TECHNICAL REPORT NO. 278

Probabilistic Analysis of Algorithms for
Stuck-at Test Generation in PLAs.

by
John Franco and Kurt Keutzer

May 1989

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Probabilistic Analysis of Algorithms for
Stuck-at Test Generation in PLAs

John Franco
Department of Computer Science
Indiana University
Bloomington, Indiana 47405

Kurt Keutzer
ATT Bell Laboratories
Murray Hill, NJ

May 12, 1989

Abstract

A collection of algorithms for generating test vectors for PLAs is presented and analyzed. It
is shown that, in some sense, complete sets of test vectors for almost all such circuits which are

irredundant, primal, and non-tautological can be generated in polynomial time.

1 Introduction

It has been known for some time that logic optimization can produce circuits that are completely
testable for all stuck-at faults. The relationship between testability and Boolean minimization
for two-level combinational circuits dates back to the Quine-McCluskey algorithm [8]. The no-
tions of primality and irredundancy were generalized for multi-level circuits in [1]. Recent work in
synthesis for testability has been able to ensure complete multiple-fault testability for multi-level
combinational logic circuits [5]. All of these results only show in varying ways that with unlimited
computational resources test vectors could be generated for all stuck-at faults in a circuit; however,
in practice the testability of a circuit is that which can be found with relatively modest computa-
tional resources. Are these two notions of testablity related? In other words, does fully testable
imply easily testable? In general, knowledge of the existence of a solution to an NP-complete prob-
lem does not improve the chances of finding a solution [6]; however, it seems reasonable to expect
that full testability should improve the expected time for generating tests.

In this paper we begin to formally evaluate the impact of complete testability of a circuit on the
ease of finding tests. In particular we relate the primality and irredundancy of two-level circuits to
the ease of finding test vectors for stuck-at faults in two-level circuits. Two-level circuits continue to
be of interest because they are naturally implemented in programmable-logic arrays (PLA’s). The
AND/OR. structure of a two-level circuit corresponds naturally to sum-of-products structure of
disjunctive-normal-form (DNF). In such circuits all single and multiple stuck-at faults are testable
if all single stuck-at-faults on the inputs and outputs of the AND gates are testable [7]. Finding a
test vector for the output of AND gate is equivalent to finding a truth assignment that falsifies all
clauses in the corresponding DNF expression, except for the clause that corresponds to the node
under test, and sets that clause to false if a stuck-at-1 test is being generated or true if a stuck-at-0
test is being generated.

What we intend to show is that, in some sense, a large class of prime and irredundant circuit
instances are provably testable in polynomial time. Thus, for a class of circuit instances complete
testability implies easy testability with high probability. We do this by showing that test vectors
can be obtained in polynomial time for almost all prime and irredundant instances generated by a
standard probabilistic model.

Tt should be noted that there are some remaining problems in the direct application of this work
to testing. PLA’s. The first is that the testing of PLA’s in current technologies typically requires
testing for shorts and cross-point faults, as well as stuck-at faults; furthermore, to address these
additional faults specialized design for testability methods such as those described in [4] may be
used. Secondly, the optimization approach used in some of the current heuristic two-level logic
optimizers, such as [2], could, theoretically, generate stuck-at fault test vectors as a side effect,
although in current practice test vectors are generated by auxillary tools. Despite these practical
limitations we feel that this work is well motivated by the need to improve our understanding of
the relationship between complete testability and ease of testability, and that it is natural to begin
a study of this problem in the better understood domain of two-level circuits.

2 Preliminaries

A Boolean variable can take two values, true and false. A literal is either a negated or unnegated
Boolean variable. If the literal is negated its value is opposite the value of the corresponding
variable. Otherwise the literal has the same value as the corresponding variable. If v is a Boolean
variable its negated literal is . The literals v and ¥ are said to be complementary.

A DNT Boolean expression is a disjunction of conjunctions of literals. We represent DNF
expressions as a collection of sets of literals. Each set of literals is called a clause. A clause is
satisfied and has value true if one of its literals has value true. A clause is falsified and has value
false if all its literals have value false.

Definition:

The functionality of an expression I containing r Boolean variables is a mapping F; : By X

B,...B, — {true, false} where B;, 1 < 1 < r, is the Boolean value of variable v; such that
Fi(t) = true if and only if at least one clause in I is satisfied by truth assignment £.

Definition:

A clause ¢ in expression I is irredundant if removal of C from I changes the functionality of
Z.

Definition:

A literal [in clause ¢ of expression I is primal if removal of [from ¢ changes the functionality
of 1.

