complete description of Daisy is given in [Johnson88].

In Figure 1, concrete syntax is shown in boxes. Atomic expressions include
numbers, literal symbols, and a distinct set of operation names. There are composite
expressions for applications, functions, and two kinds of list formation. A recursive
binding form is also included. A top-level assignment command is used to name
functions, as in Figure 4. Operation names, like add, are initially assigned constants,
like add, which are decoded in application.

Most of the types for a direct semantics (Figure 2) are typical. Expression
errors result in a class of untouchable values, called errons, which appear as error
messages. Function expressions evaluate to closure objects, \X . E, which represent
the conventional abstraction

M.V, [E] where p' = p| U,],
realized by the application function, A.

Environments are functions from identifiers to values with the usual notations,
p(I) for look-up, and p[}] for extension. Environments are discussed further in
Section 2.1.

HOW DAISY IS LAZY

Figure 3 gives expression meanings, the environment p appearing as a sub-
script. Equation (9) of Figure 3, for multisets, is intuitive and could not be used
in equational reasoning. Formalizing Daisy’s indeterminacy is beyond this paper’s
scope, but the operational treatment is an important factor later. Here is a sketch
of how multisets work: an expression {& B C} produces a list structure containing
the computations, a for A, 8 for B, and v for C:

X Y Z
o e s\ B ———-| 7 | nil

Should list object X be accessed, a, (3, and v execute concurrently. Should a be
the first to produce a value, a, the effect is

% Y Z
a | e gl et+——| 4" | ni

Value a is the result of the access; 8' and v’ are continuations of the other compu-
tations. Should 7 converge first to c, the effect is

X 2 Z
c | e c | ® c | nil
U & v
a ® B' | nil

Since there may be external references, ¢ is recorded in all the original cells, and
both o' and ' are moved to new locations. More details can be found in [Fried-
man& Wise80]. The possibility that suspensions can change location influences their
representation and distinguishes them from other task entities.

Daisy is a toy language, a simple interpreter coded on the machine characterized
later. A parser specification would be almost as good a starting point, except
that parsing had less influence on process design. As space permits, I will make
brief remarks about the language and its various flaws. For instance, Equation
(13) in Figure 3 states that application is strict—this mistake is retained as a
reminder that laziness comes from construction—and hence prohibits undefined
atoms [Cartwright&Donahue82].

e Equation (13) states that application is strict. Though Daisy is not lazy by
virtue of its interpretation method. A Daisy version of the Y combinator is

Y= N. (\zx.f:[x:x]):O\x.£:lx:x])

HOW DAISY IS LAZY

The application x:x is put in a list to delay its evaluation. This must be
reflected in functionals, for instance,

FACTORIAL = ~“\[f].\n.if:[zero?:n 1 mpy:[n f:dcr:n]]

This flaw has been retained as a reminder normal-order semantics is a conse-
quence of list formation.

e As Equation (14) suggests, errors are treated like detected Ls; any expression
that depends on an error is erroneous.

e There is no conditional form. The if operation simply returns one element of
a list, the unneeded alternative remains suspended. (Though this treatment
has a certain esthetic appeal, it is not attractive in operational terms because
of the entailed overhead.)

e The binding operations, such as rec, are simple primitives. This is why A
takes p.

2.1. Environments and Trajectories

Lambda parameters are identifier trees, and environment extension is

v v, 1=,
Pl (D) = {p(.f), if I#J
Pl) =p(0)

" .
Plix g = ol 5NN

In words, an identifier is bound at its position in the formal parameter. This is not
pattern oriented look-up: binding [I ! J] to an atom results in an erron if I or
J is used. Since lazy lists build actual arguments, it makes less sense to require a
specific structure, such as a flat list. At the same time, programs on recursive data
commonly name tails.

Environment look-up has two phases. First, the formal parameter is searched
for the left most occurrence of the sought identifier. This would be done at compile-
time if Daisy had a compiler. The search produces a trajectory or linear composition
of heads and tails, which is applied to the actuals. Trajectories are expressed as

[T1; T2; ---; Tn], which denotes composition.
[11; 2] = Av.a(71(v))

In what follows, it suffices to consider these implicit list accesses.

