TECHNICAL REPORT NO. 280
Join Index, Materialized View, and Hybrid-Hash
Join: A Performance Analysis
by
José A. Blakeley and Nancy L. Martin
June 1989

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Join Index, Materialized View, and Hybrid-Hash

Join: A Performance Analysis

José A. Blakeley™ Nancy L. Martin
Computer Science Department,

Indiana University

Abstract

This paper deals with the problem of efficiently computing a join between two base relations
in the presence of queries and updates to the base relations. We present a performance analysis
of three methods: join indez, materialized view, and hybrid-hash join. The first two methods
are examples of a strategy based on data caching which represent two ends of a spectrum of
possibilities depending on the attributes projected in the materialization. The third method
is an example of a conventional strategy for computing a join from the base relations. The
results of this study show that the method of choice depends on the database environment, in
particular, the update activity on base relations, the join selectivity, and the amount of main
memory available. A byproduct of this study is a strategy for incrementally maintaining a join
index in the presence of updates to the underlying base relations.

1 Introduction

Improving the performance of query processing in relational database management systems con-
tinues to be a challenging area of database research. New application areas of relational systems
such as engineering design require the storage of more complex objects than the ones required by
conventional business applications [8,16]. In addition, designers of object-oriented database systems
are choosing to build their systems on top of relational ones [7,12]. Efficient query processing in
such systems becomes a more difficult problem hecause queries involve complex objects which may

themselves be composed of complex objects and so on.

*J.A. Blakeley’s current address: Information Technelogies Laboratory, Texas Instruments Incorporated, P.O. Box
655474, MS 238, Dallas, Texas, T5265.

Active database systems [17] which allow users to specify actions to be taken automatically
when certain conditions arise are systems that require very efficient query processing. The com-
pletion of many of the actions specified in these systems may be time-constrained in the order of
a few milliseconds. In such situations, the system cannot afford to spend a lot of time performing
secondary storage accesses, hence caching precomputed queries may be a good strategy.

Several caching mechanisms have recently been suggested to support efficient query processing
in extensible relational database systems. Materjalized views [1,3,15,21] have been suggested by
Stonebraker et al. [22] and by Hanson [11] as an efficient alternative for the support of procedures
in Postgres [23]. They have also been suggested by several researchers as an alternative approach
to structuring the database at the internal level in a relational system [2,14,19,24,26]. Other forms
of caching include links [9,20], view indices [18], and join indices [25]. Valduriez [25] has suggested
a join index as a data structure to support efficient retrieval of complex objects in object-oriented
systems built on top of relational systems.

As a result of these developments, customizers of relational database management systems
must decide among several performance-improving mechanisms. For example, if the customizer
chooses to use auxiliary relations to improve query efficiency, should he keep full tuples stored (i.e.,
materialized views) or only the tuple identifiers from the joining relations (i.e., join indices)? On
the other hand, the customizer may decide to incorporate more efficient algorithms to compute
joins [4,5,6] and rely exclusively on complete re-evaluation of queries.

This paper represents a step in establishing criteria for selecting among the various approaches
mentioned above. Specifically, we concentrate on the performance analysis of two caching strategies:
a materialized view defined as an equi-join operation between two relations and the corresponding
join index. An alternative to caching is the complete computation of a join from the base relations.
We have chosen the hybrid-hash join algorithm as a representative of this alternative approach
because it consistently outperforms other methods of its type and because it allows us to extend
and compare our results with the results obtained by Valduriez [25]. The remainder of this paper
analyzes each of these three approaches and compares their costs. Section 2 presents a brief
description of the methods while Section 3 describes the performance analysis. Section 4 presents

the results of our study, and Section 5 presents our conclusions.

2 Methods

In this section we illustrate how each method works via an example. Consider the two relations
shown below. The Student relation contains tuples describing student volunteers. Each tuple
contains a student’s name, major and native country; each tuple also has a unique identifier known

as a surrogate. The Project relation is used to store data pertaining to the on-going summer
projects of a university’s archeology department. It has attributes for the project title, the project

supervisor and the project location as well as a surrogate.

| Ssur | Name Major NativeCountry
010 | S. Bando | Music USA
011 | G. Jetson | Art Great Britain
012 | C. Falerno | History Italy
013 | L. LaPaz | Art Mexico
014 | J. Jones English USA
015 | P. Valens | Archeology | Mexico

Table 1: Student relation

| Psur ‘ Title Supervisor ‘ City | Country
030 Deforestation | N. Smith Coba | Mexico
031 | Facade Res. | E. Ruggeri | Venice | Italy
033 | Mural Res. A. Montez | Tulum | Mexico
034 | Excavation M. Cox Lima | Peru

Table 2: Project relation

If the archeology department wished to place student volunteers on projects located in their

native country, the following query would be necessary:

SELECT Title, Supervisor, City, Country, Name, Major
FROM Project, Student
WHERE Country = NativeCountry

We can now examine the auxiliary relations produced by the various proposed speed-up methods

to optimize the retrieval of the above query.

2.1 Materialized View

The approach used by the materialized view method is to fully evaluate the join once and store the
result for future use. Applying this method would create the relation shown in Table 3 as a result
of the initial join. Subsequent evaluations of the example query would be very quick as they would
merely consist of reading the materialized view from the disk. However, updating any attribute of

[4¢]

Title Supervisor | City i Country | Name IMaj or
Deforestation | N. Smith Coba | Mexico | L. LaPaz | Art
Deforestation | N. Smith Coba | Mexico | P. Valens | Archeology
Facade Res. | E. Ruggeri | Venice | Italy C. Falerno | History
Mural Res. A. Montez | Tulum | Mexico | L. LaPaz | Art

Mural Res. A. Montez | Tulum | Mexico | P. Valens | Archeology

Table 3: Materialized view for query

any tuple of Student or Project would necessitate examining the materialized view to determine

if it should also be updated and, when necessary, performing the appropriate update.