It is not the case that primality implies irredundancy. For example, each literal of each clause of
(a,b),(b,c),(d,c) is primal but functionality is not changed if the clause (b, c) is dropped. It is also
not the case that irredundancy implies primality. For example, each of the clauses of (a,b),(a,b)
is irredundant but removal of neither literal b or b changes functionality.

We talk about testability of a DNF expression with the understanding that there is a direct
mapping to the testability of the PLA based on that expression.

Definition:

A DNF expression is completely testable if, a) for every clause there exist two truth assignments
which satisfy and falsify the clause and falsify all other clauses; b) for every literal [in a clause
c there exist two assignments which cause all other literals in ¢ to have value true, cause [to
have value true and false, and falsify all other clauses.

A clause for which both truth assignments do not exist is said to be not testable. A literal for
which both truth assignments do not exist is said to be not testable.

DNF expressions that are irredundant and primal are completely testable. For suppose there
is a clause e that is not testable. Then either there is one value that e may take such that all
assignments inducing this value satisfy at least one other clause or there is a value that e may never
take. In the second case e is redundant so we only consider the first case. Setting e to the opposite
value does not change functionality hence e is redundant. A similar argument holds for testing
literals.

3 The Probabilistic Model

The probabilistic model we use generates DNF Boolean expressions consisting of n independent
clauses, each of which is constructed as follows. Let V' = vy, va, ..., v, be a set of r Boolean variables.
For all 1 < 7 < 7, with probability p the clause contains v;, with probability p the clause contains

%;, and with probability 1 — 2p the clause contains neither. We call this model M(n,r,p). An
expression generated by the model will be called a random expression.

In a random expression it is possible for a clause to contain no literals. Such a clause will have
no effect on the functionality of the expression. If p is set too low then all clauses contain no literals
with probability tending to 1.

Lemma 1 Iflim, ;o pnr = 0 then a random ezpression contains only empty clauses with proba-
bility tending to 1.

Proof:

The probability that a clause is empty is (1 —2p)". The probability that all clauses are empty
is (1 —2p)™ = 1 — 2prn + O((prn)?). The lemma follows. O

For a certain range of p there is at least one unit clause in a random expression.

Lemma 2 Iflim, ;.o prn = oo and p < (1 — €)In(n)/(2r) for any € > 0 then the probability that
there 1s a unit clause in a random ezpression tends to 1.

Proof:

The probability that a particular clause is a unit clause is (7)(2p)(1—2p)"~'. Hence the prob-
ability that a random expression contains no unit clauses is f(p,,n) = (1 —2pr(1—2p) =)™
The expression 2pr(1 —2p)"~! has a maximum at pr = 1. We consider the endpoints prn =k
where k is large and p = (1 —¢€)In(n)/(2r) of the range specified by the hypothesis. If prn =k
then the probability that the expression contains no unit clauses is less than e=2P(1-22)" <
¢~ 2k(1-k/n+0(1/n%)) This tends to 0 as k increases. If p = (1—¢€)In(n)/(2r) then the probabil-
ity is less than e—2Pr(1-2p)" — —(1-€)nln(n)(1-2p)" n—(1=e)nt=0=9 _ p—(1-€)n* This tends
to 0 as n — oo. Since f(p,r,m) — 0 at the interval endpoints and 2pr(1 — 2p)"~! increases
from the low endoint to a maximum at pr = 1 and then decreases until the upper endpoint
the lemma is proved. O

Over this range of p there are redundant clauses with high probability.

Lemma 3 The probability that the literal of a unil clause is contained in another clause of a
random expression tends to 1 if lim, ;oo pn = 00 and p < (1 — €)In(n)/(2r) for any € > 0.

Proof:

From Lemma 2 the probability that there is a unit clause tends to 1. The probability that
a literal which is the unit clause is not in any other clause is (1 — p)*~!. In the limit this is
e P*, The lemma follows. O

From Lemmas 2 and 3, if pn — oo, and p < (1—¢)In(n)/(27) then almost all random expressions
have redundant clauses.

A tautology is not a reasonable PLA function. We restrict our attention to the range of p for
which almost all random expressions are not tautologies.

Lemma 4 The probability that a random truth assignment falsifies all clauses of an expression
generated by M(n,r,p) is greater than (1 — (1 — p)")".

