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ABSTRACT Logical organization refers to a system’s decomposition into functional
units, coprocesses, and so on; it is sometimes called the ‘structural’ aspect of system
description. In an approach to digital synthesis based on functional algebra, logical
organization is developed using a class of transformations called system factoriza-
tions. These transformations isolate subsystems and encapsulate them as applicative
combinators. Factorizations have a variety of uses, ranging from the refinement of
actual architecture to the synthesis of certain kinds of verification conditions. This

paper outlines the foundations for this algebra and presents several exzamples.

1. Introduction

It is conventional wisdom in hardware design—as in every other branch of
programming—to defer decisions about architecture until the control is understood.
While design surely begins with an idea of the building blocks needed, engineering
should focus first on an algorithm. It is usually a mistake to center a design around
some device that seems to solve the problem. Ideally, the final details of architecture
are developed once an acceptable algorithm has been designed; components are
chosen to serve the needs of control (See [21], p. 166, for a discussion.).

In an algebraic design paradigm, this aspect of engineering is characterized by a
family of transformations called system factorizations. Their purpose is to introduce
a conceptual organization analogous to that of a functional block diagram, consisting

of a hierarchy of communicating modules and coprocesses. This paper defines basic
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laws from which factorizations are composed and illustrates tactical issues with a

series of examples.

The design formalism is founded on functional algebra. A sequence of transfor-
mations is applied to an initial expression, resulting in a target expression closer to a
physical realization. The list of transformations is called a derivation to emphasize
that source and target expressions are really dialects of a single modeling language
of higher order functions. Following current terminology [3], source expressions cor-
respond to ‘specifications’ and target expressions to ‘implementations.” However, it
is more accurate to say that an implementation is specified by the source expression
together with a derivation sequence, since the latter expresses much of the design

intent.

One purpose here is to consolidate previous observations about, and experiences
with, the structural aspect of digital design derivation. Earlier work establishes a
connection between functional descriptions of control flow and synchronous network
descriptions at a level of description reflected by an arbitrarily chosen vocabulary
of operations and tests [12, 10, 11]. Abstract component factorizations introduce a
treatment for encapsulation and information hiding. These transformations isolate
data abstractions, such as stack and memory, from the relatively concrete types that
can be more directly implemented, such as item and address. Subsequent experi-
mentation with the derivation method revealed that essentially the same transfor-
mations are useful in developing other aspects of architecture. Slightly generalized,
the factorizations are used to assign operations to units; and they provide an ad
hoc treatment for communication ports [13].

Ideally, individual transformations preserve a behavioral interpretation of no-
tation. Derived implementations are, therefore, ‘correct’ under that notion of
equivalence—derivation is a form of proof. In practice, however, correctness is
relative to side conditions, such as the obvious assumption that that electronics
used models logic. In addition, transformations may synthesize verification condi-
tions, which become antecedents to correctness claims (See [20, 4, 22| for related
discussions.). In a preliminary exploration of interplay between mechanical deriva-
tion and mechanical verification, factorizations play a central role in isolating such
conditions [14].

However, the importance of factorization is partly a result of the approach
taken to description. A strength of functional modeling is the use of abstraction to
gain representation independence. Although types are now common in applicative

languages, there may be little enforcement of modularity. Strong encapsulation
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qualities are gaining prevalence in hardware applications (e.g. [16] and [6]), but a
more open view of type abstraction may be justified. As proposed in the opening
paragraph, it might be better to specify in terms of arithmetic rather than in terms
of ALUs; and it might be better to reason in terms of storage abstractions than in
lerms of RAM devices. Under this thesis it becomes necessary to have algebra for
imposing modularity; and this is the basic effect of a system factorization.

Section 2 outlines a first order framework for system descriptions, which express
synchronized networks in a simple language of applicative terms. The presentation
follows the semantic treatment in [12], at a purely syntactic level, with refinements
for multioutput operations. Multiple output combinations play so prominent a
role in the description of hardware that it is better to account for them in the
metasyntax. Sheeran works builds foundation for uFP [19]. Boute proposes an
‘open semantics’ approach n the same notational framework. Harmond and Tucker
adapt the formal-algebraic theory to the model of sequential behavior used here [8].
Some of the vocabulary used here comes from a text book by Loeckx and Sieber
[15].