HOW DAISY IS LAZY

3. Suspensions

The development centers on determinate list expressions, and the effect of the
environment probe head. By caveat, we define

VI(Eo t E1l]p = cons (V,[Eo]) (Vo[EL 1) & (V,[Eo].V,IEL])
The implementation of lists is to satisfy

cons vy v1 #Lval,
head(cons Vo vl) =g
taﬂ(consvg vl) = v

To accomplish this, evaluations are developed as objects.)V is refined to a control
semantics, then to a store semantics, and finally to a “task semantics.”

3.1. Thunks are not Suspensions

Variables k range over expression continuations, x: Kon = Val — Val

V:Exp — Env — Kon — Val
Vol LEo ! Er]]r=r(Vo[Eo], Vo[E1]).

This equation proclaims that list-formation is incidental to control. The right-
hand side is written as cons(V,[Eo |)(V,[E1])x, with The cons combinator, which
takes expression closures (or thunks), ¢: Kon — Val, can be can be re-written in
three other ways to be strict. In fact, Daisy has four versions of cons.

cons ¢o ¢1 & = K(Po, P1)-

[11;72] = Avk. mv(dv' . 1ov'k).
Head: Val — Kon — Val becomes

k error, 1if v i1s not a list,
headvk =

(po)~, otherwise, where p = v|pst.

HOW DAISY IS LAZY

3.2. Delays are not Suspensions

Getting from call-by-name to call-by-need requires a store, where evaluations,
like delays, record their results [Henderson&Morris76]. Lists are simply two-delay
records. Stores map locations (£) to binary pairs (p), whose two fields contain either
values or delays. Stores come with an allocate operation, new: Mem — Loc x Mem,
nd an update operation, denoted o[}].

Py g |py HE=F,
"[E]—M'{o(w), if QL0

New locations are always initialized, so that the pattern of allocation always looks
like

p= (x *)

(¢,0') = new(o)

s ol in a'[};} .-+ where [

This says that the new location £ has been initialized to the list (x,*). Since Daisy
is founded on a binary list-space, it is convenient to augment the notation further.
A context, x, specifies a location and a field. For location £ the two contexts are
written as £y and £;. Field accesses and updates are expressed as follows.

oy really means (o£)g

cr[;;] really means J[Ié] where p = (v,0(¢1))

Adjusting the domains,

Val = Atm + Loc (v) Values

Loc (£) Locations
Ctx = Loc + Loc (x,€0,¢1) Contexts
Mem = Loc — Lst (o) (List) Stores
Lst = (Del + Val) x (Del + Val) (p) Lists

Del = Kon — Mem — Val (6) Delays

Kon = Val — Mem — Val () Continuations

Now at this point, Vguv: Exp — Del.

Vol LEo ! E1]]ro = cons(V,[Eo) (Vo E1])ro

HOW DAISY IS LAZY

Accordingly, cons allocates a list.

(£,0') = new(o)

p
cons 8y 6y ko =klo' where
[f] p = ((delay, 6), (delay, é1))

delay,: Del — Loc — Del imposes an update-continuation,
delay, 6 £ = Ao . §(converge €y K)o

converge: Ctx — Kon — Kon updates the store,

v
convergex K = Av 0. K.vor[x]

and head: Val — Kon — Mem — Val becomes

k error o, if v is not a list location,
headvko = { s(ody)o, if (04p)is a value, where £ = v|Loc
(c€o)ro, if (04y)is a suspension.

In words, head verifies that its operand is a location, and returns the value, if
present, at that location. Otherwise, the computation there is invoked. The re-
sulting value is stored at £, and also returned to the original caller. This level of
description is accurate in terms of the representations used. Suspensions are dis-
tinguished from values by a bit, located in the list cell that holds them. When the
evaluation done by a suspension concludes, the suspension’s reference is overwritten
with a value and the bit inverted. The head primitive verifies this bit before re-
turning a value. One consequence is that no computation can retrieve a suspension;
this is one difference with both delays and futures.