2.2 Join Index

The join index method tries to store enough information to aid efficient join formation while min-
imizing the size of the auxiliary relation and the effects of subsequent updates on the additional
relation. For each tuple in the join, only the surrogates of its component tuples are stored. Thus,
when the join is needed, the appropriate component tuples can be efficiently fetched via a clustered
or inverted index. Furthermore, only updates that change the join attributes (in the example,
NativeCountry and Country) need to be checked against and possibly posted to the join index
relation. The join index for the sample query is shown in Table 4.

Psur | Ssur

030 | 013
030 | 015
031 | 012
033 | 013
033 | 015

Table 4: Join index relation for the sample query

2.3 Hybrid Hash-Join

The hybrid-hash join algorithm fully utilizes the available main memory to do an efficient yet
complete re-evaluation of the join each time the corresponding query occurs. The efficiency is
gained by applying the divide-and-conquer principle to the problem of computing a join. The
potentially large component relations are hashed on the join attribute into several smaller subfiles

(also called buckets) each of which will fit into memory; at the end of this stage, each subfile contains
tuples from the base relations that may potentially join. The set of tuples within each subfile are
then joined in the appropriate order to produce the final join. The hybrid-hash join method further
takes advantage of the available main memory space by performing the first sub-join while building
the subfiles for subsequent manipulation. This algorithm has the advantages of not requiring any

permanent auxiliary relations and being uneffected by updates to the base relations.

3 Performance Analysis

In this section we analyze the performance of three approaches for computing the join of two
relations. The following scenarios will be analyzed: (a) materialized view with deferred updates
to the view, (b) join index with deferred updates to the join index, and (c) complete re-evaluation
using the hybrid-hash join algorithm. By “deferred updates” we mean that in case the joining base
relations are updated many times between subsequent queries, updating a materialized view or a
join index will be deferred until the time they are queried. Table 5 suminarizes the assumptions
made with respect to the storage organization of base relations, join index, and materialized view.

The organization of base relations and join index follows Valduriez’s assumptions [25].

Base relations R and S | clustered B*-tree on surrogate
Base relation S nonclustered index on join attribute
Join index JI clustered B™-tree on surrogate r
nonclustered BYt-tree on surrogate s

Materialized view V Linear hash file on join attribute

Table 5: Assumptions on the organization of base relations.

3.1 Analysis parameters

Table 6 lists the parameters we use to analyze the different scenarios. Similar notation has been
used by DeWitt et al. [6], Hanson [10], and Valduriez [25].

Before proceeding with the following sections, the reader is invited to take a quick look at the

Appendix, where all the basic formulas are introduced.

ey §

Database dependent parameters
|R|, |S], |T1|, |V| Number of pages in relations R, S,
join index, and materialized view, respectively
1R, 11S), 1L, V]l Number of tuples in relations R, S,

join index, and materialized view, respectively

Js Join selectivity JS = (||[R ™ S||)/(||&]| = ||SI])

SR Semijoin selectivity SR = (||R >< S||)/||R||

SS Semijoin selectivity SS = (||S >< R||)/||S]]

Tr, Ts, Tsr, Ty Size (in bytes) of a tuple of R, S, JI, and V, respectively

nR, g, NJr, v, Nig Number of tuples per page in relations R, S, JI,
V, and in the insertion (deletion) file, respectively

Nlp, N1y Number of passes for first phase of materialized view and
join index algorithms, respectively
N2py,N2; Number of passes for second phase of materialized view
and join index algorithms, respectively
Pry Probability that an update operation modifies the join attribute
System dependent parameters System performance dependent parameters
|M| Number of usable pages of main memory 10 Time to perform a random IO operation
F Space-overhead factor for hashing comp Time to compare two keys in memory
P Page size in bytes hash Time to hash a key
PO Average page occupancy factor B -tree move Time to move a tuple (of any size)
FO Average fan out of an index node in memory

in a B¥-tree
ssur Surrogate size in bytes
sptr Pointer size in bytes

Table 6: List of parameters.

3.2 Cost of materialized view with deferred updates

In this subsection we describe the cost of computing a join operation using a materialized view
defined as V' = R ™ S. We assume that relations R and S are joined on their common attribute A.
Suppose that a transaction updates the base relations R and S. Let ig, dg, s, and ds denote the
sets of tuples inserted into and deleted from relations R and S, respectively. If R = R — dr and
S' = § — dg, then the updated state of the view 1" can be computed by the expression

V' = VUGERMS)U(R Mis)U (4, Mis) — ((dp ™ S)U (R Mds)U (dr X ds)).
The analysis presented here assumes that only relation R is updated, thus

V= (VU(@ErR™S)) - (dr ™M 5).

TFurthermore, relation R is changed by update operations only, which get translated into a deleted
tuple followed by an inserted tuple, thus ||ig|| = ||dr||. We defer updating the materialized view
until the time the join computation is required. Computing the join using the materialized view
involves: (1) maintaining the changes to R, (2) computing the changes to V from ig and dg, (3)
updating V', and (4) reading the new view V'. Because steps (3) and (4) require reading the view,
we propose performing step (3) on the fly at the time the view is read in step (4), thus saving the
cost of reading V once. The sets ig and dgr are stored on disk. Since V is stored as a linear hash
file on the join attribute A (see Table 5), and since we want to perform the updates on the fly we
need to have the changes to the view ordered on hash(A). The next subsections describe the cost
of computing each of the steps (1)-(4) above.