Proof:

The probability that a random truth assignment does not satisfy a clause is the probability
that at least one of the literals in the clause is falsified or the clause contains no literals.
This is greater than the probability that at least one of the literals in the clause is falsified
which is one minus the probability that each of the r variables in V is either not in the clause
or is in the clause but only as the literal that is made ¢rue by the truth assignment. This
probability is (1 — (1 — p)7). The probability that all clauses are falsified is therefore greater
than (1 —(1-p)")*. O

Lemma 5 Ifp > (1 + €)In(n)/r for any € > 0 then a random expression is not tautological with
probability tending to 1. '

Proof:

IFrom Lemma 4 the probability that all clauses are falsified by a random input vector is greater
than (1 — (1 — p)”)*. By comparing the Talyor series expansion of e™? with 1 — p we have
(1 — (1 —p))* > (1 — e #")*. By hypothesis we have (1 — e=P")* > (1 — e~(1+e)In(n))n —
(1- n~(1+))2 . But lim,, ;_e0(1— n‘(l"'e))" = ¢~ ° = 1. Thus, the probability that a random
truth assignment is a falsifying truth assignment, if p > (1+4¢€)In(n)/r,is 1 in the limit. Hence,
a random expression is not tautological with probability tending to 1 if p > (1 + €)In(n)/r
forany € > 0. O

On the other hand,

Lemma 6 Ifp = cln(n)/r for any ¢ < 1 and limy, ;0o n!~¢/r = 0o then a random instance is tau-
tological with probability tending to 1. Ifp = a(n)ln(n)/r where a(n) = o(1) andlimy r_.co n/T = 00
then a random instance is tautological with probability tending to 1.

Proof;

The probability that a random truth assignment satisfies a clause is the probability that the
clause has at least one literal and each variable in V is either not in the clause or is in the
clause but only as the literal that is made ¢rue by the truth assignment. The probability

that a clause contains at least one literal is (1 — (1 — 2p)"). The probability that a clause is
satisfied given it contains at least one literal is no less than (1 — p)”. Hence the probability
that a random truth assignment satisfies a clause is no less than (1 — p)"(1 — (1 — 2p)”) and
the probability that a random truth assignment does not satisfy a clause is no greater than
(1-(1=p)"(1—(1-2p)")). The probability that a random truth assignment does not satisfy
every clause is no greater than (1 — (1 — p)"(1 — (1 — 2p)"))". The average number of truth
assignments that do not satisfy every clause is no greater than 2"(1—(1—p)"(1—(1-2p)"))".
Finally, the average number of truth assignments that do not satisfy every clause is an upper
bound on the probability that there exists such a truth assignment. If p = cln(n)/r, where
¢ < 1, then the average number of truth assignments that do not satisfy every clause is
no greater than ern(2)-n""° Byt |1, M e n(2)-n""" — ¢ if)} N n=¢/r = co. If
p = a(n)In(n)/r then the average number of non-satisfying truth assignments tends to 0 if
Yty BfF =600 0

In this section we have found conditions under which random expressions are redundant or
tautological with probability tending to 1. To summarize, if p < (1 — €)In(n)/(27), € > 0, and
pnr - 0 then almost all random expressions only have empty clauses. If p < (1—¢€)In(n)/(2r),€ > 0,
and pn — oo then almost all random expressions have redundant clauses. If p = a(n)In(n)/(27),
a(n) = o(1), and n/r — oo, then almost all random expressions are tautologies. If p = cIn(n)/r
for any ¢ < 1 and n'=¢/r — oo then almost all random expressions are tautologies.

In the next section we consider testability in the remaining parameter space.

4 Algorithms For Testability and Analysis

In this section we consider the performance of algorithms for the testability of random DNF ex-
pressions.

If p > cln(n)/r for every fixed c then testability is very easy. All we need to do for each clause is
set its literals to true to test for stuck-at-0 (separately, set one literal to false to test for stuck-at-1)
and then randomly select the remaining truth assignments. We call this the random-method.

Lemma 7 If p = a(n)ln(n)/r where a(n) is any growing function of n then the random-method
finds a complete set of test vectors for a DNF ezpression generated according to M(n,r,p) with
probability n=0((n))

Proof:

Since clauses are independent, the assignment is random with respect to all clauses but the
one under test. Hence the probability that all clauses but the tested one are falsified by the
assignment is greater than (1 — (1 — p)")™. The average number of times such assignments
fail to generate a valid test vector is less than 2n(1 — (1 — (1 — p)")") since the total number

of tests is 2n (stuck-at-0 and stuck-at-1 for each clause). This is an upper bound on the
probability that at least one truth assignment fails to generate a valid test vector. Let a(r)
be any function that increases with 7. Let p = a(r)In(n)/r. Then the probability that at
least one truth assignment fails to generate a valid test vector is bounded from above by
Il —em® VIR = o] e) = k0N, O

Since the random-method needs to be used 2rn+2n times to generate all tests, the average number
of times the method fails to produce a test is less than rn~((r)), This is an upper bound on the
probability of failure and tends to 0 as n,r — oo if n > 7¢ for any € > 0.

