TECHNICAL REPORT NO. 284

A Pipelined Architecture for Logic Progamming
with a Complex but Single-Cycle Instruction Set

by
Jonathan W. Mills
July 1989

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

A Pipelined Architecture for Logic Programming

with a Complex but Single-Cycle Instruction Set

Jonathan Wayne Mills
Computer Science Department
Indiana University
Bloomington, Indiana 47405

An architecture is described which executes logic programs
using fewer instruction cycles than hardware implementations of the
Warren Abstract Machine or the Berkeley SPUR augmented with a
Prolog coprocessor. This is achieved by balancing the
characteristics of CISC and RISC architectures. Specifically, this
architecture provides support for the semantics of logic programs
using complex instructions and multiple pipelined functional units.
Examples of complex instructions include partial unify, push
and load reference, pop and dereference, and switch on
type; all typically execute in a single clock cycle from a full
pipeline. Conditional instruction execution reduces branch frequency
to 0.09%, which keeps the pipeline full and allows 16-way memory
interleaving. Under these conditions, one LIBRA processor using
100ns memory is estimated to execute nine million logical inferences
per second.

1. INTRODUCTION

The design of the LIBRA, or Logical Inference Balanced RISC Architecture, has been a process
of unlearning assumptions about the hardware required for a fifth generation language, Prolog.
The belief that logic programs required a non-von Neumann architecture led to the design of
complex computer architectures, such as the PLM, the PSI, the HPM, and the PEK. Later,
attempts to obtain performance using RISC architectures produced the SPUR and its Prolog
coprocessor, the LISC-P, the RPM, and the Pegasus. These RISC architectures suffered from the
"add-on" symptom of design: an existing architecture was extended at the lowest level to support

Prolog, rather than designed from the top down.

The LIBRA was designed in a "top-down" fashion over a four-year period, with each version

integrating one or more functions to support logic programs into a RISC-like architecture. The

development is summarized in the following chronology:

1985

1986

1987

1988

WAM was analyzed, component functions used to design a sub-WAM in software
for Ken Bowen's Applied Logic System's PC Prolog compiler. The
implementation was efficient (>5 KLIPS on an IBM PC) but indicated a need for

integrated tag and value processing in hardware.

LOW RISC 1. Seven instructions, register windows. Verified need for integrated
tag and value processing; had problems with excessive branching and dereference

loops; found that register windows were under-utilized.

LOW RISC II. 15 instructions; no register windows. Simulated, nominal speeds
300 - 800 KLIPS. Still had excessive branching problems (particularly in

unification).

LIBRA. An approximately balanced architecture with 35 instructions. Balance is a
concept inspired Flynn et. al. (1987), who introduced the idea of a balanced
optimization to an instruction set, arguing for register windows only if
instruction traffic could be reduced. In this paper a perfectly balanced architecture
is defined to be one where the instruction traffic equals the data traffic, and where
for each instruction fetch there is a simultaneous data fetch. The LIBRA is not

perfectly balanced.

Currently a VLSI bit-slice of the LIBRA's value ALU has been designed, simulated in SPICE and

will be submitted to MOSIS for fabrication in June 1989.

Mills

A Pipelined Architecture for Logic Programming... 2

2. PREVIOUS LOGIC PROGRAMMING ARCHITECTURES

Although a number of logic programming architectures have been described, the PLM and the
SPUR are selected to represent the classes of CISC and RISC logic programming architectures,

respectively. For discussion of other logic programming architectures, see (Mills 1988).
2.1 THEPLM

The PLM is an extension of the Warren abstract Prolog machine (WAM). The profile of the PLM
shows an architecture that is CISC-like in the number of registers and instruction complexity, but
RISC-like in the number of functional units. The PLM is an overlapped fetch-and-execute
machine. Instructions are prefetched, partially decoded and stored in an instruction buffer. Each
PLM instruction is microcoded, and because many instructions share microcode for dereferencing,
de-cdring and trailing a single-level microcode call is implemented. Some instructions may invoke
a recursive unifier, so an eight-level push-down list is implemented. The microcode word is 128

bits wide, necessary because 11 buses may be used during a single cycle.

Eight hardware data types are defined using four basic tag values. All data types may be identified
as cdr or non-cdr coded values using a secondary type field, and include a garbage collect bit. Tag

bits from three argument registers (A0, Ax[argl], Ax[arg2]) are always provided to the next

Instructioms =
Adlresing Mode: IS EEEEENEREEDE 9
Instruerion Formats
Dats Types

MinT ypicalbiax (EE—
CyelesiTastruetion. £ 1 4

Fuastional Units : 1
Pipelne Depth s m—— 3

Registers fLd

Merocole” g e e e ——— 3
ComwolBis i, : L

10 o

Figure 1. PLM profile

Mills A Pipelined Architecture for Logic Programming... <,

to the next micro-address multiplexer, with the two primary tag bits used to make a four-way
branch. This increases the ability of the PLM to perform switches, but falls short of the partial
unify instruction found in the LIBRA, which can perform most unifications in a single cycle; in

the PLM unification takes a minimum of four cycles.

The PLM implements a Harvard bus architecture, having separate instruction and data memory
spaces each accessed by its own address bus and data bus. The data memory is allocated to heap,
environment/choice point stack, trail and symbol tables. Within the PLM seventeen registers are
visible to the programmer. Nine are state registers needed to control the operation of the PLM, and

eight are argument registers.

