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Verification and synthesis are interdependent aspects of engineering which re-
flect alternative ways of reasoning between specifications and implementations.
They must be integrated if either is to reach its potential in practice. The ex-
perimentation reported here explores the interplay between design derivaiion, or
synthesis by algebraic refinement, and verification by direct proof. A transfor-
mation system for digital design derivation (DDD), which is based on functional
algebra, is applied to Hunt's FM8501 processor description, which is verified in
the functional Boyer-Moore logic. A comparison of synthesized and verified ar-
chitectures isolates those qualities of the implementation that require a proof of
correctness. DDD is also used to reduce the FM8501 implementation to a gate
level hardware description. The mechanized algebra sustains correctness as phys-
ical organization is imposed on the implementation. Thus, integrated synthesis
obviates tedious proofs of behavioral equivalence at lower levels of description.
The key requirement for integrating verification and synthesis is a unified treat-
ment of abstraction. Since they were composed for the purpose of conducting a
proof, the FM8501 descriptions present a good test for a synthesis system.

1. Introduction

Design verification employs theorem proving to help establish that an implementation
satisfies its specification. Mechanical verification is attractive because, in principle, it allows
absolute freedom in engineering. Insight and experience produce a good design which is then
certified correct by a computer. However, the brief history of experience suggests that, for
sequential systems, provability must be considered throughout the design process. It is so
hard to engineer proofs, so one must design for verification.

Design synthesis can be characterized as the use of algebra to help correctly translate a
specification into an implementation. Mechanical synthesis is attractive because, in princi-
ple, it codifies valid engineering. By constraining design to a lexicon of behavior preserving
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transformations, a synthesis system assures the equivalence of source and target descriptions.
The history of practice for this approach is equally brief, but its limitations are also evident.
An overwhelming number of design tactics must be accounted for; hence, existing synthesis
systems are practical only for narrow problem classes [1].

Since human engineering practice employs both proof and algebraic refinement, automa-
tion is needed for both forms of reasoning. It is a thesis of this research that verification and
synthesis must be integrated if either is to reach its potential in practice. This paper reports
on a preliminary exploration of their interplay in a formal framework. A transformation
system called DDD, under development at Indiana University, is applied to Hunt’s FM8501
processor description, which was verified in the Boyer-Moore system [2]. These two systems
are compatible in the sense that they operate in the same theory of first-order functional
expressions. In fact, they both manipulate the same concrete syntax of Lisp s-expressions,
elements of which are sketched in Section 2.

This experimentation is primarily concerned with issues of sustaining mechanically as-
sured correctness when two (or more) systems of reasoning tools are applied to one design.
Hence, the existence of a mechanized proof made the FM8501 an ideal subject for the synthe-
sis exercise. Independent of mechanized support, we are also interested in the philosophical
questions of how an intelligent designer organizes analytic and generative thinking in design.
Being of a moderate size, the FM8501 also proves to be a good initial exercise for exposing
issues of scale. However, because of its size, it is impossible to present the specific tactics
used in the derivations. More details and several smaller examples can be found in [3, 4, 5].

Section 3 is a brief description of the DDD system. It implements specialized func-
tional algebra for the interactive derivation of digital implementations from a certain class
of applicative control specifications. DDD reduces abstract specifications to boolean network
descriptions, which are fed to existing logic synthesis tools to produce circuit realizations.
DDD is more like a theorem prover than a hardware synthesizer; it manipulates arbitrary
functional expressions which happen to model the behavior and structure of digital networks.
Ultimately, it is intended to serve as a “back end” for applicative-program transformation
systems, providing a path to hardware realization.

Section 4 reviews Hunt’s description and proof of the FM8501, a simple general-purpose
processor. There are two main parts to Hunt’s proof exercise. First, a binary representation
of arithmetic is proved correct with respect to an abstract theory of integers. Second, a
microcoded architecture is proved to implement an instruction-level description of machine
behavior. Hunt also shows that it is possible to automatically reduce the implementation
expression to a network of gates and clocked flipflops. He obtains this network by a bottom-up
expansion of auxiliary function definitions, followed by an exhaustive elimination of common
terms. Details of the Boyer-Moore logic, the FM8501 architecture, and the proof itself, are
given in [2].

Because it operates on a compatible syntax, we were able to apply DDD directly to the
published descriptions of the FM8501. In separate exercises DDD was used to manipulate the
specification and implementation expressions. In the first exercise, the object was to synthe-
size an architecture from the specification and compare it with Hunt’s verified architecture.
As discussed in Section 5, there were significant differences between these descriptions, due
to Hunt’s use of a different memory model in his implementation. In the second exercise, the



goal was to manage the translation the implementation expression into a physical description.
This derivation is summarized in Section 6.