(1) Maintaining the sets ig and dgr

To compute the changes to the view we need to charge the overhead of moving the sets igr and dg
to an output buffer and writing them to disk when relation R is updated:

Ci1 = (|lsrll + lldrll) * move + (|2r| + |dg|) * IO.
The sets ig and di have to be read from disk to update the view for a cost
Cir2 = (ltr| + |dr|) * I0.

All algorithms discussed in this paper try to make efficient use of the main memory available.
We assume that updates to R are logged in main memory as long as possible. Roughly half of
the available memory is devoted to deletions while the other half is used to store insertions. The
space used is not exactly half because we must also provide overhead space to sort the deletions or
insertions by hash(A) before writing them out to disk. The layout of memory for this part of the
algorithm is shown in Figure 1. We will say that Z pages are available for insertions and Z pages
are available for deletions where

Z = max (2%z+ SPACEq(z%n;,)) <|M| (1)

z€{Integer}

Thus, there will be f = ||ig|/Z] full internal sorts and p = [(|ir| — f * Z)/Z] partial internal
sorts of each of the ig and dr sets. The total number of runs of this part of the algorithm is
Nlps = f + p and the total internal sorting cost is

Ci13=2%fxCPUL(Z*n;,)+2%px CPU(||ir]| = f* Z % n;3)-

To read the sets ig and dg sorted by hash(A) we simply need to merge N1jps subfiles for each of
the sets ig and dg. Merging is performed using a heap data structure of size N1s. The cost is

=1

. variable
iR dR buffer
space
stack for quicksort sort
of i R and dg space

Figure 1: Memory configuration for sorting insertions and deletions

Cl,4 = CpUmrg(“iR”s N]-M') + CPUmrg(HdR”: NlM)

At this pOiI’lt we have a cost of C] = 01_1 + 01‘2 -+ C1_3 4 Cl_4A

(2) Compute the changes to V'

We need only to compute ig X S as the set dg >< V is deleted from V in step (3); this is
accomplished by merely not outputting tuples in V' whose R component matches a dg tuple. As
S has an inverted index on the join attribute A, we use main memory to schedule the accesses
to § by ordering the inverted index pointers. We collect |W| pages of ip as they come out of
the merge in the previous step. Call these pages relation Wg. Hence, computing :g ™ § requires

N2nr = |tr|/|WRg| passes of the following steps:
2.1 sort Wg by attribute A,
2.2 compute Wg M S assuming S has an inverted index on A,

2.3 sort Wgr ™ S by hash(A). The relation ig M S is produced in sorted order by hash(A) as the
union of Wg ™ § of each pass. Therefore, as step (2) is producing tuples of igp X S, step (3)

can consume them, avoiding an intermediate read/write of relation 1g ™M §.

Since 2+ N 1pr pages are used to read the different batches of ig and dg and we need input buffers for
S and V" and an output buffer for the updated 17, we have |M|—-2xN 15;—3 pages of available memory
left for this step. Wg occupies |Wg| pages. Wr M S occupies |Wg|*ngx||S|[*JS*(Tr+Ts)/ P pages.
In addition, the necessary merging and sorting will occupy some space. The memory configuration
for this part of the algorithm is illustrated graphically in Figure 2. This memory allocation yields
the following computation for |Wg]

variable
buffer
space

WR WH join 8

o

5
N
A

heaps to merg‘e N1p runs
of ig and N1p runs of dR sort &
and stack to quicksort WR | merge

and WR join S space
v i 8 1 v
- S 4 fixed
N1y buffers for runs of i buffer
N— space,
1 page

N1\ buffers for runs of dg

each

Figure 2: Memory configuration for phase 2 of materialized view algorithm

IWal = maxye(rnteger}uwelin(w + 2omaNIFTETS) | 9 4« SPAC Epurg(N 10, TR)

+ maz|SPACE 4(w * n;),
SPACEat(w*n;'R * HSH*JS)D < (|M| -2 *Nlﬂ,{ — 3)

Thus the costs of the steps described above are:

C21 = CPU(l|Wgll),
Caz = I0u(k, |5, 1IS|) + Y ao(k, |S], [IS]]) ¥ ns * comp + ||Wrl| x [|S]] x JS + move,

Crs = CPU.St(“W"R” *

|S]|* JS)
where k = SR x ||Wg||. The total cost of this portion of the algorithm is

Cy=(Cr14 Crz+ Ca3)x N2t

(3) Update the view on the fly
This is done while reading V7. Reading the whole view costs

03_1 = Fx ”"'| x I10.

When computing the cost of writing the updated pages of V, we need to consider the possibility
that some of the (||ig|| +||dr||) * SR groups of adjacent tuples to be inserted or deleted may in fact
extend over a page boundary and cause two writes rather than one. While this is a possibility, we
assume that it does not occur. Under this assumption, writing the changed pages including inserts

and deletes costs

C32 = F xYao((|lirll + l|drll) * SR, F [V, ||V]

) EIE.
The cost of merging the tuples is

Caz = ((lrll +1ldzll) * [|S]| * JS + [[V]]) ¥ comp
+ F «Yao((|lirll + [|drll) * SR, F' x |[V],[|[V]]) * ny * move.

Thus, the total cost of this step is Ca = Caq + C39 + C33. Finally, the total cost of this scenario
ig i = 01 + C'_} + C3.