Because the micro-architecture of the PLM is conventional and not optimized for Prolog (although
the macro-architecture is) and because the PLM is vertically microcoded, the execution time of each
instruction varies widely: some instructions require as many as 26 cycles. The PLM's microcoded

WAM instructions are complex without being flexible.
2.2 THE SPUR AND ITS PROLOG COPROCESSOR

The SPUR is an extension of the Berkeley RISC II targeted for Common Lisp but not for Prolog
(Borrielo et. al. 1987). The Lisp orientation increases the semantic gap between the architecture

and Prolog and contributes to the poor performance of an unaugmented SPUR running Prolog. To

AldressingMoles TEEEESTENNS 3
Dstrurton Formats o e &
Dam Types

T ypic sl Max s
Crlhsihstracton | 4/ % 14

F 1 Units +
Pelie DIt s e e ey 5

w | ara i
Meroools” | ¢
ConrolBis ;| G
10]

Figure 2. SPUR-Prolog coprocessor profiles

Mills A Pipelined Architecture for Logic Programming... 4

improve performance, a SPUR coprocessor was introduced for unification, tag dispatching and
dereferencing. The SPUR / Prolog co-processor combination executes Prolog slightly faster than
the PLM. The SPUR contains three processors: an integer CPU, a floating-point CPU (FPU),
and a cache controller (CC). The integer CPU is tagged, using six bits of each 40-bit word for the
tag. The floating point CPU is a hardwired implementation of the IEEE binary floating-point
arithmetic standard, and uses three bits of the 87-bit word for the tag. The SPUR's 4-stage
pipeline includes forwarding logic, allowing results to be used before they have been stored in, and
become available from, the register file. This gives the SPUR an effective instruction execution

speed of one cycle per instruction.

The SPUR can implement 32 tagged data types, although only four types — fixnum, character,
cons pointer, and nil — and one condition, tags equal, are implicitly tested. All other tag
manipulation is performed explicitly by comparing tags to immediate values. A significant
disadvantage of tag processing on the SPUR is the need to read the tag, and the tag with a mask,
and then jump indirect to implement multi-way tag dispatching. The and is necessary because the
tag includes two generation scavenging bits which may have an arbitrary value; there is no way to
extract the type information from a tag directly. If this sequence were implemented as a single
instruction as is done in the LOW RISC and LIBRA processors, the SPUR's Prolog execution

speed could be improved by as much as 15% (Borrielo et. al. 1986).

The SPUR has 138 general purpose integer registers in the CPU (eight special purpose registers
are not counted in this analysis because they are not used in a sequential WAM implementation),
and 16 87-bit floating point registers in the FPU. The 138 integer registers are organized into 10
global registers and eight overlapping windows containing 16 registers each. The size of the
register windows and their organization as a monolithic register file limit their use for Prolog.
Most Prolog calls use fewer than three parameters, with more than seven parameters used in fewer
than 0.3% of all cases (Matsumoto 1985). Using the register file as a choice point stack frequently

wastes registers.

Mills A Pipelined Architecture for Logic Programming... 5

No bounds checking instructions are available, nor are stack manipulation instructions. Push and
pop instructions must be synthesized from load-add and subtract-store instruction pairs, in
keeping with the RISC philosophy. Dereferencing for bound variables, called invisible pointers by
the SPUR designers after Greenblatt (1974), is not supported. This reduces the SPUR's
performance for Prolog, and was partly remedied by Borrielo et. al., who put dereferencing back
into the architecture in the Prolog coprocessor. However, because the SPUR coprocessor always
combines dereferencing with another operation — a branch, unification, or hashing — the

coprocessor adds additional complexity but not flexibility.

3. LIBRA: LOGICAL INFERENCE BALANCED RISC ARCHITECTURE

The LOW RISC predecessors to the LIBRA defined the drawbacks of a RISC architecture with a
simple instruction set. Although the LOW RISC architectures supported tags and branches, the
branch frequency was still high, and the code density low. Furthermore the penalties imposed by
calls to the unifier (when most unification can be performed non-recursively) and short loops for
dereferencing, short branches for trail checking, and the lack of stack manipulation instructions led
to the idea that a RISC architecture for logic programming should have as complex an instruction
set as possible, while retaining the constraints of a RISC. As it turned out, the major constraint
was that all instructions should execute in a single clock cycle.

RIEC-Eca CI8C-Eea

=]

1

et T S s e e 35
Instractions
Airusing Mol mmImmmEmEmERED §
Drstruction Formats PEEEESIEESEESEEE
Dam Types &
e e :
MinTyplcalMax {1/1/1 H
Cilasi . o g i P S O SR |
1 100+

Funetional Units ____B H
Piorkng Deptl e s s s m— & !

e
ComrolB Do & ; 5 i)

0 0

Figure 3. Profile of the LIBRA

Mills A Pipelined Architecture for Logic Programming... 6

The LIBRA is a 40-bit 4-stage pipelined processor with four major functional units, each pipelined
and operating synchronously in parallel:

1. Value ALU. Contains separate hardware for arithmetic/logic, dereferencing, bounds
checking.

2. Tag ALU. Tag comparison, interface to partial unifier.

3. GCALU. Support for mark-and-sweep garbage collection algorithms.

4. PCALU. Next instruction fetching; many branches are simple counter loads, but of a
partial field. Fastest branches are within a page, with the page size varying from 512
words to 1 megabyte.

The 40-bit data word is divided into a 3-bit type, 1 bit each for mark and reverse garbage collect
flags, and a 35-bit value which can be further typed for use with 32-bit numeric host processors.
The machine is microcoded, but uses only one control word per machine instruction. An alternate
microcode address composed of the two operands' tags is latched after every instruction that sets
condition codes. Minimal arithmetic and operating system support is provided; however, the

LIBRA can be extended with a numeric coprocessor such as the Motorola 68882.

Pipeline breaks in the LIBRA are reduced by moving partial unification and trail checking into

hardware, and eliminating many short branches by conditional execution of all instructions:

Partial unification uses the alternate microcode address to select one machine
instruction to replace the partial unify instruction.. Although
only one operation can be performed, it is enough to handle

most strength-reduced unification in the Prolog.

Trail checking is performed when an unbound variable reference is loaded,
with the actual trailing performed by a conditional stack push.
When the LIBRA executes a load or dereference instruction it

always checks the value loaded. If the check shows that the

Mills A Pipelined Architecture for Logic Programming... 7

value is an unbound variable and must be trailed when it is
instantiated, the register into which it is loaded is marked by
setting a trail-check flag in the scoreboard. Later, when the
unbound variable is bound, the status bit is used to conditionally

execute a trailing instruction.

Conditional execution decreases the number of short branches by changing short
sequences of "branch around" code into sequential (but possibly

not executed) instructions.