The DDD system is in early stages of development, and it was expected that these
exercises would expose gaps in its synthesis capability. Particularly in the first derivation, a
number of steps required manual intervention or the implementation of additional algebra.
Thus, we do not claim (except, perhaps, in principle) the degree of ‘mechanical correctness’
that is attained in the FM8501 proofs and in similar verification exercises [6, 7, 8]. On the
other hand, the new algebra dealt primarily with an unfamiliar description style, and was of
a kind that one would expect in a mature transformation system.

Observations about the experimentation—it is premature to draw conclusions—are sum-
marized in Section 7. Our perspective is that synthesis automates the mundane aspects of
design, leaving it for verification to validate the inventive aspects. In contrast to [9], [10],
and others, we do not see all reasoning as transformational in nature. The central issue for
integrating algebra and proof is maintaining the global correctness of a design description as
various reasoning tools are applied locally. Our synthesis of an FM8501 implementation came
quite close to the verified description, but it could not predict the memory model chosen for
the machine, nor could it produce identical microcode. The discrepancies affirm a need for
verification, but their small number suggests that less needed to be proved about the FM8501
than was actually proved. Though much of the design is readily synthesizable, little is known
about the problems for maintaining correctness in the context of synthesis. The purpose of
this experimentation is to learn more. Although there is ample evidence of the need for syn-
thesis, especially at lower levels of implementation, the manipulations of FM8501’s boolean
description (Section 6) illustrate that a synthesis algebra must be flexible enough to navigate
conceptual hierarchies of description.

2. Notation and Terminology

The notion of correctness relates two levels of description. Following current terminology
[11], the more abstract description is called a specification and the more concrete description
is called an implementation. There may be many stages of implementation between an initial
specification and its final realization in hardware. In this paper, correctness refers to a
behavioral interpretation of the design notation. In the functional modeling theory used
here, behavior is given by a mapping from an initial state and a sequence of inputs, to a final
state and a sequence of outputs. The determination of correctness is a matter of showing that
two functions are equal, or congruent under a preestablished correspondence between their
domains,

In verification, the specification and implementation are given, and the task is to produce
a proof of equivalence between the two. In an algebraic characterization of synthesis, an initial
description is given, and the task is to develop a sequence of transformations leading to an
implementation (It is somewhat misleading to use the word ‘specification’ for the source
expression, since it is the derivation that determines the implementation.). Superficially,
synthesis is a form of proof by reasoning from specifications toward implementations, while
verification works in the other direction.



Both the Boyer-Moore theorem prover and the DDD transformation system manipulate
Lisp s-expressions. Both systems deal with purely functional forms of Lisp expression, with
certain syntax extensions for the sequential systems described in Section 3. That is, the
manipulated forms execute directly as programs. The Boyer-Moore logic is first order. DDD
is intended to be a higher order algebra, but it is essentially a first order system in its present
form.

We shall sketch enough of the syntax to cover the examples in this paper. Some knowledge
of Lisp expression is assumed. The definitive language references are [12] and [13]. An s-
expression is either an atomic symbol, that is, a numeral or a literal, or a list, (S; --- S,)
of s-expressions. Square brackets, [ --- ], are sometimes used instead of parentheses. Teletype
font is used for concrete syntax. In the language sketch below, upper case variables refer to
expressions and corresponding lower case variables refer to an expression’s value; for instance,
E has value e. The language has the usual semantics of a lexically scoped, applicative-order
functional dialect.

o the expression (F E; --. E,) denotes the application of the function value f to ar-
guments ey, ...,e,. Any literal other than if, defn, lambda, let, letrec, and segs
(Section 3), appearing in an applied position, refers to a defined function or a primitive
operation.

e The form (if P E, E;) is an if-then-else expression, returning eq if P has a true value
and e; otherwise.

e The form (list E; -.- E,) produces a list of values, (e; --- e,).

e The expression (let ([X; E;] --- [X, E,]) E) binds each identifier X; to the lex-
ical value of e; for the evaluation of E. The keyword letrec, in place of let, forms
recursive bindings.

e The special command (defn N (X; --- X,) E) defines a function named N, with
parameters X3, ..., X,, and body E. Function expressions see limited use in DDD: the
form (lambda (X; .-- X,) E) denotes a function like N.

3. The DDD Transformation System

DDD (for Digital Design Derivation) is an experimental transformation system under
development at Indiana University. It is essentially an s-expression editor, implementing a
general design algebra on purely functional forms. DDD is implemented in the Lisp dialect
Scheme.

The system is specialized toward digital design in several ways. It is integrated with
existing tools for hardware generation, including boolean minimizers and synthesizers for
programmable technologies. The mathematical foundations for the DDD system are estab-
lished in [3], and further details about design derivation are given in [4, 14, 15].