In the previous section we showed that random expressions are redundant if pn — oo and
¢ < 1/2. I limy, ;oo PR # 00, ¢ < 1/2, and lim,, , o n?7*¢/r = oo then with probability tending
to 1 the number of unit clauses in an expression is greater than v/r!*¢ for any € > 0. If the number
of unit clauses is greater than v/71t¢ then with probability tending to 1 there is at least one pair of
unit clauses that is identical or one pair that is complementary. Then the expression is redundant
or tautological.

Lemma 8 If the number of unit clauses in a random expression e is greater than v/ r'*e for any
€ > 0 then with probability tending to 1 either there 1s an identical pair of unit clauses in e or else
there is a complementary pair in e.

Let m be the number of unit clauses The probability that there are no two clauses that
are identical or complementary is rlr~™/(r — m)!. By applying Stirling’s approximation for
factorials this is less than (1 — m/r)™ "e™. In the limit this is e~™’/". The lemma follows.
0

Lemma 9 Ifp = a(n)ln(n)/r where a(n) < 1/2, and limp ;00 n2-4(n) /21426 — oo for any 6 > 0
then with probability tending to 1 the number of unit clauses in a random ezpression is at least

equal to V7142,

The number of unit clauses is binomially distributed with mean 2pr(1 — 2p)"~'n. By the
Chernofl bound for the binomial distribution the probability that the number of unit clauses
is less than 1| — 7~%/2 times the mean is less than e 2P7(1=22)""'n/3 — §/(n r). Let the
mean be greater than v7+2%. Then the probability that the number of unit clauses is less
than V7145 is bounded from above by §'(n,7) — 0. The mean is greater than vr!+2¢ if
lidgp 00 nl=2a(n) 5 /p1426 The lemma follows. O

On the other hand, if limy, ;oo pn # 00, ¢ < 1/2, and lim, ;.o n?72¢/7 = 0 then variables are
in so few clauses that with probability tending to 1 every clause contains either a literal that is not
present in any other clause or contains a literal [such that every other clause that contains [or its
complement also contains a literal that is not present in any other clause. We call this property of
instances property P. A literal that appears in only one clause is said to be solitary.

An instance with property P, is either redundant or testable in polynomial time. To generate
a stuck-at-1 test for a particular clause h in an irredundant expression, set all solitary literals to
false and their complements to true then set all unset literals satisfying property P in clauses not
yet falsified to false and their complements to true. As a result, all clauses will have value false. To
generate a stuck-at-0 test for h, set all literals in A to true and their complements to false. Then
set all solitary literals, excluding those of h, to false and their complements to true. Next, set all
unset literals satisfying property P in clauses not yet falsified to false and their complements to
true. All the clauses that have not yet been falsified contain literals that satisfy property P and
have value true (from h); and/or do not satisfy property P. For such clauses, if there are no literals
of the latter kind then the instance is redundant; if there are such literals, pick one that is unset
and set it to false and its complement to true. If some clause other than A is still not falsified then
h is redundant. Otherwise a test has been generated.

We now show that almost all random instances have property P under the conditions stated.

Lemma 10 Ifp = a(n)ln(n)/r where a(n) < 1/2, and for any € > 0, limy, r 00 n2—2a(n) fplte — ¢
then a random ezpression has property P with probability tending to 1.

Consider any clause a and suppose it has z literals. We shall say that a is semi-valid if a
contains no literals or or there is another literal in a which does not appear in any other
clause. We find the result only for semi-valid clauses; this will bound the result stated in the

hypothesis.

The probability that a has z literals is ([)(2p)®(1 — 2p)"~®. The probability that a variable
does not exist in a clause other than a is (1 — 2p)™~!. Hence, the probability that at least
one literal of a is not in any other clause given a has z literals is 1 — (1 — (1 — 2p)™)*. The
probability that a is semi-valid

r

2 () (2p)°(1 - 2p) (1= (1= (1 - 2p)")") + (1 - 2p)

x=1
,

= 1-) (;)(21?)“’(1 —2p)" %1 — (1 -2p)")"
z=1

= 1-(1-2p+2p(1-(1-29)")) + (1 - 2p)

= 1-(1-2p(1-2p)")" + (1 -2p)".