The restriction to first order expression, though intuitive, is temporary. Higher
order techniques certainly have a place in hardware description. The most successful
exploitation has been Sheeran’s algebra for structural manipulation [18]. O’Donnell
develops several useful interpretations for functionals [17]. In both cases, there is a
well determined structural meaning to work from, which is not necessarily present
in this application. However, this work will be extended as the details are worked
out.

Section 3 states the fundamental transformation laws for system descriptions.
It is claimed that the coarser grained factorizations illustrated in Section 4 are re-
ducible to combinations of the fundamental laws. In other words, the fundamental
laws correspond to the basic inference mechanisms of a theorem prover, and fac-
torizations correspond to tactical lemmas. This relationship is discussed further
in Section 5, where experiences with the use of automated factorizations is briefly

reviewed.

2. Terms, Combinations and System Descriptions

In the definitions that follow, the language of terms for a many sorted algebra
of multioutput functions is extended by a delay operator to form a language of signal

expressions. A system description is a simultaneous system of signal expressions.
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The central fact established in this section is that the use of closed combinations,
or parameterized expressions, commutes with a behavioral interpretation of the
language of signals.

A basis describes a family of value sets, 4y, ..., A,, together with a collec-
tion of total and strict functions, fi, ..., fm, on these sets. These functions are
called operations in order to distinguish them from defined functions. With each
set A; is associated a type symbol, 7;, a distinct set of constant symbols, and a
distinct set of variable symbols. The notation v: 7;, sometimes phrased, “v is a 7;,”
asserts that the variable v ranges over values in A;. The signature, of an opera-
tion describes its domain and range, which in general are nested products. The
formula f:(11,(72,73)) — (74,75, 76) asserts that the operation f maps the product
Ay x (Az x A3) to the product A4 x As x Ag. Since product formation is not consid-
ered associative, parentheses are significant in signatures. The signatures (1) — 7'
and 7 — 7' are distinct; however, in some metaexpressions, extra mathematical
parentheses are used.

Certain properties of the basis are always assumed. There must be a set of
truth values, of type Bool, which includes constants true and false. Operations with
range Bool are called tests. Each value set has undetermined element (“don’t care”
or “don’t know” but not “undefined”) designated by a ‘#’. For each type 7, there

1s a strict selection operation, sel: (Bool,7,7) — 7.

vy if bis true
sel(b,vy,v3) = {‘Uz if b is false
#, if bis #Bool
Finite product and projection operations are assumed. Projections are denoted by
sans seriff adjectives, 1st, 2nd, 3rd, 4th, 5th ..., ith, .... Finally, it is assumed that
arbitrary finite ordered sets of tokens can be represented in the basis; furthermore,
tokens can be tested for equality. Given that products of Bool can be formed, one
possible representations for tokens follows.
A language of applicative terms is built from the base vocabulary. The usual

treatment of terms is extended for multioutput operations.

Definition 1 A simple term is either a constant, a (typed) variable, or ex-
presses the application, f(7i,...,Ty), of an operation f to the terms T ac-
cording to the f’s signature. An application without an operation symbol,

(t1,...,tn), denotes the formation of an n-tuple.

Take the semantics of this language to be an initial algebra, represented by the

terms of the language itself [7]. Terms are partitioned into by equivalence relation,
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written S = T, according to equational laws of the basis. The laws of particular
bases are not considered in this paper, but certain laws hold in general. Selections

reduce according to the definition of sel given above. For projections,
ith(Tl, . | S Tn) =T;

Additional identities are introduced later, in Section 3. The definition of substi-
tution on terms is adapted for multioutput operations by allowing nested lists of

variables to serve as substitution patterns. Such a list is called an identifier.

Definition 2 An identifier is either a variable or a nested list, (Xi,...,Xy),

of distinct identifiers, meaning that they share no common variables.