A behavioral description in DDD is an iterative system of mutual function definitions:

(letrec (
[ F]_ (lambda (Xl Xn) El) ]

E é*"m (lambda (X; .-+ X,) E,) ]

) E)
The defining expressions, E1, ..., E,, are tail-recursive conditional expressions

This class of defining schemata characterizes finite-state control. When iterative systems
are interpreted as hardware specifications, the parameters X1, ..., X, denote storage ele-
ments and I/O ports. The tail-recursive call (F; Ty --- Ty) is interpreted as a transfer of
control to the state F; as the X; are simultaneously updated by values T;. DDD specifications
are semantically equivalent to the imperative specifications of most high-level synthesis sys-
tems. In contrast to behavioral synthesis systems, DDD specifications may be expressed over
any vocabulary of base constants, operations, and tests. DDD implements a ‘free’ algebra,
independent of the underlying level of description. Implementation specific knowledge, of
numeric representations for example, must be programmed into the system.

DDD translates iterative specifications into sequential system descriptions, which are
regarded as networks of simultaneous signal definitions. The form of a sequential system is:

(seqs ( [X; S;]

(X, 85,1 )
E)
Signal expressions, S; ..., S, are composed of variables, constants, applications of base
operations, and delay expressions. A delay expression has the form ((! V) S), where V is
a base term—usually a constant or a variable—and S is another signal expression.

In the behavioral interpretation, the variables X 1, ---, Xn range over infinite sequences
and model synchronous activity over time. If S denotes the sequence (s%, s!, ...}, then
((! V) S) denotes (v, s° s',...). Applications of base operations extend to mappings: the

term (F' S) denotes the sequence (f(s%), f(s!),...).

In the schematic interpretation, each expression denotes a graphical figure: delay expres-
sions correspond to register symbols and simple terms correspond to feedback-free combina-
tional subsystems.

Since descriptions manipulated by DDD are valid Lisp expressions, designs can be ani-
mated by running them as Lisp programs. However, the seqgs construct is a syntax extension.
For the behavioral interpretation, signals are typically modeled by stream-like representations;
segs is essentially letrec with primitive operations extended to map over these streams.

A simple example, using the factorial function, is shown below. An iterative system
defines a factorial algorithm.

(letrec ([ FAC (lambda (N M)
(if (zero? M)
M
(FAC (- F 1) (*x M )))) 1)
(FAC X 1))



Considered as a control specification, FAC is a single-state machine (as are the specifications
in Figures 1 and 2). FAC translates immediately to a sequential system:

(seqgs
(LW (' X) (-F1))]
CM (1) (M) ]
[ B (zero? W) 1)

(1ist ¥ M R))
with the behavioral interpretation,
N={(z(z-1),(2-2), ...,0,-1,...)
M=(1-z,1-z-(z-1), ...,2,0...)
R = (false,false, false,..., true, false,... )

Signal M holds (FAC X 1) as soon as signal R holds true. The schematic interpretation of the
FAC system is the network:

X e, R
T — zero?
1 Bl -
1owi~ | | u M
* ——.. i
=

In this paper sequential systems are depicted by drawings like the one above (e.g. Figure 4).
However, DDD manipulates expressions; it has no provisions for graphics.

Sequential systems may only abstractly describe circuits. For example, the FAC system,
above, does not explain how the registers are initialized or detail synchronization with the
multiplier, assuming it is sequential. Much of the DDD algebra is for manipulating structural
descriptions in order to compose the actual architecture of a design. The algebra preserves
the sequential interpretation of behavior while improving some aspect of the schematic inter-
pretation.

In algebraic synthesis, structural manipulations are characterized by factorizations, which
imposes modularity on a description. The two primary uses of factorization are to assign
operations in units and to hide the representations of complex type structures. A typical
derivation step in the design of a processor is to collect arithmetic operations into some number
of ALU components. Similarly, complex-valued registers are encapsulated as communicating
processes which hide representation details; for instance, a signal of “type memory” is factored
as a component which communicating addresses and contents. The algebra of factorization
is detailed in [5].



A third task of derivation algebra is to introduce representations. Once structural manip-
ulations have isolated a realizable subsystem, a translation is made to a more concrete level of
description. The final stages of synthesis reduce the design to a collection seqs expressions in
which the base operations are boolean primitives. These gate networks are easily translated
to a form accepted by gate-level minimizers and logic synthesis tools, which generate the
circuit. DDD is thus integrated with Berkeley [16] (espresso, mpla, mquil, magic) and Altera
[17] CAD facilities to generate physical circuitry.

Physical organization generally follows a hierarchy that is distinct from that of a struc-
tural description. For example, a bit-slice decomposition projects much of the whole data
path into every physical module. The algebra of this phase performs massive restructuring
transformations to establish an appropriate physical organization. More details about this
aspect of derivation are given in [4].

