TECHNICAL REPORT NO. 276

I'mbedding the Self Language in Scheme
by
Julia L. Lawall and Daniel P. Friedman
May 1989

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Embedding the Self Language in Scheme*

Julia L. Lawallf
Computer Science Department
Indiana University
Bloomington, IN 47405, USA
jll@iuvax.cs.indiana.edu

Abstract

Two common approaches to language imple-
mentation are interpretation and compilation.
In this paper we describe a third approach, the
process of embedding a language within an-
other. This approach combines speed of im-
plementation with efficiency of the resulting
language. A language defined in this man-
ner is also more flexible than its compiled or
interpreted counterparts. We present an im-
plementation of the object-oriented program-
ming language Self as an example of this tech-
nique.

1 Introduction

Two common approaches to language im-
plementation are interpretation and compi-
lation. These differ in the ease of imple-
mentation and the speed of the defined lan-
guage [Reynolds72], but they share the prop-
erty that the defining language is closed off
from the host language. It may, however, be
desirable for the new language to be able to
interact with the language in which it is imple-
mented. The new language may not be suit-
able for all applications. If it can interact with
the defining language and other languages are
also embedded in that language, then the new

*To appear in the BIGRE Bulletin's special issue
on “Putting the Scheme Language to work”

tSupported by a NSF Fellowship.

tSupported by the National Science Foundation
under Grants Numbered CCR 87-02117 and DCR. 85-
01277, and by the Air Force Office of Scientific Re-
search, under Grant Number AFOSR 89-0186.

Daniel P. Friedman*
Computer Science Department
Indiana University

Bloomington, IN 47405, USA
dfried@iuvax.cs.indiana.edu

language can easily interact with those lan-
guages as well. This capability adds to the
flexibility of the system.

One language in particular with which the
defined language can interact is the defining
language itself. The new language can inherit
such features as the definition and application
of primitive functions. Thus the implemen-
tation of the new language is simpler. The
implementor can concentrate only on those
aspects that differ from the host language.
Of course the programmer then has to avoid
those features of the host that are intended to
be replaced by the embedded language.

To illustrate the ease of the embedding ap-
proach to language implementation we have
chosen to embed the language Self in Scheme
[Rees86). Self [Ungar87] is an object-oriented
programming language that has no classes,
only instances. Self has a flexible system of in-
heritance and a uniform way of accessing vari-
ables and methods, comparable to that of Eif-
fel [Meyer88]. Using our implementation we
can explore the interactions between Self and
other languages that can also be embedded
in Scheme, such as Prolog [Felleisen85]. Our
approach may be distinguished from that of
Adams and Rees [Adams 88] in that we embed
an existing language into Scheme, whereas
they add object-oriented features to Scheme
itself.

The next section describes the Self language
in greater detail. Embedding Self in Scheme
is made practical by Scheme’s mechanism for
defining new syntax, syntax. This mecha-
nism was developed by Eugene Kohlbecker

[Kohlbecker86]. It is described in Section 3.
Section 4 compares the notation used by Un-
gar and Smith with ours. Section 5 discusses
the actual implementation. In the last section
we present our conclusions.

2 The Self language

We have chosen to concentrate our implemen-
tation on three aspects of the Self language.

In Self there are no identifiers. Instead all
information is stored in the method of some
object and is accessed by sending that ob-
ject a message. Because message passing is
the primary operation, the language is simpli-
fied. An additional result is that the distinc-
tion between values that are stored and values
that are computed disappears. In one case,
however, identifiers are allowed. One of the
goals of embedding the language in Scheme
is to allow the result to access some of the
features provided by Scheme and provided by
other systems implemented in Scheme. There-
fore in our implementation identifiers refer to
Scheme variables. Often objects are globally
defined and are accessed using Scheme vari-
ables, whereas information local to an object
is accessed by sending it messages.

The Self language does not contain classes.
Instead every object is an instance. Every ob-
ject can also be copied, or cloned to produce
a new instance of that object. In our imple-
mentation the new instance is a copy of the
original as it was created. It does not reflect
assignments made to the variables of the in-
stance. Thus making copies from two different
copies of some object will produce identical
new objects.