Applying the binomial theorem and summing gives

1-(1-2p(1-2p)") +(1-2p) = 1-pn(l+ O(pn))i (:) 2i(—2p)’
= 1-4p*nr(1-2p)"(1+ O(pn)).

Thus, the probability that a is not semi-valid is 4p®nr(1 — 2p)"(1 4+ O(pn)). The average
number of such clauses is 4p?>n2r(1 — 2p)”. This is an upper bound on the probability that
some clause in a random expression is not semi-valid. By the conditions of the hypothesis
this is less than 4c2(In(n))?n?=2%(") /r. The lemma follows. O

From Lemmas 8,9,10 and the results of Section 2 we conclude that either there exist algorithms
which find complete test sets for random expressions with probability tending to 1 or such ex-
pressions are redundant or tautological with probability tending to 1 if p < In(n)/(2r). We now
concentrate on the last remaining range of p.

If p=cln(n)/r, ¢ > 1/2, and lim, ;0o n' "¢/ = 0 then random instances are not tautological
and do not possess property P with probability tending to 1. In this case we can use a variant
of an algorithm called UNSAT-FINDER to generate complete tests with probability tending to 1.
UNSAT-FINDER, takes a DNF Boolean expression I as input and either finds a truth assignment
which does not satisfy I or gives up. Let V be the set of Boolean variables from which a random
expressione I is constructed. Let L denote the set of literals associated with V. Let var : L — V
be a mapping from literals to their associated variables. Let T' : V — {irue, false, unset} be a
mapping from variables to Boolean values. T' specifies a truth assignment to the variables in I; the
value unset is treated as a don’t care. It is constructed and returned by UNSAT-FINDER if the
algorithm does not give up.

UNSAT-FINDER(I):

For all v € V', set T'(v) = unset

Repeat
Let Conin denote the collection of clauses in I with the least number of literals
Randomly select literal I from Cl,in
If { is positive set T'(var(l)) = false, Otherwise set T'(var(l)) = true
set] = {c — comp(l)|ce I,l ¢ c}

Until there exists a null clause or I = @

If I = ® then return T’, Otherwise give up

It should be clear that if UNSAT-FINDER returns a truth assignment, that truth assignment
falsifies the original expression I. It should also be clear that UNSAT-FINDER runs in time
bounded by a polynomial in the length of I. The conditions for which the probability that UNSAT-
FINDER gives up tends to 0 are also the conditions for which random instances are not tautological.
We wish to find those conditions when p < In(n)/r (since we already know that instances are not
tautological in probability when p > In(n)/7). The result is similar to a dual result on CNF Boolean
instances and a “unit-clause” algorithm that was presented in [3]. However, that result is not strong
enough to be applied here. Therefore, in what follows we strengthen the result of [3] and adapt it
to UNSAT-FINDER while lifting some lemmas directly from that paper.

For the sake of simplifying the analysis we suppose that UNSAT-FINDER selects a literal from a
smallest clause only if there exist clauses of size less than In(2pr) (recall that 2pr is the average size
of clauses). Otherwise, UNSAT-FINDER selects a literal randomly from the set of unset literals.
In the analysis below references to UNSAT-FINDER are to this modified version.

We need to find the probability that no null clauses are generated by UNSAT-FINDER. We
do so by modeling the flow of clauses through various states during execution of the algorithm.
During each iteration of UNSAT-FINDER clauses containing the chosen literal are removed from
I (because they are clauses that become falsified by the assignment T'(var(l))) and occurrences in

I of the complement of the chosen literal are removed (because they represent literals that have
value true as a result of the assignment T'(var(l))). Let Ci(j) denote the collection of clauses in I
containing exactly 7 literals at the start of the j+ 1% iteration. Let J(z,y, z) denote the probability
distribution over DNF Boolean expressions where z clauses are chosen uniformly and independently
from the set of all possible z-literal clauses that can be constructed from y Boolean variables.

Theorem 1 Given |Cy(7)] = ni(7), for all 1 < i < r — j, the clauses in C;(j) are distributed
according to J(n;(7),r — 7,1) independently of the clauses in Cy(7), [# 4.