In summary, the DDD system addresses the three classical aspects of synthesis—control
synthesis, structural manipulation, and physical organization—in an algebraic framework,
translating among dialects of a single functional modeling language. Iterative function defi-
nitions are used for control specification and systems of ‘stream equations’ describe networks
and model their behavior. When using DDD, the engineer composes a script of transforma-
tion commands which is applied to the initial design description. Derivation is guided by
inspecting the intermediate expressions. DDD provides a secure algebra but it performs no
automatic analysis or optimization; these must be supplied by an intelligent designer. The
exercises discussed in this paper involved three to five weeks of part-time activity. Execution
of a complete derivation script takes about twenty minutes to produce the design files needed
for logic synthesis; however, the typical partial derivations used in design take just seconds to
run. Several designs have been built in this fashion using programmable technologies (PLA
and PLD).

4. The FM8501 Microprocessor Description

Hunt’s FM8501 processor is a general register CPU, designed as a formal verification
exercise [2]. Figure 1 is the top level of Hunt’s specification, a function called SOFT. The full
specification is a hierarchical collection of auxiliary function definitions, each of which is a
closed combination. SOFT is an instruction level specification, analogous to a programmer’s
model of the machine. Six of it’s seven parameters account for a file of eight general reg-
isters (reg-file, including a program pointer), an external memory array (real-mem), and
four condition flags. The seventh parameter, 1st, models the passage of time measured by
instruction cycles.

Figure 2 is the top level of an implementation description called BIG-MACHINE. With
its hierarchy of auxiliaries, BIG-MACHINE describes the behavior of a micro-coded instruction
interpreter for FM8501. Its twenty parameters account for additional state, including an
instruction register (i-reg), temporary accumulators (a-reg, b-reg), buffers, and so on. A
global array constant, micro-store, issues microinstructions addressed by the mar register.
The last two parameters model memory behavior and time, now measured in micro cycles.



Both SOFT and BIG-MACHINE are expressed over a ground type of bit-vectors and boolean
logic; and both involve the description of an ALU and other function units. Coercions and
interpretations are defined, which relate these binary representations to integer quantities.
The abstractions support a higher level view of programming the FM8501. Equally important
to the proof, they are needed for integration with the symbolic data space used to model the
machines.

In the Boyer-Moore system, Hunt proved the binary representation of arithmetic and
then a behavioral correspondence between SOFT and BIG-MACHINE. Thus, he gives a machine
validated proof of BIG-MACHINE’s correctness with respect to SOFT. Hunt goes on to reduce
BIG-MACHINE to a network of gates and registers. This is done by first expanding all auxiliary
function invocations and then identifying all common subexpressions.

5. Transformations on the FM8501 Source Description

In this exercise the primary goal was to derive a reasonable architecture from the in-
struction level specification. By design, DDD system a vehicle for interactive engineering. It
provides a secure algebra, but a human designer must develop the derivation strategy. We
are able to derive an architecture quite close the one Hunt proposes; judging from his sketch
of an FM8501 architecture.

The function SOFT in Figure 1 is just the top level of the machine specification. It was
necessary to expand auxiliary definitions in order to exposing entities of interest in an im-
plementation. Prior to the expansion, some of Hunt’s auxiliary definitions were manually
altered, in order to aid visualization. The redefinitions simply permuted the formal param-
eter lists—the defining expressions were not changed. Of course, the corresponding actual
arguments in applied occurrences were also rearranged. The expansions exposed simple gates,
adders, the abstraction of a memory module, and so forth. For instance, the term in SOFT
defining the next-state value for the single-bit condition flag, c-flag, expands from

(update-v
(b-cc-set (current-instruction reg-file real-mem))
c-flag
(¢ (bv-alu-cv-results reg-file real-mem c-flag)))

to the 2,000-character term shown in Figure 3. The initial SOFT definition, together with its
help functions, consists of about 6,000 characters. The expansion resulted in a specification
of about 105,000 characters, but this was not a complete unfolding of the description.

The expanded version of SOFT was then transformed to reduce the implied parallelism.
This major derivation step was done by hand, but the algebra has since been automated and
successfully applied to comparable designs [14].