3.3. Suspensions as Tasks Entities

In developing concurrency, it is necessary to account for the preemption and
scheduling of computations. This paper is concerned with the task entity’s view of
global coordination. Scheduling is informally discussed, with details left for a future
paper. Schedules ¥: SdI may be thought of sets of contexts, with operations

put: Ctx — SdI — Sdl
get: Sdl — Ctx x Sdl

for adding and deleting elements. In implementation, schedules include a means of
prioritization, based on dependence and I/O events. Ideally, get produces a good
choice according to demand, as measured by proximity to an output task.

HOW DAISY IS LAZY

The function run invokes a task; and swap does a task swap. Run must check
whether a scheduled task has already converged.

run: Mem — Sdl — Val

:) .
runcy if o x 1s a value
runcy = { ! X 2

i e
(ox)xoX', if ox is a suspension where (x, ¥) = get

swap: Ctx — Mem — SdI — Val
swapx o X = runo (putx X)

The last refinement to suspensions can be inferred from run. It is that the sus-
pension’s context—the list object in which it resides—is supplied at the point of
invocation. This is another difference with futures, accounting for the possibility
that suspensions may be moved, as is the case in multiset evaluation (Section 2).
Fixing the relevant domains again,

Loc (¢) Locations
Ctx = Loc + Loc (x) Contexts

Val = Atm + Loc (v) Values

Mem = Loc — Lst (o) (List) Stores
Lst = (Spn + Val) x (Spn+ Val) (p) Lists

Env = Ide — Kon — Mem — Val (p) Environments
Spn = Ctx — Mem — Sdl — Val (¢) suspensions
Kon = Val — Spn (k) continuations
Sdl ~ sets of contexts (X) schedules

Now, the constructor suspends as before, but the definition below also describes an
indeterminate “time-out,” once the new cell has been allocated. Cons takes two
evaluation closures, g, ¥;: Kon — Spn. Suspend simply initializes a closure’s con-
tinuation, thus making it into a suspension. Converge updates the current context
and invokes the scheduler. cons: Spn — Spn — Kon — Ctx — Mem — SdI — Val

PPy o
swap x g’[ﬂ][v] =, i SRR
consPo P kxo XL = : where | ' ddn’ dd
Ky o' [?]E p = ((suspend ¢y), (suspend ¢1))

suspendy = 1(converge)

v
convergevx o X = runog' X where ¢’ = ¢ [XJ

HOW DAISY IS LAZY

Finally, head too may be interrupted for a task swap; it may find a value; or it may
spawn a dependent task.

swapx a[i] X, arbitrarily,

J K error x o X if v is not a location,

headvkyxoc X =))

k(oly)x o X, provided (c¥4p) is a value,
(a€o) Lo J[i](putxﬂ), provided (o) is a suspension.

\

¢ = head &
where
== U|Loc

3.4. Conditional Stores and Speculative Computation

Since they describe a single thread of control, the descriptions are adequate for
multitasking but not necessarily for parallel execution. The contentions that arise

are resolved if the store prohibits overwriting values. This is the sting operation,
described by Friedman and Wise [Friedman& Wise78b, Wise85].

where p = (v,0({))

5 o, if o4y 1s a value,
o11-{

J[é 1 , 1f o £y 1s a suspension.

Speculative parallelism would be introduced in cons, by adding the newly cre-
ated contexts to the schedule:

kp

!
x]E’

cons o Y1 kK x 0 X = swapy Ul[z] [

(£,0') = newo
where | p = ((suspend ¢o), (suspend ¢1))
¥ = putx (put £y (putf; X))

This description is, indeed, speculative since no ordering on ¥ has been described.
In Halstead’s terminology, £, and ¢; would be pending, that is, invoked as resources
permit; and x would be committed, or active [Halstead85]. We also assume bounded
execution, in order to realize demand driven behavior.

10

HOW DAISY IS LAZY

4. An Abstract Processor

This section sketches instructions for a sequential-control processor. A task
state R: Registers i1s modeled as a tuple of n values and a command continuation,
each denoted by Ry, ..., Rn, Rcc. Register assignment is expressed R[i « v].

A program 7: Reg — Spn maps the local plus global state to a value; recall
that Spn = Ctx — Mem — Sdl — Val. A concrete syntax is used to express these
functions, in which a semicolon stands for serial composition.