The third feature of Self included in our im-
plementation is the way in which a method is
evaluated. It is first cloned. The copy can
be thought of as an activation record since it
contains the arguments passed to the method.
The parent of the new object depends on its
type. If it is a dynamic object the parent is
the receiver of the method name. If it is a
static object the parent is determined when
the object is created. In either case the iden-
tity of the parent determines in what scope

any code in the method is evaluated. Thus us-
ing a dynamic object corresponds to using the
dynamic environment, whereas using a static
object corresponds to using the lexical envi-
ronment. This process differs from the fluid
facility of a language such as Scheme in that
the variables themselves have no control over
how they are accessed.

These three features of Self, when combined
with the facilities provided by Scheme, pro-
duce a powerful, yet simple language.

3 Code Expansion

3.1 Syntax

Some versions of Scheme provide the spe-
cial form syntax for defining syntactic exten-
sions. Syntax allows expansions to be speci-
fied by patterns, permitting complicated syn-
tactic tranformations to be defined in a read-
able manner. Below we show the definition of
the special form loop that repeatedly executes
a sequence of expressions.

(syntax
(Loop ([n v] ...) exp ...)
(letrec
([top (lambda (n ...)
exp ...
(top v ...001)
(top v ...)))

As an example of its use,

(loop ([a 61)
(display a))

expands into

(letrec ([top
(lambda (a)
(display a)
(top 6))1)
(top 6))

When it evaluates, it prints 6 repeatedly.
The first argument to syntax is a pattern.
The name of the syntactic extension appears
leftmost in the pattern. All other symbols are
variables, which may match any expression.

List structures must match exactly. For exam-
ple, the pattern [x y] will only match a list of
two elements. The list may contain any two el-
ements, including arbitrary lists. The symbol
following a subpattern means the sub-
pattern matches zero or more matches of the
subpattern. In the example ... follows the
pattern variable exp. Thus exp ... matches
any number of expressions. Similarly, [n v]
. matches zero or more lists of length two.
The second argument to syntax describes
the expansion. Pattern variables may be used
freely. When ... is used in the pattern it is
considered to be part of the preceding subpat-
tern. Whenever those patterns or their sub-
patterns are used in the expansion they must
be followed by In our example exp is
followed in the pattern by Thus wher-
ever exp appears in the second argument, it
or some enclosing expression must be followed
by Similarly, since [n v] was followed by
... both n and v are followed by ... in the
expansion. Symbols that appear in the sec-
ond argument that are not pattern variables
appear in the result exactly.

3.2 Capturing

The expansion of loop introduces a new vari-
able, top. Top is not a pattern variable so
it appears in the result exactly. Those argu-
ments to loop that appear in the scope of top
can use its value, even though in the source
program, top would appear not to be defined,
or to be defined differently. When top is used
in one of these expressions it is said to capture
the binding introduced by the expansion.

Capturing may or may not be desirable.
Making the user aware of the variables bound
inside the syntactic extendsion can provide
additional power. In the case of loop the user
can call top in any of the arguments and jump
to the top of the loop. For example, in

(loop ()

(display "printed")
(top)

(display "not printed"))

(display "not printed") is never reached.
If, however, the variables introduced by the

expansion are used in a way other than what
was intended, the behavior of the syntactic ex-
tension will change. For example, if top were
assigned in one of the exp ..., the call to top
added by the expansion would use the new
value of top rather than the value intended by
the definer of loop. Contrary to what the user
probably intended, however, the new value of
top would not be seen outside.

In the implementation of Self the variables
self and ego are captured by the expan-
sions of make-code and make-object, respec-
tively. While it is an integral part of the
language that these variables should be used,
they should never be assigned or rebound.
The syntax facility has no way to enforce this
restriction. Instead it must be presented as
part of the protocol for using the language.

4 Self Notation

As an example of a Self program we present
an implementation of a hash table [Ungar87].
Appendix A contains the original program
and its translation into the syntax of our sys-
tem. Our code can be executed using the pro-
cedure definitions in Section 5 and Appendix
B. We first introduce the syntax of both lan-
guages.

Ungar and Smith’s syntax is similar that
of Smalltalk. Square brackets enclose ob-
jects and blocks, whereas curly braces enclose
methods. Object and method arguments are
either preceeded by a colon and listed between
the vertical bars at the beginning of the defini-
tion, or indicated using the keyword notation
of Smalltalk. Local declarations also appear
between the vertical bars. All variables are
implicit messages to self, the receiver of the
message.

Our notation is different. Because the lan-
guage is embedded in Scheme, the syntax is
more like that of Scheme. Since methods are
procedures they need not be defined textu-
ally within the enclosing object. A method
accesses its context through the variables ego
and self and through its parent. Thus meth-
ods need not be defined within the objects in
which they are used.