SOFT is of the same general form as the FAC example of Section 2. Considered as a single-
state machine, it translates directly to a sequential system description. However, the resulting
system would not map onto the target architecture because too much data is transferred in the
single control state. To reduce parallelism, a serializing transformation is repeatedly applied
to the specification. The process is analogous to scheduling in high level synthesis [18]. A



call of the form (F T --- T) is replaced a sequence of function calls, whose composition
is equivalent to the original term. New states are introduced leading to the control point, F :

[G-l (1ambda (z; -+ z,) (G2 TZ ... T2)) ]
[ G? (lambda (23 --- z,) (G2 T2 ... T3)) ]

[ G*=1 (lambda (zy -+ 2,) (F TF ... T*)) ]

The original call is replaced by (G* T} ... T!), and the terms T} are chosen so that this
expression is reducible to (F Ty ... T,). The construction of intermediate terms is guided
by architectural constraints. For example, if only one application of the ALU function is
permitted in a clock cycle—if there is just one ALU device—there can be no more than one

occurrence of the symbol ALU in {T%, ..., T2} for any i.

This phase of derivation also adds new registers to hold intermediate results. For instance,
a parameter i-reg was added to hold the current instruction. About eighteen serialization
steps produce a system with thirteen distinct control states. The BIG-MACHINE microcode
holds fourteen instructions. The discrepancy is explained in a moment.

Subsequent algebra is performed entirely by the DDD system. A sequential system is
built from the expanded and serialized version of SOFT. It is initially composed of a subsystem
for control and an abstract description of architecture. Several factorizations are applied to
identify common terms, combine operations, and encapsulate modules such as the register
file and the external memory. The resulting sequential system, shown in Figure 4(b), closely
resembles Hunt’s block diagram of FM8501, shown in Figure 4(a) [2, Fig. 1-1].

Not all of the differences between these systems are significant. For example, feeding
a-reg and b-reg through the ALU—anticipating a conventional bus organization—is not
entailed by the SOFT specification. Also, the micro-control of FM8501 could not be synthesized
by DDD, which instead builds a hard-wired controller.

The significant difference between BIG-MACHINE and the derived architecture is the ab-
sence in the latter of the reset, dtack, read, write, and no-store registers. Since there
is no mention of these entities in SOFT, one would not expect them to arise in a derivation.
Except for reset, which might have appeared in the specification, these registers implement
a synchronization protocol with external memory. This protocol also accounts for surplus
microinstruction mentioned earlier. Registers dtack and read/write reflect a change in the
abstraction of memory behavior.

In SOFT, Hunt models memory as a functional abstraction. At each step of execution
SOFT constructs a new memory value reflecting the effect of the current instruction. This
is the conventional treatment in functional modeling, and it is consistent with way things
are done in DDD. The SOFT derivation produced a description in which memory, like the
multiplier in FAC (Section 2), it behaves as a combinational process.

In BIG-MACHINE, memory is a process abstraction, whose introduction raises valid tasks
for verification. While ‘standard’ synchronization protocols—reset, for example—might be
anticipated by a synthesis system, more complex forms of coordination could not. Thus, there



is really something to prove about BIG-MACHINE, namely, that it interacts correctly with the
chosen model of memory.

In integrating synthesis with verification, one would like to be able to isolate those
details that require direct proof. DDD did not invent the memory protocol but it correctly
synthesized the rest of the circuit. Under the same hypotheses of communication, it might
be easier to prove equivalence between DDD’s version architecture and BIG-MACHINE’s, but
such a proof has not been attempted.

A more finely grained interplay between algebraic derivation and verification is illustrated
in Figure 5. The FM8501 block diagram contains a subsystem selecting the outputs of two
operations, inc and dec (Figure 5(a)). A DDD factorization combines these into a single
component (Figure 5(b)). This is not a mere rewriting. It is correct only because just one
output is used at any time. In addition to determining this, DDD had to introduce an
instruction signal to control the incrementer/decrementer. It may be non-trivial to reverify
the entire implementation after a local refinement such as this, so it is better to employ a
secure algebra. On the other hand, DDD has introduced a new component, inc/dec, and it
now becomes necessary to verify the subcircuit used to implement it.

6. Transformations on the FM8501 Target Description

The second derivation exercise carries the BIG-MACHINE description to the point of hard-
ware realization. The exercise shows how transformations are used to manage details as
descriptions are reorganized toward geometric goals. This stage of derivation often involves
massive revisions to the structure of a description because the physical organization of the
implementation has little in common with its functional hierarchy.

Figure 6 gives a sense of the derivation goal, although it does not portray the actual
organization. The task is to reduce BIG-MACHINE to a physically meaningful collection of
boolean subsystem descriptions, for input to logic synthesis tools. Registers and certain com-
binational functions are partitioned into bit slices, shown as heavily outlined boxes. DDD’s
role is to maintain correctness both within and among the subsystems.