The command continuation (or control stack) + is represented by a finite string
of programs. For our purposes, it is enough to write v = (m,v'), in order to “push”
a program, and (m,v') = v, in order to “pop” one. Application of a function in
Val* — Pgm to i values models parameter stacking. For instance, given a program
7, the function

Av.ARxoX.mR' xoX where R = R[i « v],

or by eta-conversion,
Av.AR.7w R[i « v],

once applied to a value, describes saving v and 7 on the control stack; v is restored
to register ¢ when control continues at .

e If 7 is (denoted by) [r; := suspend(m;); m3], then
TR =my R[t «— ¢] where ¢ =m R[cc — ([converge,, .]])]

A compiler would append converge, to m;, but new suspensions require an
initial continuation anyway.

e If 7 is [continue; m |, then

(m',7) = Rec
R' = R[cc « 4]

R =n"R' where

This instruction invokes the stack.

o If mis [converge r;; m |, then

7m R = converge R;

11

HOW DAISY IS LAZY

For suspend (above), it is understood where a computation accumulates its
final result.

o If 7is [r; := new(r;, r}); m1], then

(£,0') = newo

n Rxo = m R'xa'[?] where | p= (rj,rk)

R' = R[i « {]
e The program [r; := cons(my, m); m3] expands to
[r; := suspend(mo); rx := suspend(mi); r; := new(r;, ri); 73 |

Currently, task dependence is transparent but task creation is not. There are
various construction paradigms, such as iteration over streams, that remain to
be explored.

o If wis [r; := head(x;); m |, then

m R = head R; (Av .7 R[i « v])

4.1. Input and Output

Conventional I/O is integrated in the list space, with device handlers repre-
sented as special-purpose suspensions. The input and output handlers sketched
below illustrate the language developed above.

GETC: { Obtain a character in r; }

ry := suspend(GETC);
r, := new(r; , ry);
converges
PUTC: r; := head(r;);
{ Display the character in r; };
re = tail(ry);

goto PUTC.

12

HOW DAISY IS LAZY

5. Concluding Remarks

The refinement to an operational semantics, dealing with a store and a sched-
uler, carries the transparency of task dependence to the target machine level. As
indicated in Section 3.4, this separation allows us to talk, in precise terms, about
concurrency issues, without disturbing the task model.

References

[Cartwright&Donahue82] Robert Cartwright and James Donahue. The semantics
of lazy (and industrious) evaluation. Conference Record of the 1982 Symposium
on Lisp and Functional programming Pittsburgh, 1982, 253-264.

[Clinger84] William D. Clinger. The Scheme 311 compiler: an exercise in deno-
tational semantics. Conference Record of the 1984 ACM Symposium on Lisp
and Functional Programmaing, Austin, 1984, 356-364.

[Friedman& Wise76] Daniel P. Friedman and David S. Wise. CONS should not
evaluate its arguments. In S. Michaelson and R. Milner (Eds.) Automata,

Languages and Programming, Edinburgh University Press (Edinburgh, 1976),
257-284.

[Friedman& Wise78a] Daniel P. Friedman and David S. Wise. Aspects of applica-
tive programming for parallel processing. IEEE Trans. Comput. C-27, 4
(April, 1978), 289-296.

[Friedman& Wise78b] Daniel P. Friedman and David S. Wise. Sting-unless: a
conditional, interlock-free store instruction. In M. B. Pursley and J. B. Cruz,
Jr. (eds.), Proc. 16th Annual Allerton Conf. on Communication, Control, and
Computing, University of Illinois (Urbana-Champaign, 1978), 578-584.

[Friedman& Wise80] Daniel P. Friedman and David S. Wise. An indeterminate
constructor for applicative multiprogramming. Record 7th ACM Symp. on
Principles of Programming Languages (January, 1980), 245-250.

[Haynes&Friedman87] Chris T. Haynes and Daniel P. Friedman. Abstracting
timed preemption with engines. Computer Languages, Vol. 12, No. 2 (1987),
109-121..

[Halstead85] Robert H. Halstead, Jr.. Multilisp: a language for concurrent sym-
bolic computation. ACM Transactions on Programming Languages and Sys-
tems, 7(4):501-538 (October, 1985).