Definition 3 The formula T[R/X] denotes a substitution of the term R for
the identifier X in the term T. The formula T[R:/X,,...,R,/X,] denotes
the simultaneous and respective substitutions of terms R; for identifiers X;,
i € {1..n}. Substitution is defined by induction on the language of terms. In

the base cases, constants are unchanged and for a variable symbol u,

R fX=u
“[R/X]={u if X £v

For applications and n-tuples,

f(Tl))Tn)[R/X] :f(Tir::Tr:.)

where T} = T;[R/X]| for i € {1..n} For nested identifiers, a simultaneous

substitution is done on the constituents:
T[R/(X1,...,Xn)] = T[1st(R)/ X1, ...nth(R)/Xx]
In the last case, substitution of an n-tuple for an n-element identifier simplifies to
TRy 55 Bl (K es o, Xa)] = TIRe S K, R ]

Hierarchic decomposition is expressed by the formation of closed combinations.
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Definition 4 A combination is a fully parameterized term, written AX . T

where each variable the term T is found in the identifier X. An instance of a

combination is a term, T[R/X], where R is a term.
Combinations may be nested, but may not be recursive. Where combinations are
given names, it is customary write Name(X) 4 T rather than Name = X .T.
The language of terms is extended to include applications of named combinations,
such as Name(R).

A selection combination encapsulates the decision structure of a nested selec-
tion. That 1s, selection combinations contain only constants, variables, and sel
operations. A case expression is a selection combination associated with a set of

tokens. If A = {c1,...,¢cn} is a token set, then the form

case R of ¢;: Th

e

abbreviates a combination which selects T; where R is (or reduces to) the token c;.
A system description is a collection of equations describing a network. The
defining expressions are composed of terms over a given basis plus a notation of

delay, expressed by the infix symbol, ‘!’

Definition 5 A signal expression is either a term or has the form v ! §,
where v is a simple term—usually a constant or a variable—and S is a signal

expression. A system description is a family of equations of the form

X1= 51

JYn = Sn

where each X; is a distinct identifier and each S; is a signal expression over the
variables in X,...,X,.
No interpretation of system descriptions may depend on the textual order of the
equations; hence, a system description may be considered as a family of equations
{X: = Si}ier, for finite index set I. Two interpretations are used in this paper.
Under a schematic interpretation, each occurence of a term is associated with
a drawing. Operations are shown as boxes connected to their arguments by lines.
The signal identifiers name some of these lines, and feedback cycles are allowed.

A delay element, sometimes figuratively called a ‘register,’ is associated with every
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delay-expression. Figure 1 contains schematics for several of the partial system
descriptions discussed in Section 4. Schematics are in a class of interpretations that
Boute calls structural semantics [1]. Meaning is in close correspondence to syntax

and any transformation applied to a description changes its interpretation.

Under a sequential interpretation, each signal expression S denotes a uniformly
typed sequence of values, (S° S',...). This is a behavioral semantics in Boute’s
terminology. A constant ¢ denotes the constant sequence, (c,c,...). The expres-
sion v | § denotes the sequence (v,S5%S%...). Operations are applied element-
by-element. If f has signature f:(01,...,0m) — (11,...,7Ty), then f(S1,...,5m)
denotes an n-tuple of sequences, (7,...,T;), such that for all natural numbers 1,
f(S1,...,5%) = (T,...,T). The signal equations of a system description are si-
multaneously defined; that is, for k € {1..n}, and for all 1 > 0, X} = S} when X
is a simple variable. A nested identifier is bound to the corresponding projection of

its defining expression.

For the sequential interpretation of a system description to be well defined, it
1s suflicient for each feedback cycle to contain a delay element. For instance, in the
system consisting of the single equation, X = f(X), the sequence X is nowhere
defined, while in X = v ! f(X), X* is, by induction, defined for all i. A system
description is said to be well formed when it has this no-combinational-feedback
property, which is essentially the criterion for clocked digital realizations (e.g. in
[9]). The synthesis method developed in [12] guarantees well formedness and the

algebra to be discussed preserves it.

The use of combinations freely commutes with the sequential interpretation;
hence, invocations of named combinations are allowed in signal definitions. Let
S[T'] denote the sequential interpretation of a simple term; and let D[ T'] denote
its interpretation as a value. Then for any terms T, R, identifier X, and for all
1 >0, S[T[R/X]]* = D[T[S[R]*/X]]. In [12] this fact is proved by reducing the
language of terms to a set of combining functionals for composition, construction,
and projection and showing that each of these functionals commutes the formation

of sequences.