Hunt performed this compilation en masse by doing a bottom-up expansion of BIG-
MACHINE, followed by an exhaustive elimination of common subterms [2, Ch. 6]). The fully
expanded definition is composed of roughly eleven million gates, but it reduces to a network
of about 350 signals with roughly 1,800 gates. Since the growth of the intermediate expression
is exponential, a top-down expansion would be required for a larger design [19]. By using
DDD to manage the expansion, the explosion of intermediate terms was contained. First, an
architecture, described in terms of vectors, numbers, and symbolic quantities, was derived
as in the previous section. Next, the description was expanded to the binary representation
level and restructured toward a physical organization. The intermediate terms were much
smaller—on the order of 100,000 characters with the largest structure actually inspected being
about 10,000 characters. The penalty was a larger implementation (estimated to be twice the
size of one automatically generated) with better routing complexity.

The 1,800-gate BIG-MACHINE could almost certainly be automatically assembled to VLSI
using current logic synthesis tools. Hence, using DDD to reorganize this design is hardly



a telling demonstration for interactive synthesis at the gate level. However, larger designs
would require management, and even for FMB8501, mechanized algebra might play a role in
meeting performance goals. What the exercise does demonstrate is the need to deal with the
descriptive abstractions used in verification, in order sustain mechanically assured correctness
in later stages of implementation.

Like SOFT, BIG-MACHINE is an iterative algorithm from which an initial system descrip-
tion was mechanically constructed. Unlike SOFT, BIG-MACHINE is truly a one-state machine:
control is represented by a microprogram store (mar in Figure 2, mar/ROM in Figure 4(a)).
Hence, the initial system factors into the architecture of Figure 4(a) without the introduction
of additional control states.

By itself, Figure 2 is not a very illuminating specification. As in the SOFT derivation, the
first step was to expand BIG~-MACHINE far enough to expose relevant operations. A separate
auxiliary function is used to compute the next value of each register. For instance, updating
the condition flag depends on the current c-flag, the instruction, the microinstruction, and
the ALU outputs. The c-flag register is updated by the c-flag combination:

(defn c-flag (c-flag a-reg b-reg i-reg mar)
(update-v (b-and (b-we-alu-result (micro-rom mar))
(b-cc-set i-reg))
c-flag
(c (bv-alu-cv a-reg b-reg c-flag
(bv-alu-op-code i-reg)))))

The architecture derived in DDD from BIG-MACHINE was identical to Hunt’s block diagram
(Figure 4(a)). This system description was restructured into a bit-slice organization. First,
signals participating in bit slices were isolated as a subsystem of the design. Most of the
registers, selectors, and constants were included, as well as certain bit-parallel operations.
Also incorporated were operations for field extraction and type coercion. These reflect the
logical structure of the design, but in the bit-slice decomposition they either disappear or
project to identity functions.

A mapping was defined showing how the registers are partitioned into bit slices. The
DDD system decomposed the subsystem into sixteen parallel systems of boolean equations.
These subsystems were assembled to programmable targets (PLA and PLD) using available
logic synthesis tools. The FM8501 was not actually built, but a several designs of similar size
and architecture have been [4, 14, 15].

7. Observations and Directions for Further Work

If mechanically assured correctness is to be carried into practice, a broad view of formal
methods must be taken. Proving correctness—however defined—reflects just one facet of
reasoning in engineering. Synthesizing correct implementations reflects another. Both forms
of thought are used in any significant design effort. The benefits of automated reasoning
cannot be accurately judged, nor can methodology be fully developed, until there is integrated
support for both approaches.



A key issue is the management of abstraction. The FM8501 descriptions are composed
primarily for the purpose of conducting a proof. They reflect conceptual structures, saying
little about physical organization. It is necessary to impose other hierarchies—of architec-
ture and geometry, for example—in order to interface with realization tools. The entailed
reverification descriptions can be taxing, as witnessed by Cohn [7], Joyce [8], and others.

As these exercises demonstrate, a mechanized algebra can maintain correctness in the
passage from one realm of description to another, and as well, from one level of representation
to another. In order to integrate with verification however, there must be flexible support of
formal abstraction methods. DDD is a formal system by virtue of its grounding in an abstract
functional theory. It implements enough algebra over first order applicative expressions to
work directly with Boyer-Moore notation. With some development, DDD was able to navigate
the abstractions employed by Hunt to prove the FM8501.

Using DDD, we could engineer the reduction of BIG-MACHINE to a realizable description.
The outcome suggests that correctness at the register transfer level is a reasonable departure
point for sequential system verification: it appears practical to synthesize from this level
into silicon. It should not be necessary, for example, to prove that a particular physical
organization is correct with respect to a low-level structural description; and indeed, Hunt
attempts to synthesize a gate-level network directly from BIG-MACHINE.

Both SOFT and BIG-MACHINE are expressed in terms of binary representations. They
might have been described over a more abstract basis, involving entities such as integer and
address. DDD is capable of incorporating binary representations of these values. Thus,
the machine correctness proof might have been conducted at a higher level of description.
However, correct algebraic synthesis depends on correct representations; thus, verification
still plays the pivotal role in establishing the validity of a design.