Pre- and post- increment and decrement memory addressing modes are also added, all of which
operate in a single cycle. Data memory interleaving is enhanced because sequential reads and
writes into the Prolog stacks comprise approximately 30% of the data memory references.
Because pipeline breaks occur after an average of eight instructions with conditional instruction

execution, instruction memory interleaving is also effective.

4. INSTRUCTION SET SUPPORT FOR LOGIC PROGRAMS

The LIBRA instruction set is broken into eight major categories (Figure 4). Data manipulation
instructions execute tag and value operations in parallel, with orthogonal behavior in each category.
When necessary the tag result can be ignored and the value alone used, giving behavior similar to
other RISCs. The evolution of the parallel tag and value operations is described in (Mills 1988).
The instructions are orthogonal to allow ease of compilation; as can be seen in Appendix A many
of the instruction variants are not used. If the requirement is to emulate the WAM then the
instruction set can be reduced to 16 non-orthogonal instructions by eliminating all variants. This
forces the compiler to assume specific directions for stack growth, for example, but reduces the

control circuitry substantially.

Mills A Pipelined Architecture for Logic Programming... 8

&iidiaiy

EY

TxET T

P L)

e e
%

Figure 4. LIBRA instruction set

4.1 HOW IT SUPPORTS LOGIC PROGRAMS

One way the LIBRA instruction set can be used to implement logic programs is to simply macro-
expand WAM instructions into LIBRA instructions (Appendix A). Because the instruction set is

so efficient this is an efficient solution, in fact, the LIBRA uses 2.3 times fewer cycles than does

the PLM to execute WAM-encoded Prolog programs (Appendix B).

Mills A Pipelined Architecture for Logic Programming...

Trap :
Address : Instruction Fetch ALU
I.I.OOdeIALII:IOM ROM (aLL) .
= e e o 15
S - T_-Il_ A TA T -

I | Hostruction Conditioning Logic

i’age Address Generation Multipiexers

artial Unify Mapping ROM E i ‘

struction Decode PLA

L -

f:IR .. _ Immediate Data Bus

Jﬂ,

&
1]
w
=
w
T

Return Address Registers

General Purpose Registers

Register Garbage Trail

Address Collect - Check

TALU. GALU Decoder ALU 2| Trail Check Registers & Half-Comparators Score-
VALU (GALU) Board

ucode ROM Stack Pointers
Forwarding
ALU]
I MDR/MARs/MDIN

Value ALU (VALU)
Figure 5. LIBRA schematic block diagram
5. HARDWARE SUPPORT FOR INSTRUCTION SET
Figure 5 shows the organization of the LIBRA.
5.1 NON-ORTHOGONAL REGISTER FILE WITHOUT REGISTER WINDOWS

There are 32 registers, all visible. 4 are stack pointers, 20 are general purpose, 4 are bounds
checking registers, and 4 are return address registers for subroutine calling (or continuation
pointers for the WAM). The register bank is non-orthogonal to allow single cycle instructions

such as push and load reference which can:

Mills A Pipelined Architecture for Logic Programming... 10

push register A using register B as a pointer to memory,
increment/decrement register B,

store register B into register C, overwriting the tag in C with an immediate.

These instructions make use of parts of the datapath that would be idle during forwarding, and
routes their contents back to the register file, which is useful in a structure-copying implementation

of Prolog.

Tick (1988) and evaluation of the Pegasus RISC (Seo and Yokota n.d.) suggest that a single
specialized window ("shadow registers") provides the optimum performance improvement that a
Prolog processor can obtain from multiple register sets. However, Flynn et. al. (1987) argue for
register windows only if instruction traffic could be reduced. This is supported by the earlier
experiences with the LOW RISC I and II, and the SPUR: a Berkeley RISC II-style set of register
windows is not useful for a Prolog processor because the number of parameters passed is
frequently small; also, register windows assume that only one stack need be buffered in the CPU,

and that the buffer depth is deep.
5.2 SMART CACHE

The data cache supports memory references into the heap, the trail and the local stack. Cache data
management typically deals with what is removed from a cache. But some data, particularly
pointer chains, can cause a cache to be flushed unnecessarily. If the tag from a data word is used
to prevent transient data, such as intermediate elements in a pointer chain, from entering a cache,
then the cache hit rate will be improved. This implies that dereferencing should take place outside
the cache, rather than at the chip (which was suggested in 1986 by Mats Carlson). If a
"dereferenced choice point" (Mills 1986) is built once for a procedure, then the bottleneck that this

would otherwise form can be reduced. Also, the only hardware interlock built into the LIBRA is

Mills A Pipelined Architecture for Logic Programming... 11

used to stall the pipeline during dereferencing. Moving dereferencing into the cache would clean

up the design.

It is also possible to do a CDC-6600 like trick, and move trailing and failing out of the CPU to a
peripheral processor. This allows the failure of a previous goal to overlap the execution of the
subsequent goal, thus improving backtracking performance. As failure(s) occur, the trail-fail
processor is passed the new trail stack bounds, and begins to untrail variables while the next clause
is executed by the CPU. Implementing this overlap requires the trail-fail processor to monitor
CPU requests for data. If an as-yet-untrailed value is requested by the CPU, the trail-fail

processor must supply the reset value.

The instruction cache takes advantage of the locality of reference exhibited by Prolog procedures
during head unification and tail recursion. The LOW RISC clause compiler produces in-line code
for the head of a clause consisting of multiple blocks of three to ten instructions, all linked by
forward references. An instruction cache that prefetches a 4 word block allows the LOW RISC to
execute the head of a Prolog clause with few misses. Cache misses would occur when a goal was

called, and at the termination of a clause.
5.3 CONDITIONAL INSTRUCTION EXECUTION AND MEMORY SUBSYSTEM DESIGN

Conditional instruction execution decreases the number of short branches by changing short
sequences of "branch around" code into sequential (but possibly not executed) instructions. The
LIBRA uses conditional instruction execution to implement preferred branches and to control the
execution of every instruction in a manner similar to the Acorn RISC Machine (Acorn Computers
Limited 1986, 1987). The LIBRA architecture extends this concept by adding symbolic
conditions: certain variable types (bound1, bound2), trail and environment checks (traill, trail2,
envl, env2), and collision checks ("sticky overflow"). For examples of the use of conditional

execution, see Appendix D, Emulating the WAM, in (Mills 88).