With extensions for substitution, subsystems with delay elements may be in-

corporated in sequential combinations. A parameterized system typically has the
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form
Name(v,V) =z

where
- ‘ v
/Xl = Sl Name Z—s
Xn = Sn

The syntax reflects the fact that system descriptions are just a dialect of locally
recursive binding expression [10]. The parameter may include an identifier for initial
register values (v) and an identifier for input signals (V). In addition there is an
output identifier (Z) telling which signals are externally available. Since this is a
functional notation, all signals have direction. However, a parameterized system
with no delay elements reduces to a multiple output term combination, since there
can be no feedback. Both combinations and parameterized systems are depicted in
schematics as boxes, containing the name of the combination and labeled input and

output ports. Where possible the flow in schematics is left-to-right, top-to-bottom.

3. Elementary Laws of Behavior

The derivation algebra manipulates system descriptions in ways that preserve
behavior while improving some structural aspect. It has already been stipulated
that the equations of a system may be written down in any order. Hence, the
laws are presented as local transformations on the affected signals. The symbol
<%, indicates that a transformation is subject to condition C. The first law states
that signals can be added or removed provided the well formedness conditions and

external functionality are preserved.

SIGNAL INTRODUCTION AND ELIMINATION The signal equation Y = R
may be added to (deleted from) a system description under conditions for

signal introduction (elimination).

def
e D(v. V) = Z where
SD(v, V) 4t 7 where = év, )S e
JYI = Sl =(—l_)> =L _' 4
T Xn = Sn
/Yn — Sn
Y =T

For signal introduction (1) Y must be distinct from identifiers {U, X1, ... X5}
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and must introduce no combinational feed back. For signal elimination (2)

the variables in Y must not occur in any defining expression other than 7.

The next law deals with the manipulation of common expressions.

IDENTIFICATION  Signal identifiers can be exchanged with their defining

expressions wherever these occur.

¥ = ¥ =y

Using introduction, elimination, and identification, we can replace an expression
that occurs several places by a name, whose definition is the common expression.
The structural effect is to reduce the number of replicated components. A tactical
step in many transformations is to form signals into groups. For example, group-
ing may be a prelude to simultaneously eliminating a collection of unused signals.

Grouping is also a first step toward forming multioutput combinations.

GROUPING A subsystem is grouped by placing its signal definitions in a

nested identifier and their corresponding equations respectively in a list.

Xi=8;
Koy =8

b 4 (XKiye 0 Xipm) = (845 0e 5 S5kam)
){i+m = S +m
In applying this transformation from right to left, if the defining expression is not

an n-tuple, it may be rewritten as a product of projections, (1st(S), ... ,mth(S5)),

under replacement law:

REPLACEMENT Any term may be replaced by an equivalent one.

X Ris/x] & X - R[T/X]
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10

Two signal expressions are equivalent if they are composed of equivalent terms.
Therefore, replacement applies to signal expressions as well as terms. Of central
interest are rewritings under the universal base laws, and in particular, manipula-
tion of selection terms. First, the sel operation obeys a distributive law for strict

operations:

sel(P, f(5), f(T)) = f(sel(P,S,T))

Expressed with schematics, decisions “push through” operations:

. s
2 2
o
o P P

Since sel also distributes over products, this equation is sufficient to characterize

distribution over complicated signatures. This form of optimization is commonly
used in in silicon compilation [5]. However, it is an uncommon variation that is fun-
damental to factorization. In functional algebra, distribution applies to operations

and combinations as well to arguments:

sel(P, £(S),9(T)) 2 (sel(P, f,g))(sel(P, S, T))

Under first-order restrictions, “sel(P, f,g)” is not permitted; however, an imple-
mentation of this expression is possible. Define a combination that is capable of

doing either f or g, depending on an instruction token, c € {f, g}:

FG(t, ) 4 case i of f: f(z)
& 9(z)

The second order identity can now be expressed as,
sel(P, f(S),9(T)) = FG(sel(P,f,g),sel(P,S,T))

f

z iP %
= flg [~
X
T_ g P s
T
P

The aim is to encapsulate a collection of operations in a single module for which

mstructions are generated. This form of distribution also applies to operations of
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different sorts. For example, suppose that f:(e,8) — § and g:(a,7) — 6. A
combination must be formed with enough arguments of enough types to simulate
both f and g. The specific form of the combination will depend on implementation

factors, but here is one possibility: with parameters a: , b: 8, and c: 7,

def

FG(7,a,b,c) case ¢ of f: f(a,b)

g: g(a, c)