3.3 Cost of join index with deferred updates

This subseclion analyzes the cost of displaying a join where that join is partially materialized via a
join index and where updates have occurred since the join index was formed. The algorithm used
is based on that of Valduriez [25] but has been extended to include incremental, on-the-fly updates
of both the join and the join indices. Valduriez’s algorithm exploits the available main memory to
process as much as possible of JI and the corresponding R >< JI at a single time; if all of JI and
R >< JI do not fit into the available memory, the processing is accomplished in several passes.
Essentially, we extend the algorithm so that the available memory holds as much as possible of J1I
and the corresponding R >< JI, ig and iR ™M S.

~ Specifically, on-the-fly update of join indices involves two phases. The first phase is comprised
of one or more passes where the insertions and deletions are saved in the available memory until
space is exhausted; then each set is sorted on r, its surrogate for R, and written out to disk. The
second phase also involves one or more passes. In each pass, “as much as possible” of JI is read
into memory. A heap organization is used to merge the possibly several files of deleted tuples to
produce just the deletions which correspond to the portion of JI in memory. Any join index entries
in JI that match deleted tuples are “marked” so that they will not be processed further. Next a
heap is used to merge the possibly several files of insertions to store in memory the pages of ig
which correspond to the memory-resident portion of the JI. These pages of ig are subsequently
sorted on the join attribute A and pages of S are accessed one page at a time to form ig X 5 which
is in turn sorted on s, the surrogate for S. Then the necessary pages of R are read one page at a

time to form R < JI for the pages of JI which are memory resident. Also at this time, a pointer

10

is stored with the JI so that the corresponding tuple of R may be accessed quickly. Finally, JI is
sorted on s and S is accessed one page at a time. As tuples of S are retrieved, they can be joined
with R and merged with ig M S to give the join. Also, to keep the join index current, changed
pages need to be moved to an output area and rewritten.

The assumptions made in the following analysis are exactly the same as those described in the
previous section. On-the-fly-update of join indices can be partitioned into the following categories:
(1) maintaining the changes to R, (2) reading and updating the JI and (3) forming the join using
JI, dr and ig as well as K and S

(1) Maintaining the sets ig and dgr

The method used to maintain these sets for join indices is similar to the one used for materialized
views. However, there are two important differences. As a join index is a “partially materialized
view,” it is only effected by updates to the join attribute. Thus, if ||ig|| tuples are actually inserted
during the update process, only Pra *||ig|| need to be saved for future update of the JI. Secondly,
since ig and dg are ordered by r, no hashing needs to be done. Based on these observations and
the fact that the memory configuration is exactly the same as shown in Figure 1, we merely need to
slightly reformulate the cost equations of the corresponding part of the materialized view analysis.

The cost of storing the pertinent insertions and deletions and then writing them to disk is
Ci1 = Prax(||irl| + ||dgl|) ¥ move + Pra x (|ig| + |dr|) * 10.

Reading the pertinent insertions and deletions from disk to update the join and the JI costs
Ci2= Prax*(lir| + |dr|) * IO.

There will be f = | Pr #|ir|/Z] full runs and p = [(Prya *|ir| — f * Z)/Z] partial runs of sorting
for insertions and also for the deletions. This gives a total number of runs of N1y = f + pand a

total internal sort cost of
Ci13=2%fxCPU4(Z xn;p) +2xp+x CPU4(Pra*||ir|| - f x Z * nig).

As the N1; subfiles for deletions and the N1; subfiles for insertions are read into memory, we
provide two heaps of size N1; for the merging of these subfile sets. The cost of merging is

01_4 = CPUmrg(PT'A * ||1R”: N].J) + CPUrnrg(-PTA * ||df'?.”:N1J)

Thus, the total cost of maintaining the pertinent insertions and deletions is €y = Cy11 4+ Cr.2 +
Ciz+Cra:

11

(2) Reading and updating the JI

Just like merging the sorted deletions and insertions, reading and updating the join index file is
actually carried out during a series of one or more passes. However, as the cost of these operations
is independent of the number of passes, we show them here in a separate section.

Reading the join index file costs
Ca1 = |JI| % 10.
Using the pertinent deletions to “mark” the entries in JI which correspond to deleted items costs
Cz2 = (Pra*||dgl| + ||JI]]) * comp.

The step where the join indices for the inserted tuples are merged with the already “marked” join
index is actually done as part of forming the join itself. The cost of merging and moving the newly
inserted tuples to the joined result output area is

Chy = (H%RH ¥ Pry * “5” *JS + ||JI”
— ||dgr|| ¥ Pra x||S]|* JS) * comp
+ ||ér|| * Pra *||S

* JS % move.

The process of forming the join will also identify pages of JI which need to be updated by being
moved to the join index output buffer and written. Once again, we make the assumption that no

ir or dr group will overlap page boundaries. The cost of this step is
Co.a = Yao((||lir|| + ||drl|) * Pra,|JI],||JI]])* (IO + nys * move).

Thus the cost apportioned to reading and updating the JI may be summarized as C3 = C33 +
Cya+ Ca3+ Caa.