Mills A Pipelined Architecture for Logic Programming... 12

Conditioning instruction execution on these flags allows operations which formerly needed several

test-and-branch instructions to be coded instead as a sequence of instructions, all of which are

conditionally nops. This reduces the branch frequency of the LIBRA, and improves its ability to

use interleaved memory (Figures 6, 7, and 8). Branch frequencies were evaluated from native-

coded WAM instructions weighted by the dynamic frequency of occurrence of the WAM

instructions (Dobry et. al. 1987).

F Lol t-a ' /'
B A : —
A
Avrage lfllhr
g =
|
?/_,/ e
e Dyans
Brazeh Frequency
Exmeuting WAM
Lrgend Instructions (A}
1 0 (4 037]
1 2 4 ¢ 8 ST TowEmEr T4
- Bire of hstruction prefetch bulfer = Mamory interlanvs factor = LERA L H
.
S
\\\.
e S
Avng \ i - temiim
e ime X | 7
] \ i
fom — A (= 100usec '[\
1=0= ?J‘ I "
) | | '
1 2 4 ‘0 llﬁ
Figure 6. Instruction interleaving and cycle time
1 2 4 8 16
88K 1.00 1.63 2.28 2.64 2.70
LOWRISCI 1.00 1.86 3.24 5.01 6.50
LIBRA 1.00 1.91 3.49 5.89 8.65
Figure 7. Average number of instructions executed before a branch
1 2 4 8 16
88K 100 61 44 38 37
LOW RISCI 100 54 31 20 15
LIBRA 100 52 29 17 12
Figure 8. Average instruction cycle time
Mills A Pipelined Architecture for Logic Programming... 13

Overall, the use of conditional instruction execution, memory interleaving, tag-controlled caching,
instruction prefetching and loop-buffering (lookahead, look-behind) allow the LIBRA to execute
short inner loops and shallow backtracking at speeds limited primarily by the cache memory cycle

time rather than the hit rate.
5.4 BOUNDS CHECKING AND TRAIL -CHECK SCOREBOARDING

Automatic bounds check are provided for trail and current environment checking. Some bounds
checks are "sticky", to allow detection of an "almost stack collision" condition. Then garbage
collection can be initiated at programmer defined points. This saves stack collision checking at

every call, and further reduces pipeline breaks.

Scoreboarding allows the efficient use of a machine resource after all necessary conditions are met.
Generalized scoreboarding manages the previous use of a resource as well, avoiding the later use
of a resource at an inconvenient time. If an operation can be divided so that a resource can be used
in advance, then the scoreboard can mark pre-processed data as well as data waiting to be
processed. The LIBRA architecture uses generalized scoreboarding by performing bounds checks
during a load on unbound variables. The trail check is moved to occur during a load or the final
stage of a dereference. If the check showed that an unbound variable is being loaded, and it needs
to be trailed if it is instantiated later, the register loaded is marked by setting a trail-check flag in the
scoreboard. When the LIBRA executes a load instruction, it checks unbound variables against
internal bounds registers, and stores the result of the check in a status bit associated with each
register. Later, if the unbound variable is bound, the status bit is used to conditionally execute a

trailing instruction (Mills 88).
5.5 PARTIAL UNIFICATION AND DEREFERENCING

Unification requires an execution sequence of five instructions if compare and branch

instructions are used to build a "tree-structured" unifier. Because the compare instruction checks

Mills A Pipelined Architecture for Logic Programming... 14

only for equality or inequality of the tags it does not allow an easy way to identify the relationship

between an unbound and a list, for example.

The solution is a new instruction which operates in a single cycle and is "complex" in that it
encodes unification except in the case where a recursion is necessary. The instruction is based on
the notion that, except for recursive unification, the other operations in a table-driven unifier are
single instruction operations (Figure 9). The complexity of a table-driven unifier results from the
need to determine the types of the two operands, and index into the rows and columns of the tables
based on the types. If the tags of the two operands could be used to form an index into the

microprogram, then the tag checking and indexing instructions could be eliminated.

bound imteger listl strue 1
unbound symbol list2 stuc 2

-l O o
integer B Bind junior o senior
symbol [BmdA®B

lis1 Bind Bto A

tist 2 Fall f A =B

strue 1 nin B Fai alvays

strue 2 ;“_I:" [@ Branch to pre-load address

Figure 9. LIBRA partial unification

To accomplish this in the LIBRA the partial unify instruction is introduced which operates as
follows:
0. During each compare instruction, the operand tags are concatenated and latched,

1. During each instruction decode the latched tags and the opcode are translated into a
microprogram address,

2. If it is a partial unify, the tag microprogram address is used instead of the opcode
microprogram address,

3. The control word for the pre-selected instruction is executed.

This allows the partial unify instruction to replace itself with any instruction's microcode word.

Typically the single-cycle partial unify performs either a nop, a store, a call or a branch, thus

condensing three to five tag checking instructions into one. Although only one operation can be

Mills A Pipelined Architecture for Logic Programming... 15

performed by partial unify, it is enough to handle most strength-reduced unification in the
Warren machine model. Partial unification can perform very efficient detection of special cases
(such as two structure pointers being identical), which can reduce the overhead placed on the
calling mechanism. This means that whenever it is possible to avoid a pipeline break for a switch
or a call instruction, the partial unify instruction can do so. Thus, the partial unify instruction
can eliminate as many as 30% of the subroutine calls performed by a general purpose RISC

running Prolog.
5.6 TEMPLATE AND DIFFERENCE PROGRAM COUNTERS

The major problem affecting open-coded WAM logic programs is the expansion in code size,
which can range from three to seven times larger. The LIBRA addresses this problem by
providing hardware support for templates, or instruction sequences that have "holes" in them
(Mills and Buettner 1988). During shallow backtracking, the LIBRA allows a template for a
clause to be fetched, which is then executed repeatedly with the "holes" filled in by executing
instructions from another instruction stream composed only of those instructions that differ from

one clause to the next (Figure 10 and 11).