As before, sel distributes to get

sel(P, (4, B),g(A',C)) = FG(sel(P,f,g),
sel(P, A, A'),
sel(P, B, #),

sel(P, #,C))

This is one way in which don’t-care values (#s) are safely introduced to system
descriptions. Under the condition P the ¢ input to FG does not matter, so long as
it is a . Another way of introducing #s comes from replicating selections, according

to rewriting rules like

sel(P, f(S),T)

sel(P, f(sel(P, S,#)),T)

S
S_f 4 S ¢
z & P
T P
T
P P

So long as it is assured that # really means “don’t care,” and not “don’t know,”

selections simplify according to

S
i

sel(P, S, #)
sel(P,#,T)

—

-y

However, there are many occasions when it is preferable to instantiate #s as sug-

gested by
X
- sT X
N
fro o p =
T—
P
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This kind of transformation is the subject of the final law for rewriting system

descriptions.

CoLLATION If signal expressions S and T are of the same type, then

X =sel(P, S, #) L X =wel(F,5,T)
Y = sel(P,#,T) ¥ =X

In the next section, collating is done by introducing a distinct new identifier, XY =

sel(P,S,T) and using it in place of X and Y throughout the system.

4. System Factorizations — Four Examples

In essence, the result of a factorization is simply the introduction of a combi-
nator. The transformation problem is to isolate the expression(s) to be combined.
Four examples illustrate the tactical issues. The first three deal with purely com-
binational terms; the last encapsulates a sequential combination. Figure 1 shows
schematics for selected system descriptions in this section.

Derivation of hardware centers on the dependent tasks of control synthesis,
refinement of architecture, and structuring for physical realization. System factor-
1zation addresses the second of these tasks in interaction with the others. Often,
it is not possible to obtain a desired architecture without refinement to control;
sometimes, the intended physical organization, the ‘target technology’, guides the
imposition of a conceptual hierarchy. The examples are intended to develop a sense

of this interplay.

4.1. Example One
The names of the base operations do not matter but are chosen to be evocative.
Assume a single type int, with operations add: (int,int) — int and dn, up:int — int,

and consider the system description fragment

U = sel(P,add(A,dn(B)),up(C)) (1.0)
X = sel(P,dn(D),add(E, F))
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The first derivation goal is to combine all applications of add. This is specified by
listing a set of combinations to serve as patterns. The instances of these abstractions
are called the subject terms of the factorization. In this case, the specification set
is {A\uv . add(u,v)} and the subject terms are add(E, F') and add(A4,w), where w =
dn(B). A subtask is to isolate the subject terms from the surrounding equations.
After distributing selection in signals U and X, the isolated terms can be identified

as signals V' and Y.

U =sel(P,V,up(C))
W = sel(P,dn(B), #)
X = sel(P, dn(D),Y) (1.2)

V = sel(P,add(A, W), #)
Y = sel(P,#,add(E, F))

It is important to maintain the subject terms in the context of their use, as is done

above. Signals V' and Y are now collated into a single signal, VY.

U =sel(P,VY,up(C))
W = sel(P, dn(B), #)
X =sel(P,dn(D),VY)

VY = sel(P,add(A, W), add(E, F))

(13)

Using distribution again, the defining expression for VY is reduced to obtain a

single add component.

U = sel(P,VY,up(C))
W = sel(P,dn(B), #) .
X =sel(P,dn(D),VY) (2.0)

VY = add(sel(P, A, E), sel(P, W, F))

The schematic for (1.4) in Figure 1 simplifies the signal W to dn(B). However, W
is left as shown for the resumption of this derivation in Example Two.

As in this example, the factorization process has three phases. First, subject
terms are isolated and, if necessary, identified. Next, the subject terms are collated
into a reduced collection of expressions. Last, tests are distributed to arguments.