13

HOW DAISY IS LAZY

[Henderson&Morris76] Peter Henderson and James H. Morris, Jr.. A lazy evalu-

ator. Conf. Rec. §rd ACM Symp. on Principles of Programming Languages,
1976, 95-103.

[Johnson84] Steven D. Johnson. Synthesis of Digital Designs from Recursion
Equations. The MIT Press, Cambridge, 1984.

[Johnson88] Steven D. Johnson. Daisy Programming Manual (working title).
draft in progress, available on request.

[Miller87] James S. Miller. MultiScheme: A Parallel Processing System Based
on MIT Scheme. Ph.D. Dissertation, Technical Report MIT/LCS/TR-402,
Massachusetts Institute of Technology, 1987.

[Wand82] Mitchell Wand. Deriving Target Code as a representation of continua-
tion semantics. ACM Trans. on Prog. Lang. and Systems 4 (1982), 496-517.

[Wise85] David S. Wise. Design for a multiprocessing heap with on-board refer-
ence counting. In J.-P. Jouannaud (Ed.), Functional Programming Languages
and Computer Architecture, Lecture Notes in Computer Science 201, Berlin,
Springer (1985), 289-304.

14

HOW DAISY IS LAZY 15

Expressions, E: Exp

numerals, N

operators, e.g.

identifiers, I

[v] 1[v] literal quotation
Ey E E, application expression
X[E function expression

or Nil

Eo[!] E; or Ey[1] By list expression

[rec: [IX E; Eg rec-expression
Formal Arguments, X: Arg

identifiers, [

Xo [X

FIGURE 1 — Daisy Syntax

Semantic Domains
Atm (I, N,add,nil) atoms
Err (error) errons
Cls = Env x Arg x Exp (X .E) closure objects
Val = Atm + Err + Cls + Lst (v) values
Lst = Val x Val (p) lists
Env = Ide — Val (p) environments
FIGURE 2 — Semantic Types

HOW DAISY IS LAZY

Evaluation, Vg,,: Exp — Val
Vo[N]=N

V,[add] = add

ey if v is assigned to I;
Vel I'] = {p(I), otherwise.

V[=1
V[L1] = V,[{}] = ni
V,I\X .E] = \X.E
Vol Eo: 1] = A, (Vo[Eol) (Vol Er])

Vp'[[EU ! El:|]] = (VPHEU]LVQHEI]])

Vp[[[EO ! {El ! Ez}]]], lfvpﬂEg]] .',é.J_

Vel{Eo ! {Ei t Ex}}] =~ {Vp[[[E1 ' {Ey ' E2}1], fV,[E:]#L

o =rl]

Volrec:[X E; E;]1]) =V, [E;] where
W = Vp’[[El]]

Application, Ag,y: Val — Val — Val

Ap add (u ; 'u) s {u +v ifu antfl v are numbers,
error otherwise

A, (AX.E)v = V[E] where p" = p'[:i,]
dly ol s s b= L

Ay error v = Ay, u error = error

(10)

FIGURE 3 — Direct Semantics

16

HOW DAISY IS LAZY 17

|--> COMMENTS
|
WHEN = ~\[[T!Ts] [V!Vs]]. | Almost Lucid’s ‘asa’
if:[T V WHEN:[Ts Vs]] -
|
MAPs = \F. | Map F over a stream
rec:[DO |
\[V ! vs]. [F:V ! DO:Vs] l
DO I
] lo__
I
BL = “\[V P F R]. | A sequential schema:
rec:[[State Done Valuel] | Biv, p; £; ¥)

[[V ! (MAPs:R):State] = WHEN(Done, Value)

(MAPs:P) :State where

(MAPs:F) :State State = v ! r*(State)
] Done = p*(State)
WHEN : [Done Valuel] Value = f*x(state)

]

FACTORIAL = ~\N. Factorial as an

Bi:[[N 1] instance of B1.
(\[N M].zero?:N)
(\[N M].M)
(\[¥ M].[dcr:N mpy: [N M])
]

--> COMMENTS

FIGURE 4 — Program Example