ir(min(X,%,%Z), max(Z,X1,21), 17, [H1,H2,H3]) :-
sc(max(Y¥,2,Y1l), H1),
sc(min(X,¥,X1), H2),
sc(min(X,¥1,%21), H3).

ir(min(X,¥,X1), max(%,X1,z1l), 17, [H1,H2,H3]) :-
sc(max(Y¥,%Z,Y¥1l), H1l),
sc(min(X,2%2,%), H2),
sc(min(X,¥1,%Z1), H3).

ir(min(X,¥1,%1), max(Z,X1,21), 17, [H1,H2,H3] } :-
sc(max(Y¥,Z,Y¥1l), H1),

sc(min(X,¥,X1), H2),
sc(min(X,%,Z), H3).

Figure 10. Original clauses marked with differences

Mills A Pipelined Architecture for Logic Programming... 16

ir(min(X,-,*), max(Z,X1,z1), 17, [H1,H2,H3]) :-
sc(max(Y¥,2,Yl), H1l),
sc(min(X,-,*), H2),
sc(min(X,+,*), H3).

z2, z, Y, X1, Y1, 2z1.

Y, X1, %2, %, Y1, Zl.

Y1, Zz1, Y, X1, Z, Z.

Figure 11. Template clause and difference instructions

In the example shown here the native LIBRA code for the original clauses would require 120
instructions (Figure 10). Using the template and difference program counters of the LIBRA
reduces this code to 34 instructions for the template and 3 x 6, or 18, difference instructions, a total
of 52 instructions (Figure 11). Reduction factors range from 1.15 for unit clauses that differ
greatly to more than 3 for clauses that are similar in all but one or two positions. The example has

a reduction factor of 2.3.
6. PERFORMANCE EVALUATION

The performance resulting from this choice of instruction set, and the hardware support provided
for it, is shown in the following diagram (Figure 12). The average instruction cycles for executing
WAM instructions are plotted against the execution speed of each architecture in logical inferences
per second x 1000 (KLIPS). The profile trees are shown for clarity and may be compared using
the legend. From this we can conclude that the LIBRA runs logic programs 2.3 times faster than
the PLM, with code optimizations such as template/difference compiling and conditionally omitting
dereferencing using partial unification improving this even more. When the effects of interleaving

are considered the LIBRA is faster by a factor ranging from 2.5 to 21.

Mills A Pipelined Architecture for Logic Programming... 17

LIPS x 1000

Processor Profiles
Data Instruction
Pipeline Types Formats
10
Depth s ;
gt R TR

i
5 e
; ‘\:a{:‘,;‘e‘«"a:\"a:\ o 3 :(_

v
2 A LA S T A
i, Celaa 3&‘ “’."\\’l"i‘,r"?\‘:\:.’:\:f:\:a NN
AT T, Ry
A L g
L

Modes .

uCode " T

Control Bits Instruction Cycle Time
Registers

Figure 12. Logical Inferences Per Second x 1000 normalized to a 100 ns instruction cycle
(LIBRA with 13ns cycle time with interleaving)

6.1 IMPROVING DEREFERENCING USING PARTIAL UNIFICATION

Prolog implementations quite often spend more time checking to see if a basic operation such as
unification or trailing must be done than they take to do it. A Prolog program may spend as much
as 20% of its time performing dereferencing, or checking to see if it is necessary [Ginosar 87].
The potential to increase the execution speed of a program by improving dereferencing exists

because more than 99.3% of the Prolog objects that must be dereferenced may be reached in fewer

Mills A Pipelined Architecture for Logic Programming... 18

than two indirections, while 67% require none [Tick 88]. Although an argument may already be

dereferenced the check to verify it appears to be unavoidable. In the original implementation partial

unification must be "protected" against bound variables, because its operation in that case is

undefined. Thus operands must always be dereferenced before use (Figure 13).

Label condition 1Instr sc Operands Comment
enter: sub sc Xn r27 r27
loopl: if boundl if always loopl
if br 1d sc X¥n 0 Xn
sub sc Ai r27 r27
loopl: if boundl if always loopl
if br 1d sc Ai O Ai
unify sc Xn AL exit exit :no mode split
if traill push+ TR Xn
if trail2 push+ TR Ai

exit:

Figure 13. Always dereference operands before unification (Jl] on graphs in Figure 15)

However, the single-cycle partial unification instruction can be modified to improve the

dereferencing behavior of Prolog programs. If the pair of checks for a bound variable, one for

each operand being unified, are included in the operation of the partial unification instruction by

enlarging the unifier table in ROM, up to eight instructions (including two branches) are removed

from the direct execution sequence. The modified partial unify instruction thus reduces the number

of instruction cycles spent dereferencing objects reached in eight or fewer indirections (Figure 14).

abel Co Instr sc Operand Comment

loop: if boundl 1d Xn 0 Xn
if bound2 1d Ai 0 Ai

enter: sub sc Xn Ai r27 .

unify sc Xn Ai loop exit ;no mode split

if traill push+ TR Xn
if trail2 push+ TR Ai

exit:
Figure 14. Never dereference operands before unification ([] on graphs in Figure 15)

Mills A Pipelined Architecture for Logic Programming... 19

When this optimization is evaluated using the dynamic frequency of dereference chains it improves

the performance of unification from 60% to 100% (Figure 15).

Weighted Dereference Cycles
Derefersnce Cycles 7 o |
i B s\ |
S0 : \
ﬁn/' Frequency (%) 5 .
&0 A I 1
; i | as 4
i 05 \
30 i 3
i 4, G—3
ﬂﬁfﬁ o
20 i 7 034 H
10 /d 0zl i \\
=
L1 0.4 ‘ :
B o 0 I o
0 1 2 3 4 5 6 7 8 9 10 6 1 2z 3 4 5 6 7 8 9% W0 5 {4 2 3 4 5 & 7 8 9 10
Demference Chain Length Derefereece Chain Length Dereference Chain Length

Figure 15. Performance improvement if operands are never dereferenced before unification

REFERENCES

Abe, T, Bandoh, T, Yamaguchi, S., Kurosawa, K, and Kiriyama, K. 1987. High performance integrated Prolog
processor IPP. Proceedings of the 14th Annual International Symposium on Computer Architecture,
Pittsburgh, Pennsylvania, pp. 100-107. Washington, D.C.: IEEE Computer Society Press.