For a more detailed comparison of the two
syntaxes we examine emptySet. Figure 1
shows its definition using both systems. For
comparison purposes we have added the show
method to the original definition. It appears
in our definition because the array is repre-
sented as an object rather than explicitly as a
vector.

EmptySet describes an object. In the orig-
inal notation objects are enclosed by square
brackets. In ours an object is created using
make-object. The result is converted to a
dynamic object using the procedure dynamic.
The procedure static is available to make
static objects. The difference between static
and dynamic objects is described in Section 5.

In the original notation methods are defined
by giving the name, followed by “=" followed
by the value. In ours make-object takes five
arguments, each of which is a different cate-
gory of method. The first is the list of param-
eters. The next is a list of assigning methods
and the variables they affect. The third is a
list of local variables and their initial values.
The fourth is a list of the methods that can be
shared by all copies of the object and the fifth
is a list of the methods of which each object
has its own copy.

In emptySet, size and contents are local
variables. There is no method in emptySet to
side-effect these variables. In SetTraits (See
Appendix A.), of which emptySet is a child,
size: and contents: are defined. Size: is
a method that assigns the first variable called
size found on the inheritance chain. In the
original notation this is indicated by the fact
that the definition of the size: method is a
left arrow. The variable affected has the same
name as the assigning method, but without
the final “”. In our system assigning methods
can have any name. The name of the assigning
method is the first element of each inner list in
the second argument to make-object and the
affected variable is that list’s second element.
Contents: behaves similarly.

The other method defined in emptySet is
show. It is a sharable method. A method is
either a code method or an object method.
Code methods are defined using make-code.
Object methods are defined by first creat-

emptySet = [|
size = 0.
contents = #(nil) |
show = {contents}].

AnEmptySet = {SetTraits emptySet clone}.

(define emptySet
(dynamic
(make-object () ()
([size (make-code 0)]
[contents (make-code (array top 10))])
([show
(icdynamic
(make-object) () O O
([code
{make-code
(vsend (vsend ego ’contents)
'me))1)))1)
(O3D)

(define AnEmptySet
(emptySet (SetTraits top)))

Figure 1: emptySet in the original syntax and
in ours

(define icstatic
(lambda (ego obj)
(invoke ’code (static ego obj))))

(define icdynamic
(lambda (obj)
(invoke ’code (dynamic obj))))

Figure 2: icstatic and icdynamic
(define top
(ref

(lambda (method q)
(q method))))

Figure 3: top

ing an object using make-object and either
static or dynamic. The result is then passed
to invoke along with the method name to
run when the method is used. In our sys-
tem this method name is always code. Thus
we have defined the procedures icstatic and
icdynamic (See Figure 2.) that convert an
object into a method. Code methods corre-
spond to the bodies of blocks in the original
notation, whereas object methods are those
enclosed by curly braces.

Two variables are used in show. In the orig-
inal implementation variables are implicitly
sent to self, the receiver of the message. In
our system all messages must be sent explic-
itly to some object. Self is the receiver and
ego is the enclosing object. Any other acces-
sible object can also be used. Usually we pass
variable names to ego because generally the
variable of the enclosing object or some an-
cestor is what is really desired. In show, the
message contents is sent to ego. The result
is an array object. We next send me to that
object to get the internal representation of the
array. Vsend is used to dereference the loca-
tion returned for a variable.

Finally, we construct an emptySet object,
called AnEmptySet (See Figure 1.), by pass-
ing emptySet a parent. As stated above, the
parent of an emptySet object is a SetTraits
object. The parent of the SetTraits object is
just top (See Figure 3), a special object that
understands no method names.

5 The Implementation

We now turn to the implementation of the two
main types used in Self: objects and code. We
first establish some terminology, then discuss
how these entities are created, and finally de-
scribe how each is used.

An object is an association between method
names and methods. Dynamic objects are
those that find their methods in the runtime
environment. The methods of static objects
are determined at compile time. In [Ungar87)
dynamic objects are referred to as objects and
static objects are referred to as closures.

Methods are either invoked objects, or code.

An invoked object is one that has been pro-
vided with a method name to run when the
arguments to the object are available. An in-
voked object is fully invoked by passing it the
receiver of the method name and some argu-
ments. It then produces a value. A wvalue is
any Scheme value, including objects and code.
Code methods are just Scheme code.