(3) Forming the join

The join is actually formed in one or more passes. Hence, many of the costs involved are determined
by the number of passes required which is in turn determined by exactly how many pages of JI can
be read into memory during a given pass. Let |JI;| denote this quantity. The available memory
pages, M, must be able to contain one page to input S, one page to input R, one page to store a
portion of S i>< JIi, one page to store the join result, one page to form the updated JI, 2+ N1;
pages to read in the insertions and deletions, space to merge both the insertions and deletions,
as many pages as possible to accommodate the JI and its pointers to the corresponding K tuple,

enough pages to store R i>< JIi, enough pages to store the insertions pertaining to JI, enough

12

pages to store memory-resident ig ™ §, and enough space to sort the largest of JIx, memory-
resident g and memory-resident ig ™4 .S. The memory requirement for this phase of the algorithm

is illustrated in Figure 3. Based on this allocation of memory, we can compute the number of

FAELLLLEEEEE

R semijoin
Il Ji,

t

L

\\\\\\

join S

'Ry ka

I

heaps to mergé N1j runs
of igand N1; runs of dg
and stack to quicksort JI ,
R e : :

_ _semuo:n e i Ry and ij
join S

S SB<UJI R

AL ELE
FYPFVFFY,

Srosrerics

K
N1, buffers for 3} Jr
runs of ig ‘
N1J buffers for S rosuit

runs of dp

e

memory-resident pages available for JIi as follows

L] =

Once |JIx| is computed, the number of passes is determined by taking N2, = |JI|/|JIk|. Likewise,
the number of pages of R which are memory-resident during any pass is |Rx| = |R|* SR/N2; and

nlaxke{fnteger},kgu.ﬂ(
kslip|+Pr 4 3 ktlig|+Prasnigp+||S|[+JS+(Ts+Tr)
B4l

1.5%xk + k‘“RH*-fR*TR

(7T« P

variable

.buffer

space

sort &
merge
space

fixed
buffer
space,
1 page
each

Figure 3: Memory configuration for phase 2 of join index algorithm

+ 2% SPACEmrg(NlJ,TRJ + maz[SPACE4(k *ns1),
SPACE(k |IR| % n;.[|JI]),
SPACE(k * |ig| * nig ¢ ||S||* JS/|JI|)]) < M — 2% (N1;) — 5.

the number of pages of memory-resident ig is |ig,| = |ig| * Pra/N2;.

Once the |JIi| is read into memory and “marked” by the accumulated deletions and the cor-
responding pages of ig are read into memory, the latter pages are sorted on the join attribute A,

the corresponding tuples of S are accessed via an indirect index on A to form the join, and this

portion of ig X § is sorted on s. The cost of this step is

13

S

|) % ng * comp

Cai = (CPUx(|ir,| * nig) + 10:(S K+ |ir,| * i,
+ Yao(SR * |irg| * nig, |S],]S
+ iR, | * nig * || S]] * IS x move

+ CPU(|iry| * nig x JS + ||S|]))* N2;

Forming Rj requires reading R using a clustered index, finding which tuples match and moving

> 11511)

these to the area reserved for Ri. These operations have an attendant cost of
C32 = (JO«(||RI[* SR/N2y,|R|/N24,||R||/N2s)
+ Yao(||R||* SR/N2;,|R|/N2,,||R||/N2;) * nr * comp) x N2
+ ||R]] * SR * move.
Sorting the JI; on s incurs the following cost:
C33=CPU4(|JIt| *xnyr)* N2j.
Finally, accessing S and moving join tuples to the output area requires
Csa = (10(lIS]1*xSS/N2s, 1S, 11S1])
+ Yao(||S|| * S§/N25, 15, [I511)) * N2s
+ [|S]| * SS * move.

The cost for forming the join is thus C3 = C31 + C32 + C33 + C3.4 and the full cost for the join
index scenario is C = Cy + Uy + Cs.

3.4 Cost of hash join

As the hybrid-hash join algorithm has been analyzed extensively elsewhere [6] and adding the
complicating factor of updates does not invalidate that analysis, we give only a brief presentation
here. The algorithm consists of B + 1 steps where

|R| * F — | M|

B

On the first step R and S are read into memory and hashed into B + 1 compatible sets; in addition,

B = max(0,

the first sets, R0 and S0 are joined at this time while the remainder are written out to disk. The
remaining B steps merely consist of processing the sets Ry,..., Rp and S4,..., Sp by reading them
into memory and joining them. ¢ of the tuples will be processed as part of the first pass and 1—q will
be processed during the subsequent passes. g is calculated as |RO|/|R| where |RO| = (|M| - B)/F.
The cost of the entire algorithm is
C = (|R|+|S])* IO+ (||R]| + ||SI|) = hash

+ (IIRI + 1IS11) * (1 — g) * move + (|R[+|5]) + (1 — ¢) + IO

+ ([IR]] + 1|SI) * (L — q) * hash + ||S|| « F * comp

+ || R|| * move + (|R| +|S]) = (1 —) IO.

14

4 Results

This section presents the performance comparisons of the three methods just analyzed. The default
values used for some of the parameters are shown on Table 7 and are the same as those used in

previous related studies [6,25].

[|R||, |IS|] 200,000 tuples | ssur, sptr 4 bytes
| M| 1000 pages | 10 25 msec
Tr,Ts 200 bytes | comp 3 psec
PO 0.7 | hash 9 psec
FO 400 entries | move 20 psec
P 4000 bytes | F 1.2

Table 7: Parameter settings.

100%
° hash
join
T join index has
= has lowest lowest
== t
o cost cOoS
v 10%+
2
1]
-O .
S materialized view
© has lowest cost
R
1% } i =
.001 .01 1 1.0

selectivity as represented by SR where SS = SR,
JS = 100 * SR/ ||R]|, [M| = 1000, Prs = .1 and
IR = [ISI| = 200,000

Figure 4: Cheapest method as selectivity and update activity vary.