Acorn Computers Limited 1987. ARM datasheet, Part No. 1 85250 03600 0, 23 January. Acorn Computers
Limited, Cambridge, United Kingdom.

Applied Logic Systems, Inc. 1987. IBM PC Prolog User's Manual. Applied Logic Systems, Inc., Syracuse, New
York.

Barbacci, M., and Siewiorek, D. 1982. The design and analysis of instruction set processors. New York: McGraw-
Hill.

Borriello, G., Cherenson, A., Danzig, P, and Nelson, M. 1986. Special or general-purpose hardware for Prolog: A
comparison. Report No. UCB/CSD 87/314, Computer Science Division (EECS), University of California,
Berkeley, California.

Borriello, G., Cherenson, A., Danzig, P, and Nelson, M. 1987. RISCs vs. CISCs for Prolog: A case study.
Proceedings of the Second International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS II), Palo Alto, California. In ACM SIGPLAN Notices. 22:136-145.

Bowen, K.A., Buettner, K., Cicekli, L., and Turk, A. 1986. The design and implementation _of a hjgh-sp}eed
incremental portable Prolog compiler. Proceedings Third International Conference on Logic Programming,
July 14-18 1986. In Lecture Notes in Computer Science 225, ed. E. Shapiro, Springer-Verlag, 1986.

Cheng, C.Y., Chen, C, and Fu, H. C. 1986. Design of LISCP: A fast RISC-style Prolog machir}c (Part I:
Instruction set design and Part II: Basic machine design and performance evaluation). Proceedings of the
International Computer Symposium, Tainan, Taiwan, R.O.C., pp. 472-485. n.p.

Cheng, C.Y., Chen, C., and Fu, H.C. 1987. RPM: A fast RISC style Prolog machine. Pro«_:eecliings VLSI and
Computers, First International Conference on Computer Technology, Systems and Applications, Hamburg,
West Germany, pp. 95-98. Washington, D.C.: IEEE Computer Society Press.

Mills A Pipelined Architecture for Logic Programming... 20

Civera, P, Del Corso, D., Maddaleno, E, Piccinini, G., and Zamboni, M. 1988. A 32-bit processor for compiled
Prolog. Proceedings of the International Workshop on VLSI for Artificial Intelligence, Oxford, England.

Davidson, J., and Vaughan, R.. 1987. The effect of instruction set complexity on program size and memory
performance. Proceedings of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), Palo Alto, California. In ACM SIGPLAN Notices. 22:60-
64.

Despain, A., Patt, Y., Srini, V, Bitar, P, Bush, W, Chien, C., Citrin, W,, Fagin, B., Hwu, W, Melvin, S.,
McGeer, R., Singhal, A., Shebanow, A., and Van Roy, P. 1987. Aquarius. ACM SIGARCH Computer
Architecture News. 15: 22-34.

Dobry, T. 1987. A high performance architecture for Prolog. Report No. UCB/CSD 87/352. Computer Science
Division (EECS), University of California, Berkeley, California.

Dobry, T, Patt, Y., and Despain, A. 1984. Design decisions influencing the micro-architecture for a Prolog
machine. Proceedings of the 17th Annual International Workshop on Microprogramming, New Orleans,
Louisiana, pp. 217-231. Washington, D.C.: [EEE Computer Society Press.

Dobry, T, Patt, Y., and Despain, A. 1985. Performance studies of a Prolog machine architecture. Proceedings of
the 12th International Symposium on Computer Architecture, Boston, Massachusetts, pp. 180-190.
Washington, D.C.: IEEE Computer Society Press.

DuBose, D., Fotakis, D., and Tabak, D. 1987. A microcoded RISC. ACM SIGARCH Computer Architecture
News. 14:5-16.

Eickmeyer, R., and Patel, J. 1987. Performance evaluation of multiple register sets. Proceedings of the 14th
Annual International Symposium on Computer Architecture, Pittsburgh, Pennsylvania, pp. 264-271.
Washington, D.C.: IEEE Computer Society Press.

Fagin, B., Patt, Y., Srini, V,, and Despain, A. 1985. Compiling Prolog into microcode: A case study using tpe
NCR/32-000. Proceedings of the 18th Annual Workshop on Microprogramming, Pacific Grove, California,
pp- 79-88. Washington, D.C.: IEEE Computer Society Press.

Fisher, J. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Iransactions on
Computers. C-30:478-490.

Flynn, M., Mitchell, C., and Mulder, J. 1987. And now a case for more complex instruction sets. [EEE
Computer. 20(September):71-83.

Ginosar, R., and A. Harsat 1987a. "Profiling LOGIX: A step towards a flat concurrent Prolog processor."
Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel (unpublished).

Ginosar, R., and Harsat, A. 1987b. "CARMEL: A VLSI architecture for flat concurrent Prolog.” Department of
Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel (unpublished).

Hitchcock, C. and Sprunt, H. 1985. Analyzing multiple register sets. Proceedings of the 12th Annual International
Symposium on Computer Architecture, Boston, Massachusetts, pp. 55-63. Washington, D.C.: IEEE
Computer Society Press.

Ito, N., Sato, M., Kuno, E., and Rokusawa, K. 1986. The architecture and preliminary evalu‘ation results ‘of the
experimental parallel inference machine PIM-D. Proceedings of the 13th Annual International Symposium on
Computer Architecture, Tokyo, Japan, pp. 149-156. Washington, D.C.: I[EEE Computer Society Press.

Katevenis, M. 1985. Reduced instruction set computer architecture for VLSI. Cambridge, Massachusetts: MIT
Press.