A boz is any zero argument method that
when fully invoked returns a reference to a
value. A wariable is a method name bound to
a box. A setter is a method that changes the
value of its associated variable.

There are two ways of looking at an object.
The first way, represented by the variable id,
allows the object to be copied. This variable is
only directly accessible to the system-defined
method clone. The second allows the meth-
ods of the object to be accessed. It is repre-
sented by the variable ego. Ego can be used
in user-defined methods.

5.1 Creating Objects

Each object has two categories of methods.
Global methods are those that are created once
and are shared by every copy of the object.
Global methods do not have access to the
variable ego and thus do not have direct ac-
cess to the enclosing object. For this reason
global methods are generally dynamic objects,
which will inherit the methods of the enclos-
ing object. Global methods are further di-
vided into two categories: the setters and the
user-defined global methods. Local methods
are those that are recreated for each object.
There are three kinds of local methods: ar-
guments, local variables and user-defined lo-
cal methods. Local variables differ from user-
defined local methods in that the expression
to which one is bound is evaluated when the
object is created and the result is stored in
the variable’s associated box. All local meth-
ods have access to the ego variable.
Make-object (See Figure 4.) takes these
subcategories of methods as arguments and
expands them into a call to build, the proce-
dure that constructs a new object. The for-
mat of the arguments to make-object is as
follows. The first argument is a list of the

parameters of the object. All subsequent ar-
guments are lists of length two. The first el-
ement of each inner list of the next argument
is the name of a setter and the second is the
variable it affects. In the third argument the
first element is a local variable and the second
is the method that when fully invoked pro-
duces the variable’s initial value. The fourth
contains the name and method of each user-
defined global method and the fifth contains
the name and method of each user-defined lo-
cal method. The user-defined methods are ei-
ther code methods created using make-code
or invoked objects. An object is converted
into an invoked object by passing it along with
a method name to the procedure invoke (See
Figure 12.). Invoke returns a procedure that
when passed the receiver of the method name
and some arguments runs the method speci-
fied by the second argument to invoke.

Build takes three arguments: the global
methods, the local methods, and a clone
method. Make—object packages its arguments
into calls to the procedures that make these
categories of methods. Each of these proce-
dures sets up some bindings and then returns
another procedure. When this procedure is
applied to a method name it checks the bind-
ings. If the method name is bound by one of
them the associated method is returned. Oth-
erwise it invokes its second argument, a pro-
cedure that knows where to look next for the
method associated with this method name.
This procedure is known as a failure continu-
ation.

Do-globals (See Figure 5.) is the proce-
dure that makes the global methods. It cre-
ates a method for each setter. Each of these
takes one argument, the new value. It looks
up the associated variable and side-effects the
returned location with the new value. The
procedure returned by do-globals also asso-
ciates the user-defined global method names
with the user-defined global methods.

Do-locals (See Figure 6.) creates the local
methods. Because each copy of the object has
its own set of local methods, they cannot actu-
ally be constructed now. Instead do-locals
just returns a procedure. When this proce-
dure is passed the identity of the object in

(syntax
(make-code exp ...)
(lambda (self) exp ...))

(syntax
(make-object
args
([setter affects] ...)
([local iexp] ...)
([globalname globaldef] ...)
([localname localdef ...] ...))
(build
(do-globals
'(setter ...)
'(affects ...)
’ (globalname ...)
(list globaldef ...))
(do-locals ’(local ...)
‘args
’(localname ...)
(list (lambda (ego) localdef ...) ...))
(do-clone
‘args
’(local ...)
(list (lambda (ego) iexp) ...))))
(define build
(lambda (globals make-locals make-clone)
(lambda (clone-parent)
(let ([ans
((deref
(make-once
(lambda (id)
(let ([clone-method
(make-clone
id clone-parent)])
(lambda ()
(make-once
(lambda (ego)
(search
globals
(make-locals ego)
clone-method
(inherit ego)
NN

(lookup ans ’clone notfound)))))

Figure 4: make-code, make-object, build

which the local methods are to be defined, it
creates the local methods. At that time fresh
boxes are made for the arguments and the lo-
cal variables. In addition a box is made for the
parent method. This method is added to ev-
ery object to contain the object’s parent. It is
a code method rather than an invoked object.
If it were an invoked object it too would have
a parent method causing an infinite loop. Be-
cause the user-defined local methods are each
passed the variable ego, they have access to
the enclosing object.