Figure 4 illustrates the regions where each method performs best for different update activity
and join selectivities. The update activity in the system is described by the ratio ||igl||/||R]|
which represents the percentage of the tuples {from the base relation R modified between two
consecutive queries that involve the join. The join selectivity factor J§ is proportional to the
semijoin selectivities 5SS and SR (S5 = SR) as JS = 100 * SS/||R]||. This value has been chosen

15

to produce a resulting join relation of realistic size. For example, when SR = 0.01, the resulting
join relation has the same cardinality as an operand relation. We have chosen a join selectivity
whose proportion to the semijoin is 10 times larger than the proportion used by Valduriez [25] to
best highlight differences among the three methods. Figure 4 shows that materialized views offer
the fastest performance when the selectivity is neither extremely high nor extremely low and the
update activity is at most moderate. When the selectivity is extremely high, e.g., the join relation
is much larger than the relations used to form the join, the hash join method has the lowest cost.
If the selectivity is extremely low or the selectivity is moderate but the update activity is large,

then the join index algorithm has the fastest execution time.

materialized view join index hash-join

7 7t 21
(5] w w
o) i) =l
= = g
8 6+ S 61 S 181
@ & b KEY
5 54 S 5 5154 [non-update
o i L fite
3 .1 S) = B processing
c c 1= I non-update
o 3 o 3| o 9] internal
E E E processing
© [o and all
5 2- 3 24 ERN update
) [} o ;
2 a a processing
@ g4 ° 14 o g4

| } } 1 t +

.001 .01 . A .001 .01 | 001 .01 3

selectivity represented by SR selectivily represented by SR selectivity represented by SR

Figure 5: Cost of each method broken down into non-update-related file processing and other costs.

The effect produced in Figure 4 can be best understood by looking at a slightly more detailed
cost analysis contained in Figure 5. This diagram breaks down the cost at each selectivity into the
file costs that are associated with the basic algorithm and the costs for supporting updates and
any non-update-related internal operations. All parameter settings are the same as those used in
Figure 4 with the exception that the update activity has been fixed at 6 percent and the values for
SR do not range beyond 0.1. For each method, the time associated with the non-updated-related
file costs of the basic algorithm is represented by the white area under the total cost curve; the dark
area under the curve represents the time associated with update operations and/or non-update-
related internal processing. For the materialized view algorithm the dark area under the curve

represents only update costs as this method has no internal processing associated with the basic

16

=
— 16K+
z join ‘\hash
. 8K-t+ join o 5 index has join has
g — materialized view lowest -
R 1 has has lowest cost cost ost
s 4K
E lowest
© cost
» 2KT
@
&
a 1K - } } . :
001 .01 _1 1‘0

selectivity as represented by SR where SS = SR,
JS = 100 * SR/ ||R]|, Pry = .1, llig Il = 6000 and
R[] = |IS]| = 200,000 '

Figure 6: Cheapest method as selectivity and memory size vary.

algorithm. In the case of the join index method, the dark area under the curve represents both
update costs and internal costs associated with the basic algorithm; however, the internal costs
are small and never exceed 3 percent of the total time. The cost curve for the hash join method
is constant with the darkened area representing only internal processing costs associated with the
basic algorithm; the internal costs are approximately 1 percent of the total cost. Comparison among
the three detailed analyses show that the materialized view method has a competitive advantage
because the file time required by its basic algorithm is less - sometimes much less — than the
other two approaches. In particular, for low selectivities, reading the relation V takes a fraction
of the time to read R and S, rewrite them and then read them again as required by the hash join
method. And reading V' takes much less time than reading JI, randomly accessing portions of R
and several runs of randomly accessing portions of § as required by the join index method. The
important implication of this observation is that optimizing the internal processing of the hash join
or join index algorithms or the update processing of the join index algorithm is extremely unlikely
to effect the comparative advantage of the materialized view method. The only way that the hash
join method can favorably compete with the materialized view approach is by drastically increasing
the size of V', which is exactly what occurs for extremely high selectivities. The only way that the
join index algorithm can beat the time performance of the materialized view method is when the
latter method spends sufficiently more time in processing updates, which is exactly what occurs
when the selectivity is extremely low or the update activity is high.

We conclude this section with some experimental observations about the effects of various
parameters which are held constant in Figure 4. As an example of what happens when these
constants take on different values, consider the implications of varying the size of main memory.
Figure 6 illustrates the regions where each miethod is better for different join selectivities and

amounts of main memory available. Clearly, the join index algorithm is able to use additional main

17

memory more efficiently than the other two algorithms in the sense that the join index algorithm
reaches the point where all processing can be accomplished in one iteration, sooner than the other
two methods. Thus, moderately increasing the size of main memory in Figure 4 would enlarge
the area where the join index algorithm performs best. If the memory size were increased by
approximately 20K pages, the area where the hash join method is superior would be increased.
Similar effects can be observed for changes in other parameters. These changes do not change the
general implications of the results shown in Figure 4 but they may considerably alter the boundaries
of various regions of superiority. For instance, the size of V' is largely dependent on the value used
for JS so varying it within the bounds established by S5 and SR have a considerable effect on the
cost of the materialized view algorithm. In particular, the size of the area where the materialized
view algorithm performs best varies inversely with the value of JS. The join index method gains a
competitive advantage from only having to process a percentage of the updates. Therefore, it is not
surprising that its area of superiority varies inversely with the probability of an update altering the
join attribute. Lastly, we consider the effects upon Figure 4 results when the relation size varies.
This can be accomplished either by changing the tuple sizes, T's or Tr, or the number of tuples,
||R|| or ||S]|. Varying the relation size has an inverse effect on whatever method is doing the most
file process at a given selectivity. The materialized view cost is most effected at low selectivities,
the join index method is effected at moderate selectivities, and the hash join method is effected at

high selectivities.