Mills A Pipelined Architecture for Logic Programming... 21

Keller, R. 1976. Look-ahead processors. ACM Computing Surveys. 7:177-195.
Kogge, P. 1981. The architecture of pipelined computers. New York: McGraw-Hill.

Kogge, P. 1987. The architecture of logic-based computing systems. Reading, Massachusetts: Addison-Wesley
(manuscript).

Lang, T, and Huguet, M. 1986. Reduced register saving / restoring in single-window register files. ACM
SIGARCH Computer Architecture News. 14:17-26.

Matsumoto, H. 1985. A static analysis of Prolog programs. ACM SIGPLAN Notices. 20: 48-59.

McFarling, S., and Hennessy, J. 1986. Reducing the cost of branches. Proceedings of the 13th Annual
International Symposium on Computer Architecture, Tokyo, Japan, pp. 396-403. Washington, D.C.: [EEE
Computer Society Press.

McNeley, K., and Milutinovic, V. 1987. Emulating a complex instruction set computer with a reduced instruction
set computer. JEEE Micro. 7: 60-71.

Mills, J. 1985. "A description of the operation of the Warren abstract Prolog machine using a RISC-like
instruction set." Private communication to K.A. Bowen.

Mills, J. 1986. An implementation of the Warren abstract Prolog machine for segmented memory architectures.
Technical Memo TM-44, Argonne National Laboratory.

Mills, J. 1987. Coming to grips with a RISC: A report of the progress of the LOW RISC design group. ACM
SIGARCH Computer Architecture News. 15: 53-62.

Mills, J. 1988. "LIBRA: A high performance RISC for Prolog."

Mills, J. n.d. "A high performance LOW RISC machine for logic programming." Journal of Logic Programming
(accepted 1987).

Moto-oka, T, et. al. 1982. Challenge for knowledge information processing systems (Preliminary report on fifth
generation computing systems). In Fifth Generation Computing Systems, pp. 1-32. Edited by T. Moto-oka.
Amsterdam: North-Holland.

Myers, G. 1982. Advances in computer architecture, 2nd. ed." New York: John Wiley & Sons.

Nakazaki, R., Konagaya, A., Habata, S., Shimazu, H., Umemura, M., Yamamoto, M., Yokota, M., and
Chikayama, T. 1985. Design of a high-speed Prolog machine (HPM). Proceedings of the 12th {lnnual
International Symposium on Computer Architecture, Boston, Massachusetts, pp. 191-197. Washington,
D.C.: IEEE Computer Society Press.

Onai, R., Shimizu, H., Masuda, K., and Aso, M. 1986. Analysis of sequential Prolog programs. Journal of Logic
Programming. 2:119-141.

Patterson, D. 1985. Reduced instruction set computers. Communications of the ACM. 28: pp. 8-21.

Patterson, D. 1987. A progress report on SPUR: February 1, 1987. ACM SIGARCH Computer Architecture
News. 15:15-21.

Patterson, D. and Sequin, C. 1982. A VLSIRISC. IEEE Computer. 15(September):8-21.

Mills A Pipelined Architecture for Logic Programming... 22

Ross, M.L. and Ramamohanarao, K. 1986. Paging strategy for Prolog based dynamic virtual memory. Proceedings
of the 1986 Symposium on Logic Programming, Salt Lake City, Utah, pp. 46-57. Washington, D.C.: IEEE
Computer Society Press.

Seo, K., and Yokota, T n.d. "Pegasus: A RISC processor for high-performance execution of Prolog programs.”
(Unpublished).

Short, B. 1987. "A Preliminary Evaluation of the LOW RISC." Computer Science Department, Arizona State
University, Tempe, Arizona (unpublished).

Short, B. 1988. "Extending a Reduced Instruction Set Computer to Support Prolog." Master's report, Department
of Computer Science, Arizona State University, Tempe, Arizona.

Srini, V. 1985. "VLSI-PLM chip." Laboratory note, University of California, Berkeley, California (unpublished).

Taki, K., Nakajima, K., Nakashima, H., and Ikeda, M. 1987. Performance and architectural evaluation of the PSI
machine. Proceedings of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), Palo Alto, California. In ACM SIGPLAN Notices.
22:128-135.

Taki, K., Yokota, M., Yamamoto, A., Nishikawa, H., and Uchida, S. 1984. Hardware design and implementat?on
of the personal sequential inference machine (PSI). Proceedings of the International Conference on Fifth
Generation Computer Systems 1984, ICOT, pp. 398-409. n.p.

Tamura, N., Wada, K., Matsuda, H., Kaneda, Y., and Maekawa, S. 1984. Sequential Prolog machine PEK.
Proceedings of the International Conference on Fifth Generation Computer Systems 1984, ICOT, pp. 542-
550. n.p.

Taylor, G., Hilfinger, P, Larus, J., Patterson, D., and Zorn, B. 1986. Evaluation of the SPUR Lisp architecture.
Proceedings of the 13th Annual International Symposium on Computer Architecture, Tokyo, Japan, pp. 444-
452. Washington, D.C.: IEEE Computer Society Press.

Tick, E. 1985a. Lisp and Prolog memory performance. Research Paper 86-291, Computer Systems Laboratory,
Stanford University, Stanford, California.

Tick, E. 1985b. Prolog memory-referencing behavior. Research Paper 85-281, Computer Systems Laboratory,
Stanford University, Stanford, California.

Tick, E. 1987. Studies in Prolog architectures. Technical Report No. CSL-TR-87-329, Computer Systems
Laboratory, Stanford University, Stanford, California.

Tick, E. 1988. Data buffer performance for sequential Prolog architectures. Proceedings of the 15th Annual
International Symposium on Computer Arch:tecture, Honolulu, Hawaii, pp. 434-442. Washington, D.C.:
IEEE Computer Society Press.

Tick, E. and Warren, D.H.D. 1984. Towards a pipelined Prolog processor. 1984 International Symposium on
Logic Programming, Atlantic City, New Jersey, pp. 29-40. Silver Spring, Maryland: IEEE Computer
Society Press.

Warren, D. H. D. 1983a. An abstract Prolog instruction set. Technical Note 309, SRI International, Stanford,
California.