The clone method is created by the proce-
dure do-clone (See Figure 8.). Although the
clone method is shared by every instance, it
is created separately because the arguments
it uses are different from those used to con-
struct the other global methods. The argu-
ments to do-clone are the parameters, the
local variables, and their initial values. It
requires two other arguments that are not
available to the syntactic extension. Thus
like do-locals, do-clone returns a proce-
dure that when passed these arguments re-
turns the clone method. The action of the
clone method is discussed in the section on
cloning below (section 3.2).

These three arguments to build are those
needed by both static and dynamic objects.
The argument distinguishing the two types
of object is clone-parent, the procedure
that determines the parent of new objects.
Rather than have separate build procedures
we abstract out the similarities and produce
the procedure build. Thus build takes the
three arguments that are common to both
types of object and then returns a procedure
whose argument is the procedure that cre-
ates the difference. Because Scheme supports
higher-order procedures, the values of the first
three arguments are not lost. The procedure
static (See Figure 9.) passes the result of
build a procedure that returns the stored par-
ent. The procedure dynamic on the other
hand passes the result a procedure that re-
turns whatever parent it is passed. Build now
has the information needed to build an object
of either type.

Internally an object consists of three basic
parts. The variable id, which allows it to

(define do-globals
(lambda (setters affected names methods)
(let ([setterfns
(map
(lambda (x)
(invoke ’code (make-assign x)))
affected)])
(lambda (msg q)
(cond [(member msg setters)
(rlookup msg setters
setterfns)]
[(member msg names)
(rlookup msg names methods)]
[else (q msg)1)))))

Figure 5: do-globals

(define do-locals
(lambda (locals args names method-makers)
(let ([vfn (lambda (x)
(invoke ’code
(make-variable (ref x))))1)
(lambda (ego)
(let ([parent
(let ([b (ref *())1)
(lambda (s . v) b))]
[1clfns (map vfn locals)]
[argsfns (map vfn args)]
[methods
(map (lambda (x) (x ego))
method-makers)])
(lambda (msg q)
(cond [(member msg locals)
(rlookup msg locals lclfns)]
[(member msg args)
(rlookup msg args argsfns)]
[(member msg names)
(rlookup msg names methods)]
[(eq? msg ’parent) parent]
[else (q msg)1)))))))

Figure 6: do-locals

(lambda ()
(make-once
(lambda (ego)
(search
globals
(make-locals ego)
(make-clone id clone-parent)
(inherit ego)))))

Figure 7:

be copied, the variable ego, which allows it
to refer to itself, and a procedure that when
passed a method name returns the method as-
sociated with that method name. The body of
the build procedure sets up these three things
and returns a new object.

Id is bound using make-once (See Fig-
ure 10.). Make-onceis a procedure that passes
to its argument a location. When the appli-
cation returns, make—once stores the result in
that location. Thus any procedures created by
the argument to make-once have access to the
value returned by the application. In this case
the procedure in Figure 7 is stored in the vari-
able id. Each time this procedure is applied
it calls make-once on (lambda (ego) ...),
thus creating a new object.

The call to search (See Figure 11.) returns
a procedure that takes a method name and a
failure continuation as arguments. This pro-
cedure then tries to find the method name in
each of its arguments. Locals-maker is in-
voked here to make a new set of local meth-
ods for the new object. Inherit is a proce-
dure that searches for the method name in
the ancestors of the new object. It thus also
needs to be passed ego. Methods in earlier ar-
guments to search overshadow those in later
ones. For example, because of the order of the
arguments to search it is possible to redefine
the clone method.

The arguments and local variables of the
object created so far are uninitialized. Thus
the last line of build calls the clone method
to create a new initialized object. We next
describe the cloning process.

(define do-clone
(lambda (args locals iexps)
(lambda (id clone-parent)
(let ([cln
(lambda (newparent . values)
(let* ([ego ((deref id))]
[fn (lambda (n v)
(set-ref!
(zend ego n) v))1)
(fn ’parent
(clone-parent newparent))
(for-each fn args values)
(for-each fn locals
(map
(lambda (x) ((x ego) ego))
iexps))
ego))])
(lambda (msg q)
(if (eq? msg ’clone)
cln
(q msg)))))))

Figure 8: do-clone

(define static
(lambda (ego etc)
(etc (lambda (x) ego))))

(define dynamic
(lambda (etc)
(etc (lambda (x) x))))