Proof;

This is certainly true for the case 7 = 0. Suppose it is true for all 0 > j > m. There are two
ways the m + 1°¢ selected literal is chosen: from the set of smallest clauses Cr(m) if there
exists a k < In(2pr) such that Cx(m) # ¥, and randomly from the set of unassigned literals
otherwise. Consider the second case. By hypothesis, if h; clauses of C;(m) contain the selected
literal or its complement, the remaining n;(m) — h; clauses of C;(m) are distributed according
to J(n;(m)—h;,r—m—1,17). If g;y1 clauses of C;1(m) contain the complement of the selected
literal, stripping occurrences of that literal from those clauses results in a collection of g, 41
clauses distributed according to J(gi41,7 — m — 1,7). Combining the two collections results
in n;(m) — h; + gip1 clauses distributed according to J(ni(m) — h; + giy1,7 — m — 1) =
J(ni(m 4+ 1),7 — (m + 1),7). Now consider the case that a literal is selected from Ci(m),
k < In(2pr). Except for the clause from which this literal was selected, the clauses of I are
independent of the selected literal. Hence the previous argument applies. O

Let X be a random variable and let E{X} denote the expectation of X. Let w;(j) denote the
number of clauses entering C;(j+ 1) as a result of selecting the j+1° literal (there is no dependence
on instance given here since we will soon take expectations). Let z;(j) denote the number of clauses
leaving C;(7) as a result of selecting the j + 1° literal. Let n;(j) = |Ci(j)|. A set of recurrence
relations for E{n;(j)},1 < 1,7 < r, in terms of E{w;(j)} and E{z(j)} can be developed as follows:

E{ni(j +1)} = E{ni(j)} + E{wi(7)} — E{z(5)}- (1)
Because of Theorem 1, for all In(2pr) < i< r

i - E{ni(5)}
T—7 '

E{z(7)} = B{E{z(7)In:(s)}} = Z PT("«()=1)=

Also, E{w,(7)} = 0 and for all In(2pr) <i<r

B{w(j)} = B{B{wi(5) e (7))} = ZZEET“ rlaa(i) = 1) = LRI,

10

The recurrence relations for 1 < 7 < In(2pr) depend on p;(j), the probability that the selected
literal [is chosen from C;(7). In this case we have

B{a(i)} = B{z(i)ll ¢ Ci(i)}(1 - pi(3) + E{z(5)Il € Cils)}p:(d)
= WHHUJ (1 - - “_J)
and
E{wi5)} = E{wii)ll ¢ Cipa(5)}1 — pia(4)) + E{wi(5)l € Cisa(9)}pisa(s)
_ GHDEmnG) o G
- 2(r - 5) P =5y

From Theorem 3.3 of [3] we have

Lemma 11 For allln(2pr)<i<rand1<j<r,

E{ni(5)} = (T B J) (2p)'(1 — p)’(1 — 2p)" " n. (2)

(3
Since the number of literals in a clause of a random expression is binomially distributed,

Lemma 12 Forall1<i<r
T . .
E{ni(0)} = (i)(?fp)‘(l —2p)"'n

From Lemma 10 the conditions which insure E{win(spr)-1(7)} < 7~ for any € > 0 can be obtained.

Lemma 13 For any € > 0, if e™2)+2+en2)Hner))/(1=p)=Prp [p < 77¢ then for all 1 < j < 1,
E{wln(Epr]—I(j)} LHE

Proof:

In(2pr) E{nun(2pr)(7)}
2(r—7J) '

The maximum of E{njy(3,r)(7)}/(7 — j) can be found by determining the value of j which

makes
(T =, J)E{nhl(Zpr](J I 1)} =
(r =7 = 1)E{nin(2pr)(4)}

E{win(2pry-1(7)} <

11

and substituting that value in (2). Thus, we want j such that

(r =) E{rungapn (G + 1)} (7 = 5)Gagdory) (20) 2701 — p) (1 — 2p)—InCrr)-i-1p
(r =7 = DE{min(apr)(1)} (7 = 5 — 1)(gpr)) (22)2CP)(1 = p)i(1 — 2p)7~In(2Pr)=in

This is satisfied by j = jmez = 7 — (1 — p)(In(2pr) — 1)/p. Making use of Stirling’s approxi-
mation in the third step below we have,

E{nln[Epr}(jmm:)}
('r - jma:c)

= P (1 - p)(In(2pr)—1)/p In(2pr) gl =1V
a (1 —p)(In(2pr) - 1) (In(2pr) (2p) (1-p)

x (1 — 2p)(1-P)(in(2pr)-1)/p—In(2pr)p,
=7)Z; pr) (21111(2(1, r))l;(zpr) | — p)yr=(=2p)(2pr)/p(1 _ 9p)(1-2p)In(2pr)/p (1-p)““’”"n
— (1 —=p)In(2pr n(2pr)! 4 T2