5 . Conclusion

This study has raised several points regarding the effectiveness of the join index, the materialized
view, and the hash join algorithm for efficiently computing an equi-join. The method of choice
depends upon the values of several parameters. Our results have shown that among these param-
eters are the selectivity, the update activity, the probability that the joining attribute is updated,
the relation and memory sizes. The effects of these parameters on the methods analyzed can be

summarized as follows:

o The hash join algorithm performs well when the selectivity is extremely high. Its performance
is adversely effected by an increase in relation size. Increasing the size of available main
memory does not help the algorithm’s performance until the memory is made extremely large.
Although its performance is invariant to the update activity and the join attribute update
probability, the hash join gains indirectly because increasing these parameters adversely effects
the cost of the other two methods.

18

e The materialized view method performs well for what might be described as “typical values.”
Primarily, these values include selectivities that are neither extremely high nor extremely low
and alow to moderate update activity. This method is only slightly slower than the join index
algorithm for very low selectivities. Increasing the relation size adversely effects this algorithm
at low selectivities but increases its relative goodness at moderate selectivities. The algorithm
does not appear to utilize additional main memory as well as the other two approaches.
The materialized view approach is itself unaffected by increasing the join attribute update
probability, but it gains relatively when this occurs because the join index method becomes

more costly.

o The join index algorithm performs best when the selectivity is low to moderate, the update
activity is high and the join attribute update probability is low. This algorithm is favorably
effected by an increase in memory and adversely effected by an increase in the attribute
update probability. Increasing the relation size favors this method at high and low selectivities
but decreases its relative cost effectiveness at moderate selectivities. As a byproduct of the
analysis of join indices we have proposed a strategy for incrementally maintaining a join index

in the presence of updates to the underlying base relations.

The results just summarized are important because complete or partial caching of joins is a
relevant strategy in the following environments: (1) efficient support of procedures as data types
in extensible database systems, (2) efficient support of situation monitoring in active databases,
and (3) efficient support of querying through methods in object-oriented database systems. Un-
fortunately, database customizers working in these environments often have only incomplete or
imperfect knowledge concerning the parameters which determine the best way of satisfying the
efficiency constraints. We propose the following heuristics based on our results: (a) If the join
relation is much larger than the two relations which form it, use the hash join algorithm; (b) If the
join relation is smaller or not much larger than its base relations and the update activity is less
than or equal to 10 percent, cache the join via the materialized view algorithm; and (c) If the join
relation is smaller or not much larger than its base relations but the update activity is more than
10 percent, use the join index algorithm to partially cache the join relation. While these heuristics
do not guarantee the quickest join, the actual times obtained will generally not be too far from the
optimal time.

Although the work described here has already generated some interesting results, there is yet
much to be done. There are several places where the internal processing could be optimized and
the cost equations described in the paper need to be augmented to account for the projectivity
of a join. In addition, the entire analysis should be generalized to investigate the feasibility of

maintaining precomputed results for queries involving other additional operators like select and

19

aggregate functions, joins of more than two relations and arbitrary and possibly unequal sets of

insertions and deletions. Eventually, the information gleaned from such an investigation could be

incorporated in a system which used the designer’s estimates to initially select among algorithms

for efficiently supporting queries but also maintained usage statistics so that the system could

automatically adapt to the appropriate structures and algorithms after a suitable period of time.

Acknowledgements

This work has benefited from ideas provided by Pedro Celis in early stages of this project.

References

[1]

(2]

(3]

[4]

[5]

[6]

(10]

[11]

ApiBa, M., AND LiNDsAY, B. Database snapshots. In Proceedings of the Sizth International Conference
on Very Large Data Bases (Montreal, Canada, 1980), pp. 86-91.

BLAKELEY, J., CoBURN, N., AND LARsoN, P.-A. Updating derived relations: Detecting irrelevant
and autonomously computable updates. To appear in TODS, Sept. 1989.

BLAKELEY, J. A., LarsoN, P.-A., anp Tompa, F. W. Efficiently updating materialized views.
In Proceedings of ACM-SIGMOD 86 International Conference on Management of Date (Washington,
D.C., May 1986), pp. 61-T1.

Brasgen, M. W., anD Eswaran, K. P. Storage and access in relational databases. IBM Systems
Journal 16, 4 (1982), 337-344.

BRATBERGSENGEN, K. Hashing methods and relational algebra operations. In Proceedings of the Tenth
International Conference on Very Large Data Bases (Singapore, 1984), pp. 323-333.

DeWrrr, D. J., Karz, R. H., Ouken, F., SHAPIRO, L. D., STONEBRAKER, M., anD Woob, D.
Implementation techniques for main memory database systems. In Proceedings of ACM-SIGMOD 1984
International Conference on Management of Data (Boston, MA, June 1984), pp. 1-8.

Fisuman, D. H., BeecH, D., , Cate, H., Crow, E., CoNnNors, T., Davis, J., DERRETT, N.,
HocH, C., KEnT, W., LYNGBAEK, P., Maupop, B., NemaT, M., Ryan, T. A., AND SHAN.,
M. IRIS: An object-oriented database management system. ACM Transactions on Office Information

Systems 5, 1 (Jan. 1987), 48-69.

Haas, L. M., Frevytag, J., Loaman, G., anD PiraugsH, H. Extensible query processing in
starburst. In Proceedings of the 1989 ACM SIGMOD International Conference on the Management of
Data (Portland, OR, May 1989), pp. 377-388.

HarrDER, T. Implementing a generalized access path structure for a relational database system. 4 CM
Transactions on Database Systems 3, 3 (1978), 285-298.

Hanson, E. A performance analysis of view materialization strategies. In Proceedings of ACM-
SIGMOD 1987 Annual Conference (San Francisco, CA, May 1987), pp. 440-453.

HansoN, E. Processing queries against database procedures. In Proceedings of ACM-SIGMOD 1988
International Conference on Management of Data (Chicago, IL, June 1988), pp. 295-302.