The next example shows one way that things can go wrong.
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4.2. Example Two
System (1.4) is used as a starting point for this example. Since the form
of selection expressions does not change, it makes things a bit clearer to use an

abbreviation. Henceforth, the term sel(P, S,T) is written instead as
selp(S,T)

Let us now attempt to factor applications of dn and up from system (2.0). The
subject terms are instances of the combinations {Az . dn(z), Az . up(z)}. As before,
they are isolated in context as signals Z and T

U =selp(VY,T)

X =selp(Z,VY)

W = selp(dn(B), #) 21)

Z = selp(dn(D),#)

= selp(#, up(C))
VY = add(selp(A4, E),selp(W, F))

The intended factorization fails because it is impossible to collate the equations for
W, Z,and T. There is a clash of dn(B) and dn(D). However, these signals can be
partitioned into groups that can be collated. With the partition {W,T} and {Z}
we get

U = selp(VY,WT)
X :selp(Z VY)
Z = selp(dn(D), #) (2.2)

WT = selp(dn(B), up(C))
VY = add(selp(A, E),selp(WT, F))
After introducing instruction tokens {dn, up}, selection distributes over the combi-
nation of dn and up. Define the combination UPDN to be
UPDN (i,v) & case i of dn: dn(v)
up: up(v)
Replace the defining equation for WT by an instance of UPDN. In (2.3), signal Z
is also simplified.
U =selp(VY,WT)
X =selp(Z,VY)
Z = dn(D)
I = selp(dn,up)

WT = UPDN(I,selp(B,C))
VY = add(selp(4, E), selp(WT, F))

(2.3)
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In the combination UPDN, the decisions of the surrounding system, based on the
test P, are encoded by the instruction signal I. This is the essence of factorization—
it is usually a goal to target for problem independent combinations.

An improvement in the specification of subject terms is needed, in order to
avoid clashes. A convention that almost always works is to use match free variables
in the pattern abstractions to identifiers in the given network. For example, the
specification set {dn(B),Az.up(z)} determines the factorization in (2.3). This

technique is used in the remaining examples.

4.3. Example Three
Let us follow an alternative derivation from system (1.0), which is repeated

below.

U = selp(add(A4, dn(B)), up(C))

(3.0)
X = selp(dn(D),add(E, F))

The first subgoal is to factor {up(C), Au.add(A,u)}. Isolating the instances yields

W = selp(dn(B),#)
X = selp(dn(D), add(E, F)) (3.1)
U = selp(add(A, W), up(C))

In order to distribute selection in U, we must first determine how to superimpose the
arguments (A4, W) and (C). A, C, and W are all ints, so there are many possibilities.

Suppose that the following combination is given:

XALU(4,a,b) % case i of add: add(a, b)
dn: dn(a)
up: up(b)

With this component as a target, selection distributes in signal U as shown below.

U = XALU(U;r,U4,Us)
Ur = selp(add, up)
Ua =S€IP(A #)

Ug = selp (3:2)

(W, C)
W =seIp(dn(B) #)
X =selp(dn(D),add(E, F))

8D 6 1 11:26 1.tex
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Similarly, the set {dn(B), add(E, F)} factors as signal Z in system (3.3):

U =XALU(Ur,U4,Up)
Ur = selp(add, up)

Uy = Sejp(A,#)
Us = selp(Z,0)
X = seIp(dn(D),Z) (33)

Z =XALU(Z;,Z4,ZB)
Z[ = seIp(dn,add)
Za = Selp(#,E)
Zp = selp(B,F)

Depending on the surrounding circumstances, signals U4 and Z 4 might be collated
or simplified to 4 and E (as they are in Figure 1). As a general stratagem, it is
better to defer simplification to the last stages of derivation. Wolf has suggested
leaving this kind of optimization entirely to automatic logic synthesizers [23], and

our experience bears this out.

4.3. Example Four

This example illustrates encapsulating sequential components. Again the vo-
cabulary is suggestive but arbitrary. Assume three types, mem, addr, and data;
with operations rd : (mem, addr) — data and wt : (mem, addr,data) — mem; and

consider the system

M =m®!selp(M,wt(M,X,Y), M) (4.0)
N = selp(rd(M,U),V,W)

The form selp(*,*,+) now stands for a three-alternative selection combination.
Since the goal is to hide the abstract signal M:mem from the surrounding sys-
tem, this kind of transformation has been called an ‘abstract component’ factor-
ization in [12, 10|, and later a ‘signal factorization’ in [13]. The specification set is

{M, . rd(M,u), \uv.wt(M,u,v)}. With knowledge of how arguments to rd and

89 6 1 11:26 1.tex

16



wt should be superimposed, the subject terms in (4.0) are isolated as follows:

M =m°!selp(M, wt(M,Ma, Mp), M)

rd(M,My), #,#)

U, X, W) (4.1)
# X, #)

Mg, V,W)

Mg = selp
My = selp
Mp = selp

N = selp

With instruction tokens i € {id, rd,wt} a MEMORY combination is formed, with

definition

MEMORY (m,I,4,D) < R
where
(R,M) = (#,m%)! case i of id: (#, M)
rd : (rd(M, A), M)
wt : (#, wt(M, A, D)

With the MEMORY combination, System description (4.1) becomes

M = MEMORY (m®, My, M4, Mp)
M; = sefp(rd wt id)

My =selp(U, X, W) (4.2)
Mp = ( , X, #)
= selp(M,V,W)

According to the specification for MEMORY, it would be all right in a tightly
coupled implementation to use a conventional read /write memory for M, but the id
instruction must be eliminated. One approach is rewriting the signal Mg in system

(4.1) to
Mp = selp(rd(M, M), #,rd(M,M4))

It follows that only two distinct instructions are needed. An alternative is to deduce
from the MEMORY combination that id = rd in representation. In either case, the
derivation that encapsulates M must reflect the implementation intent.

In this example, a sequential combination is encapsulated with the effect of
factoring off some of the original description’s state. The tactics happen to be
specialized for a known component, but supposing that the purpose of the factor-

1zation was simply to suppress mention of the type mem, how should we regard

89 6 1 11:26 1.tex



the combination MEMORY? One way of looking at it is to consider MEMORY as
an expression of correct peripheral behavior. In realization, the MEMORY process
must respond to instructions rd and wt as specified by the combination. Other-
wise, (4.2) would not behave correctly. From this point of view, factorization has
synthesized a verification condition from a higher level of description.

In any case, the goal of this factorization has been accomplished. System (4.2)

makes no mention (other than m°, which could also be abstracted) of the type mem.

5. Conclusions

A semiautomated transformation system has been implemented to explore dig-
ital design derivation. Designs are constructed from a restricted class of functional
control specifications. Factorizations are applied to the resulting system descrip-
tions in order to develop a logical organization. Then, binary representations are
incorporated for concrete symbolic types, and the description is restructured for
logic synthesis. A number of moderate designs have been derived, including several
versions of a garbage collector, a prototype computer system based on an SECD
processor, and several conventional processor designs. Designs have been realized in
MSI and VLSI, using programmable target technologies. The examples in Section
4 are distilled from the design of a garbage collector [13]. In that derivation, a
series of eight factorizations was needed to develop a logical orgainization. This is
typical of designs we have done. Selection combinations, which model controllers,
have between 30 and 100 alternatives in these designs.

A derivation is entered as a sequence of transformation commands, which is
applied to the initial design description. The designer looks at intermediate descrip-
tions in order to evaluate the derivation. If things are not going as planned, the
derivation script is modified. The factorizations provided by the system are sub-
stantially the same as the examples illustrate. The factorization algorithm takes a
specification of subject terms, isolates them, and then attempts to form a combi-
nation. Intervention is required if there are clashes. Arguments are superimposed
according to a convention that is adequate at lower levels of description.

The experimentation shows that modularity can often be established later in
the design process. To a degree, it is possible to specify a design without declar-
ing its architecture beforehand. However, at least two kinds of problems arise.
The most frequent involves clashes in collation. Methods for resolving clashes take

many forms, ranging from trial and error to refinement of the control description
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[14, 2]. Another kind of problem arises in information hiding factorizations of the
kind illustrated in Example Four. If the intent is to encapsulate an abstract type,
inference must be used to determine the subject terms. An example of this problem
is discussed in [13].

Derivation is a formal method that can be likened to direct verification. The
fundamental laws correspond to the logical machinery of a theorem proving system.
It 1s the task of the designer to engineer an ‘equational’ proof that the implemen-
tation has the behavior of its specification. Factorizations correspond to lemmas,
introduced to guide the proof process, and should be reducible to basic laws.

At the same time, factoring is a technique for suppressing facets of design that
are not accounted for in a realization. A factored combination represents “the rest of

bl

the system,” stating how the environment must behave to use the implementation
correctly. Thus, factorizations can be viewed as a means of integrating design
synthesis and formal verification. It is this aspect that motivates the refinement of

their formal foundations.
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