- (1-2p)In(2pr)/p

i (1-p) 111(2;07')(28) {3 B} —v e‘n
<) (2¢)(2er) =P g=(1-20) In(2r)/(1-P) 21,

(1 - p)In(2pr)
P e]n(z)—p'r-!-pln(Zpr)f(]-—p)+2n’
In(2pr)
Thus, forall 1 <7<

E{win(zpr)-1(3)} < pre!n(2)+24pin(2er)[(1-p)=pr . (lo(2)+2+(pIn(2)+In(pr))/(1-P)—Pry /7

The lemma follows. O

Lemina 5 says that non-tautological instances are produced with probability tending to 1 only
if limp,r oo e P n/r = 0. Lemma 12 says that E{wipr)-1(j)} < r™“forall 1 < j < rif
limp ryoo ¢ P'n/r!*te = 0 for any € > 0. Thus, in some sense for almost all non-tautological
instances, E{wyn(2pr)-1(7)} < 77 for 1 < j < r. It will be shown that if E{wis(apr)-1(s)} < 77°
for 1 < j < r and any € > 0 then with probability tending to 1 UNSAT-FINDER will find a truth
assignment for each clause such that the clause has value true (false) and all other clauses have
value false. Thus, with UNSAT-FINDER it is possible to generate a complete set of test vectors
for a PLA with probability tending to 1.

The following theorem will make our work much easier.

Theorem 2 The probability there exists a clause of size less than In(2pr) in a random instance
tends to 0 if p = cln(n)/r where ¢ > 1/2.

Proof:

12

The probability that a clause has size no greater than In(2pr) is

In(2pr)

P (J) (2p)'(1 — 2p)—=CP"),

=0

Since In(2pr) is much less than the mean pr, this sum is less than (2pre)™(2Pr)e=2p" Thus,
the probability that all clauses have size greater than In(2pr) is at least

(1 _ (2pTe)ln(2pr)e—2p7-)ﬂ '

If p=cla(n)/r this is

In(2pr) 1 —2¢

(1 - (2pre)1“(2p")n‘2°)ﬂ g iteme)

But (2pre)?(2rr) = (2ecln(n))™2<12(n) cannot grow as fast as n® for any ¢ > 0. Hence the
exponential tends to 1 if ¢ > 1/2 and the lemma is proved. O

Suppose after creating a random instance we set n;(7) = 0 for all 1 < 7 < In(2pr) — 1 (that is,
we eliminate all clauses of length less than In(2pr)). With probability tending to 1 we do not have
to do so. Hence the result will apply to almost all random expressions.

Lemma 14 For all 1 < i <1In(2pr) — 1, limn oo pi(5) = E{w:i(5)} — E{w;_1(5)}

Proof:

}Ui(j} = pT(Cl(j) =d,i=3,2..,1— 1) - p'.-“(Cg(j) = l=1,2 ,1)

Since Ewm(gp,_)_l(j) < r~¢ the average number of iterations between successive occurrences
of the event that a clause moves from C; to C;_; increases with increasing n and r. Hence,
asymptotically, the probability that there is at least one clause in Ci(j), [= 1,2,...,i— 1, is
the flow of clauses into C;_1(7). This is E{w;_1(7)}. Similarly, the probability that there is at
least one clause in Cy(5),! = 1,2,...,1,is E{w;(7)}. Hence, p;(j) tends to (1 - E{w;_1(j)}) —
(1 - B{w(5)}) = B{wi(7)} - E{wi1(5)}. O

Then we can write for 1 <:<In(2pr)-1,1<3<r

E{ni(j + 1)}

i

(1 ot) E{mi(j)} + (1 - 1_—}3-) E{w;_1(j)} + T%].E{w.:(j)}

T—7
= (1-75) (14 5= B} + 5 EAw))
< (1 35) BOWO + 5Bl

13

Theorem 3 Let E{n;(0)} =0 for all1 < i <In(2pr). Forall1<i<In(2pr),1<j<r, >0

n(2pr\(2er) [_ o .
BN < R (]n(Z};:")) (2p)m)(1 — 2p)—intaem)=in

i TR i) S
Proof:

By double induction. The basis step at each ¢ holds since E{n;(0)} = 0. The induction step
proceeds as follows:

B+ 10} = (1 5) Bml)} + 5 Elmaa()}

(2(r ~ 5) = i)(In(2pr)y2m) (ln‘iz;r))(zp)hf?m(l — 2p)(r-nEer)~3)n
2(r — 3)i(r — 7)==
i(i + 1)(In(2pr))r)(, 757) (2p)2#7)(1 — 2p) —1n(%Pr)—in
(i a4 1)(54-1)(7. o J.,) (In(2pr)—i— 1)2(?. _ j)z
(In(2pr))=en) (152) (2p)=CFr)(1 — 2p) —t=(r)=in (i 2Ar—d)- i)
2(r — 7)(n(2pr)-i+1) (4 1) it
(In(2pr))=(2er)(, 7 2p‘_)) (2p)=(2p7)(1 — 2p)(r-In(2er) i)y (3-(1_6_1))
i#2(r — 7)) 2(r = 7)
(13(21”’))111(2”}(111{zpr)(2p)(2Pr)(1 — 2p)(r=In(2pr)—i-1)p (r — j)w(2er)—i
#2(r — 7)(=(2pr) =) (r = § — 1)=(2er)=

This proves the theorem. O

Theorem 4 Let E{n;(0)} = 0 for all 1 < i < ln(2pr). For any € > 0, all p < cln(n)/r, and
1=g=wr,
In(2pr))")n

rIn(2pr)

E{wi(5)} < &

if limiy oo € P /7S = 0,
Proof:

From the previous theorem

E{wi(7)} < (In(QPT))ln{zm)(lxt(Zpr)

.)(2p)ln(2pr](1 - 2p)(r—h1(2pr}—j)n_

Using the technique of Lemma 13 we find that this expression has a maximum at j = r—1/2p.
Substituting back into the expression gives the result. O

14

Theorem 5 The probability that UNSAT-FINDER does not find a falsifying truth assignment is
bounded from above by In(n)In(r)E*{w,} where E*{w.} s the mazimum flow of clauses into C}.

Proof:
Similar to the proof of Theorem 3.4 in [3]. O

From Theorems 4 and 5 we have the probability that UNSAT-FINDER does not find a falsifying

truth assignment is bounded from above by

n)In(r 7))(2Pr)
In(n) In()r(lilzgzg) 3)

if p = cln(n)/r, ¢ > 1/2, and lim,, ;0o n*~¢/r = 0. This is less than 1/(r'**n) if n < 2. If
n > 27 falsifiability may be found in polynomial time by exhaustive search.

We make use of UNSAT-FINDER to generate tests in the same way that we made use of the
random-method except that we use UNSAT-FINDER for generating the truth assignments. Since
we have to make 2rn + n tests the average number of failed tests is less than O(In(n)n?/r2in())
from (3). This is an upper bound on the probability that a test fails and tends to 0 as n,7 — oo
under the conditions stated.

5 Conclusions

In this paper we have examined the impact of primality and irredundancy on the ease of testability
of two-level circuits. We have shown that for a large class of prime and irredundant circuits that
with probability tending toward 1, the circuit may be fully tested in polynomial time. Thus for
this restricted class of circuits we have shown that full testability does indeed imply easy testability
with high probability .

References

[1] K. Bartlett et al, Multilevel logic minimization using implicit don’t cares, IEEE Transactions on
Computer-Aided Design of Integrate Circuits and Systems, 17, 6 , pp. 723-740, June , 1988 .

[2] R. K. Brayton and C. McMullen and G. D. Hachtel and A. Sangiovanni-Vincentelli, Logic Minimizaiion
Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984 .

[3] J. Franco, and Y. C. Ho, Probabilistic performance of a heuristic for the Satisfiability problem, Discrete
Applied Mathematics, 22, pp. 35-51, 1988/89 .

[4] H. Fujiwara, Logic Testing and Design for Testability, MIT Press, Cambridge MA 1985 .

15

[5] G. D. Hachtel and R. M. Jacoby and K. Keutzer and C. R. Morrison, On the relationship between area
optimization and multifault testabilty of multilevel logic, Proceedings of the International Workshop on
Logic Synthests, June, 1989.

[6] D.S. Johnson, The NP-Completeness column: an ongoing guide, Journal of Algorithms, 6, pp. 291-305,
1985 .

[7] 1. Kohaviand Z. Kohavi, Detection of multiple faults in combinational logic networks, IJEEE Transactions
on Computers, C21 , 6, pp. 566-568, June , 1972.

[8] E. J. McCluskey, Minimization of Boolean functions, Bell Lab. Technical Journal, Bell Lab., 35, pp.
1417-1444, November, 1956.

16