Warren, D. H. D. 1983b. Applied logic - Its use and implementation as a programming tool. Technical Note 290,
SRI International, Stanford, California.

Mills A Pipelined Architecture for Logic Programming... 23

APPENDIX A. EXAMPLE WAM INSTRUCTIONS CODED USING THE LIBRA

call

call calladdress29

add r0 envsize N
execute

goto address29
proceed

ret CPO

put_variable Xn
push+ & ldref H unb:H bnd: Ai

add Ai O bnd: Xn
put_value Xn
add Xn r0 2ai

put_unsafe_value Yn

drfmem sc E Yoffset Ai

if not currenv next macro
if nobranch st sc Ai 0 bnd: H
if trail push+ TR Ai

push+ & ldref H unb: H bnd: Ai

put_constant C, Ai
add r0 constlé con: Al

put_structure F, Ai
push+ & ldref H con: £fnlé struc: Ai

put_list Ai
add H 0 list: Ai

get_variable Yn, Ai
st E Yoffset Ai

get_variable Xn, Ai
add Ai r0 Xn

get_value Xn, Ai

drf Xn T1

drf AL T2

sub sc Tl T2 r0

unify sc Tl T2 §S+2 (no mode splitting)
if traill push+ TR T1
if trail2 push+ TR T2

Mills A Pipelined Architecture for Logic Programming... 24

get_constant C, Ai

drf Ai T1
add r0 Cl6 con: T2
sub sc Tl T2 ro0
unify sc T1 T2 §+2 (no mode splitting)
if traill push+ ' TR T1 s
get_structure F, Ai
drf sc Ai Tl
switch fail fail readmode (mode split)
if var st sc Tl 0 struc: H
if traill push+ TR T1
push+ H con: Flé6
readmode:
pop+ Tl F
sub sc F con: Flé r0
if t= or v= fail
get_list Ai
drf sc Ai T1
switch 2 fail readmode fail (mode split)
if var st sc T1 O struc: H
if traill push+ TR T1
readmode:

< Tl contains s >

unify_variable Xn

writemode:
push+ & ldref H unb: H bnd: Xn
readmode:
pop+ s Xn
unify_value Xn
writemode:
push+ B Xn
readmode:
pop+ & drf s T1
drf Xn T2
sub sc Tl T2 «r0
unify sc Tl T2 §+2 (no mode splitting)
if traill push+ TR T1 4
if trail2 push+ TR T2
unify_constant C
writemode:
push+ H con: Clé
readmode:
pop+ & drf S Ti
add r0 con: Clé T2
sub sc Tl T2 0
unify sc Tl T2 §+2 (no mode splitting)
if traill push+ TR, ‘Tl

Mills A Pipelined Architecture for Logic Programming...

try_me_else L

push+
push+
push+
push+
push+
push+
push+
push+
push+
push+
push+
push+
1dhi
push+
st

st

retry_me_else L

trust_me_else fail

ldhi
add
st

1d
1d
sub
st
st

Al

A2

A3

Ad

A5

A6

A7

A8

CP

TR

E

H
LaddrHi
B Laddrlo
HE O H
EB 0 E

DWW WwWwwwwwwww

LaddrHi
r0 LaddrLo Tl
B -1 T1

B =14 T1
B -15T2
B 12 B
HB O Tl
EB 0 T2

Mills

A Pipelined Architecture for Logic Programming...

26

APPENDIX B. PERFORMANCE COMPARISON

PLM LIBRA
WAM Instruction Frequency (%) cycles weight cycles weight
unify_variable_X (read) 8.8 5 37.40 1 13.20
unify_variable_X (write) 3 1
unify_variable_Y (read) 6 2
unify_variable_Y (write) 3 2
get_list (set read) 7.27 8 72.70 3 25.45
get_list (set write) 12 4
unify_cdr (read) 6.88 6 34.40 0.00
unify_cdr (write) 4
unify_value_X (read) 4.96 23 71.92 6 18.60
unify_value_X (write) 3 1
unify_value_Y (read) 26 6
unify_value_Y (write) 6 2
escape - various 4.9
switch on term 4.87 6 29.22 2 9.74
unify_nil (read) 4.86 6 19.44 4 12.15
unify_nil (write) 2 1
get_structure (set read) 4.11 11 49.32 6 22.61
get_structure (set write) 13 5
execute 4.01 1 4.01 1 4.01
allocate 3.47 11 38.17 6 20.82
get_variable_X 3.44 2 8.60 1 3.44
get_variable_Y 3 1
unify_constant (read) 3.33 14 26.64 5 9.99
unify_constant (write) 2 1
deallocate 2.87 6 17.22 2 5.74
put_constant 271 2 5.42 1 2.71
proceed 2.65 1 2.65 1 2.65
try_me_else 2.45 20 49.00 16 39.20
call 2 1 2.00 2 4.00
cut 1.85 10 18.50 2 3.70
get_constant 1.83 11 20.13 5 9.15
put_variable_X 1.79 4 6.27 2 2.69
put_variable_Y 3 1
get_value_X 1.44 12 18.72 6 8.64
get_value Y 14 6
trust_me_else 1.32 5 6.60 5 6.60
get_nil 1.29 11 14.19 5 6.45
put_unsafe_value 1.24 10 12.40 4 4.96
retry_me_else 0.88 2 1.76 3 2.64
switch_on_structure 0.866 13 11.26 0.00
put_list 0.769 3 2.31 1 0.77
try 0.711 20 14.22 20 14.22
fail 0.564 23 12.97 19 10.72
trust 0.35 5 1.75 8 2.80
unify_void 0.324 6 1.94 2 0.65
switch_on_constant 0.201 10 2.01 0.00
retry 0.0593 2 0.12 6 0.36
put_structure 0.052 4 0.21 1 0.05
unify_local_value 0.0127 10 0.13 4 0.05
put_nil 0.00267 2 0.01 1 0.00
PLM LIBRA

Frequency (%) cycles weight cycles weight

Overall 99.83 392 645.69 186 279.44

Mills A Pipelined Architecture for Logic Programming...