The attempted derivation of BIG-MACHINE from SOFT exposed the inventive aspects of
Hunt’s proof exercise. DDD was nearly able to produce from SOFT the machine that Hunt
intended. Whether it might be easier to prove BIG-MACHINE correct with respect to the
derived architecture for SOFT, rather than SOFT itself, is a question for future research. For
example, DDD did not generate the microcode representation of control designed by Hunt,
but it would be fairly easy to prove the microcode sequencer correct with respect to the
controller.

In SOFT, memory is essentially a functional abstraction, while in BIG-MACHINE it is a
sequential process. Hunt’s proof entails a congruence between time models, as well as the
introduction of a synchronization protocol. DDD does not currently support any form of
sequential-process decomposition. Although this will be remedied in the future, a dependence
on verification will remain: translating the memory-function into a memory-process induces
new verification conditions for the system and its peripheral environment. One would expect
an integrated synthesis system to generate these verification conditions.

DDD is in early stages of development and these exercises must be regarded as an illumi-
nation of issues rather than a practical demonstration. At the front end, it was necessary to
develop means to introduce of control states in SOFT. This is a fairly deep analysis problem,
receiving much attention in high-level synthesis research. However, the algebra itself is fairly
simple. We also added basic editing functions, such as the expansion of combinators, and
some ad hoc transformations, such as those for reordering parameter lists. More experience
is needed to determine the impact of these low-level facilities on design management.



Broader targeting capabilities are also planned. The goal in DDD development is to bring
high-level descriptions to the point that logic synthesis tools are applicable. However, we lack
a sufficient formal characterization of logic-synthesis tools. The narrow path to realization
through programmable technologies will expand as new tools are understood.

Although Hunt’s descriptions exposed no unexpected problems for the algebra, minor
changes in the style of expression would have simplified the derivation task. Since the initial
step is always to expand definitions it is better if relevant features appear higher in the
definition hierarchy. Here is a typical example. The auxiliary function update-v-nth, below,
conditionally alters one element a vector of bits. After coercing the binary representation,
v-n, to an index, update-nth performs the replacement on the list object representing the
vector.

(defn update-v-nth (¢ v-n 1lst value)
(update-nth ¢ (bv-to-nat v-n) 1lst value))

(defn update-nth (c n lst value)
(if (and (truep c)
(listp 1st))
(if (zerop n)
(cons value (cdr 1lst))
(cons (car 1st) (update-nth c¢ (subl n) (cdr 1st) value)))
1st))

Update-nth is providing with a metalogical model of vectors, for which update-v-nth is the
logical interface. Now, the update is predicated on the boolean value c. The (truep c) test
is of interest to the hardware implementation, but the list representation of vectors is not.
Thus, moving this predicate into update-v-nth eliminates a level of expansion. Such a change
is unlikely to impair a correctness proof, but could have a substantial impact on the size of
the manipulated expressions. In other words, the interplay of derivation and verification is
finely grained indeed.
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(defn SOFT (reg-file real-mem c-flag v-flag z-flag n-flag 1lst)
(if (nlistp 1st)
(1ist reg-file real-mem c-flag v-flag z-flag n-flag)
(SOFT (reg-file-after-oprd-b-post-increment
reg-file real-mem c-flag v-flag z-flag n-flag)
(real-mem-after-alu-write
reg-file real-mem c-flag v-flag z-flag n-flag)

(update-v
(b-cc-set (current-instruction reg-file real-mem))
c-flag
(¢ (bv-alu-cv-results reg-file real-mem c-flag)))
(update-v
(b-cc-set (current-instruction reg-file real-mem))
v-flag
(v (bv-alu-cv-results reg-file real-mem c-flag)))
(update-v
(b-cc-set (current-instruction reg-file real-mem))
z-flag

(zerop (bv-to-nat (bv (bv-alu-cv-results
reg-file real-mem c-flag)))))
(update-v
(b-cc-set (current-instruction reg-file real-mem))
n-flag
(negativep (bv-to-tc (bv (bv-alu-cv-results
reg-file real-mem c-flag)))))
(cdr 1st))))

Ficure 1

The SOFT specification of FM8501 [2]. (Copyright ©1985 Warren A. Hunt, Jr. Reprinted
with permission of the author).