20

[12]

13)

[14]

(18]

(16]

(17]

(18]
[19]
[20]
[21]
(22]
(23]
(24]

(25]

(26]

[27]

KacuHawana, P., anp Hocan, R. LCE: An object-oriented DBMS for the research laboratory.

In 531':?% DECUS U.S. Symposium 1987 (Refereed Papers Journal), Nashville, Tenn. (Apr. 1987),
pp- 43-55.

KnuTH, D. E. The Ari of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley,
Reading, Ma, 1973.

LArRsoN, P.-A., AND YaNg, H. Z. Computing queries from derived relations. In Proceedings of

the %gvéngh. International Conference on Very Large Data Buses (Stockholm, Sweden, Sept. 1985),
pp. -269.

Linpsay, B., Haas, L., Mouan, C., Piraugess, H., AND WiLMs, P. A snapshot differential refresh
algorithm. In Proceedings of ACM-SIGMOD ’86 International Conference on Management of Dala
(Washington, D.C., 1986), pp. 53-60.

Lorie, R., KiM, W., McNaBB, D., PLourrge, W., AND MEIER, A. Supporting Complez Objects in a

Relational System for Engineering Databases. Query Processing in Database Systems. Springer-Verlag,
1985, pp. 145-155.

McCARTHY, D. R., AND DavaL, U. The architecture of an active database management system. In
Proceedings of the 1989 ACM SIGMOD International Conference on the Management of Data (May
1989), pp. 215-224.

Roussorour,os, N. View indexing in relational databases. ACM Transactions on Database Systems
7, 2 (June 1982), 258-290.

SCHKOLNICK, M., AND SORENSON, P. The effects of denormalization on database performance. Tech.
Rep. RJ 3082, IBM San Jose Research Center, 6560 Harry Road, San Jose, CA 95120, 1981.

ScuMmin, H. A., AND BERNSTEIN, P. A. A multi-level architecture for relational data base systems.
In Proceedings of the International Conference on Very Large Data Bases, Framingham (1975).

SHMUELI, O., AND ITAI, A. Maintenance of views. In Proceedings of ACM-SIGMOD 1984 International
Conference on Management of Data (Boston, MA, June 1984), pp. 240-255.

STONEBRAKER, M., AnTon, J., AND Hansown, E. Extending a database system with procedures.
ACM Transactions on Database Systems 12, 3 (Sept. 1987), 350-376.

STONEBRAKER, M., AND RowEg, L. A. The design of postgres. In Proceedings of ACM-SIGMOD 86
International Conference on Management of Data (Washington, D.C., 1986), pp. 340-355.

Tompa, F. W., AND BLAKELEY, J. A. Maintaining materialized views without accessing base data.
Information Systems 13, 4 (1988), 393-406, :

VALDURIEZ, P. Join indices. ACM Transactions on Database Systems 12, 2 (June 1987), 218-246.
Yang, H. Z., AND LarsoN, P.-A. Query transformation for psj-queries. In Proceedings of the Thir-
teenth International Conference on Very Large Data Bases (Birghton, England, Sept. 1987), pp. 245-
264.

Ya0, S. B. Approximating block accesses in database organizations. Commun. ACM 20, 4 (Apr.
1977), 260-261.

21

Appendix

Basic formulas used in the analysis

Although the formulas used throughout the analysis are similar to or compatible extensions of
those used by Valduriez [25], we give a very brief explanation of them. Initial experiments showed
that both quicksort and heap merge possess favorable time-space characteristics for sorting and
merging, respectively. Costs for these algorithms are based on average case analyses by Knuth [13].
The CPU time to quicksort n tuples is defined by

CPUs(n) = 2x(n+1)*In((n+1)/11)* comp
+2/3%(n+ 1)xIn((n + 1)/11) * move

if the sort is on a key that is not hashed, or

CPUu(n) = 2x(n+1)xIn((n+1)/11) = (comp + 2 * hash)
+2/3% (n+ 1) *xIn((n + 1)/11) * move

if the sort is on a key that must be hashed. The number of overhead pages required to quicksort n

iteins already stored in memory is
SPACEq(n) = 2 % sptr xlg(n)/P.

Merging n items of size s in a heap of size z requires time and space as shown below. (The n items
are assumed to be in a main memory buffer before they are moved to the heap which contains

entire items as well as pointers into corresponding buffers.)

CPUnmrg(n,z) = ((2%n—1)xlg(z)— 3.042 % n) * comp
+(n*lg(z) + 1.13 xn + [n/2] — 4) * move

if the keys are not hashed, or

CPUmrg(n,2) = ((2%n—1)xlIg(z) — 3.042 * n) * (comp + 2 + hash)
+H(nxlg(z) + 1.13+n + [n/2] — 4) x move

if the merge keys are hashed. The space required is given by the formula
SPACEmr4(2,8) = z* (s + sptr)/P.

The number of page access required to get k records randomly distributed in a file of n records

stored in m pages given that a page is accessed at most once is given by Yao’s formula [27]

Yao(k,m,n) = m —

22

Based on this formula, we can now calculate the IO time for accessing k tuples in a relation having

m pages and n tuples via a clustered (IQ,;) or inverted index (I0;;) using the following equations.

I04 = [Yao(k,m,n)+ Yao(Yao(k,m,n),m/FO,m)]*I0.

I10;; = [Yao(k,m,n)+ Yao(k,n/FO,n)
+Yao(Yao(k,n/FO,n),n/(FO x FO),n/FO)]xI0.

These formulas assume Bt-tree indices with two and three levels of index pages when used as
clustered and inverted indices, respectively. The root node is assumed to be permanently stored in

main memory.

23