(defn BIG-MACHINE (mar read write dtack reset no-store data-out
reg-file addr-out c-flag v-flag z-flag n-flag
a-reg b-reg i-reg visual-mem real-mem
memory-watch-dog-history oracle)

(if (nlistp oracle)

(1ist mar read write dtack reset no-store data-out reg-file
addr-out c-flag v-flag z-flag n-flag a-reg b-reg i-reg
visual-mem real-mem memory-watch-dog-history)

(BIG-MACHINE (mar mar i-reg dtack reset no-store)
(read mar i-reg)
(write mar i-reg no-store)
(dtack (car oracle))
(reset (car oracle))
(no-store no-store c-flag v-flag z-flag n-flag
i-reg mar)
(data-out data-out a-reg b-reg c-flag i-reg mar)
(reg-file reg-file data-out i-reg mar no-store
reset)
(addr-out addr-out reg-file i-reg mar reset)
(c-flag c-flag a-reg b-reg i-reg mar)
(v-flag v-flag a-reg b-reg c-flag i-reg mar)
(z-flag z-flag a-reg b-reg c-flag i-reg mar)
(n-flag n-flag a-reg b-reg c-flag i-reg mar)
(a-reg a-reg visual-mem reg-file i-reg mar reset)
(b-reg b-reg visual-mem reg-file i-reg mar reset)
(i-reg i-reg visual-mem mar)
(visual-mem real-mem read write addr-out
memory-watch-dog-history
(dtack (car oracle))
(reset (car oracle)))
(real-mem real-mem read write addr-out data-out
memory-watch-dog-history
(dtack (car oracle))
(reset (car oracle)))
(watch-dog read write (dtack (car oracle))
data-out addr-out)
(cdr oracle)

)))

FiGURE 2

The BIG-MACHINE description of FM8501 [2]. (Copyright ©1985 Warren A. Hunt, Jr. Reprinted
with permission of the author).



(update-v
(b-cc-set (current-instruction reg-file real-mem))
c-flag
(¢ (bv-alu-cv-results reg-file real-mem c-flag)))

before ezpansion

(if (b-cc-set (v-nth real-mem (nth reg-file 0))) (c ((bv-alu-op-code
(v-nth real-mem (nth reg-file 0))) bv-alu-cv (if (b-direct-reg-a
(v-nth real-mem (nth reg-file 0))) (v-nth (update-nth reg-file t

0 (v-nat-inc (nth reg-file 0))) (bv-oprd-a (v-nth real-mem (nth
reg-file 0)))) (if (b-indirect-reg-a-dec (v-nth real-mem (nth
reg-file 0))) (v-nth real-mem (v-nat-dec (v-nth (update-nth reg-file
t 0 (v-nat-inc (nth reg-file 0))) (bv-oprd-a (v-nth real-mem (nth
reg-file 0)))))) (v-nth real-mem (v-nth (update-nth reg-file t 0
(v-nat-inc (nth reg-file 0))) (bv-oprd-a (v-nth real-mem (nth
reg-file 0))))))) (if (b-direct-reg-b (v-nth real-mem (nth reg-file
0))) (v-nth (update-v-nth (update-nth reg-file t 0 (v-nat-inc (nth
reg-file 0))) (b-indirect-reg-a-dec (v-nth real-mem (nth reg-file 0)))
(bv-oprd-a (v-nth real-mem (nth reg-file 0))) (v-nat-dec (v-nth
(update-nth reg-file t 0 (v-nat-inc (nth reg-file 0))) (bv-oprd-a
(v-nth real-mem (nth reg-file 0)))))) (bv-oprd-b (v-nth real-mem
(nth reg-file 0)))) (if (b-indirect-reg-b-dec (v-nth real-mem

(nth reg-file 0))) (v-nth real-mem (v-nat-dec (v-nth (update-v-nth
(update-nth reg-file t 0 (v-nat-inc (nth reg-file 0)))
(b-indirect-reg-a-dec (v-nth real-mem (nth reg-file 0))) (bv-oprd-a
(v-nth real-mem (nth reg-file 0))) (v-nat-dec (v-nth (update-nth
reg-file t 0 (v-nat-inc (nth reg-file 0))) (bv-oprd-a (v-nth
real-mem (nth reg-file 0)))))) (bv-oprd-b (v-nth real-mem (nth
reg-file 0)))))) (v-nth real-mem (v-nth (update-v-nth (update-nth
reg-file t 0 (v-nat-inc (nth reg-file 0))) (b-indirect-reg-a-dec
(v-nth real-mem (nth reg-file 0))) (bv-oprd-a (v-nth real-mem

(nth reg-file 0))) (v-nat-dec (v-nth (update-nth reg-file t 0
(v-nat-inc (nth reg-file 0))) (bv-oprd-a (v-nth real-mem (nth
reg-file 0)))))) (bv-oprd-b (v-nth real-mem (nth reg-file 0)))))))
c-flag)) c-flag)

after expansion

FIGURE 3
SOFT’s next-state value for c-flag
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FIGURE 4(a)
Hunt’s architecture for BIG-MACHINE [2, Fig. 1-1]
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FIGURE 5
Detail of a Local Factorization.
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