Figure 9: static, dynamic

(define make-once
(lambda (fn)
(let ([cell (ref ’garbage)])
(let ([ans (fn cell)])
(set-ref! cell ans)
(ref ans)))))

Figure 10: make-once

(define search
(lambda 1
(lambda (method q)
(letrec ([loop
(lambda (1)
(if (null? 1)
(q method)
((car 1) method
(lambda (method)
(loop (edr 1))))ND)
(loop 1)))))

(define inherit
(lambda (ego)
(lambda (method q)
(lookup (vsend ego ’parent)
method q))))

Figure 11: search, inherit

5.2 Cloning

A copy of an existing object is made using
that object’s clone method. The arguments
to the clone method are the parent of the
new object and the values to which the pa-
rameters of the new object should be bound.
There are four steps. First, a new copy of the
object is created by invoking the value of the
id variable. Next, clone-parent is applied
to the provided parent to determine the ac-
tual parent of the new object. This value is
stored in the parent box. Third, each of the
values is stored in the arguments. Finally, the
initial expressions to which the local variables
are bound are evaluated and the results are
stored in the local variables. The fully initial-
ized new object is then returned.

5.3 Using Objects

The procedure send (See Figure 12.) is used
to access the methods of an object. Its argu-
ments are an object, a method name, and any
other arguments for the method. First, send
uses the procedure lookup to find the method
associated with the method name. Lookup
passes the object the method name and the
failure continuation provided by send. Since
this system supports only single inheritance,

(define send

(lambda (ego method . args)
(apply (lookup ego method notfound)
ego args)))

(define lookup
(lambda (ego method q)
((deref ego) method q)))

(define invoke
(lambda (method id)
(lambda (self . values)
(apply
(lookup
(apply id self values)
method notfound)
self ()))))

Figure 12: send, lookup, invoke

the failure continuation just prints an error
message.

The method returned by lookup is then
run. Its first argument is the receiver of
the message, called “self” as in Smalltalk
[Goldberg83]. The rest are the arguments to
the method. Send passes the method the ob-
ject to which send was applied as the receiver,
and the rest of send’s arguments as the other
arguments of the method.

If the method is code, the Scheme code
runs immediately. The process for an invoked
object is more complex. First the object is
cloned. Next the method name specified by
the call to invoke is passed to the new object.
Send cannot be used for this step because the
receiver for the clone should be the original
receiver of the message, not the clone. The
process repeats for the new method name in
the new object.

If the method is a box, send returns a refer-
ence to the value rather than the value itself.
Returning a reference allows the user to create
his own setters.

6 Conclusion

We have shown that it is possible to embed
the Self language in Scheme. This embedding
is achieved using a small number of syntactic
extensions and procedures and was thus much
simpler to write than a compiler. Since most
of the work is done by the procedures there
is only a small increase in code size. Because
the Scheme code can be compiled the result
should be faster than an interpreter.

We have used Self as an example of a sim-
ple and well organized language. We believe,
however, that this embedding technique is ap-
plicable to a much wider range of program-
ming languages.

Acknowledgements

We are grateful to Stan Jefferson for his dis-
cussions with us about object-oriented pro-
gramming.

References

[Adams 88] Norman Adams and Jonathan
Rees, “Object-Oriented Programming in
Scheme”, in Proceedings of the 1988 ACM
Conference on Lisp and Functional Pro-
gramming, July 1988, 277-288.

[Dybvig87] R. Kent Dybvig, The Scheme Pro-
gramming Language, Prentice-Hall, 1987.

[Felleisen85] Matthias Felleisen, “Transliter-
ating Prolog into Scheme”, Technical Re-
port Number 182, Indiana University, Com-
puter Science Department, 1985.

[Goldberg83] Adele Goldberg and David Rob-
son, SmallTalk-80"™: The Language and
Its Implementation, Addison-Wesley Pub-
lishing Company, Reading MA, 1983.

[Kohlbecker86] Eugene Edmund Kohlbecker
Jr, Syntactic Eztensions in the Program-
ming Language Lisp, PhD thesis, Indiana
University, August 1986.

10

[Meyer88] Bertrand Meyer, Object-Oriented
Software Construction, Prentice-Hall series
on Computer Science, 1988.

[Rees86] Jonathan Rees and William Clinger,
editors, “The revised® report on the algo-
rithmic language Scheme”, in ACM SIG-
PLAN Notices 21(12), ACM, December
1986.

[Reynolds72] J.C. Reynolds, “Definitional in-
terpreters for higher-order programming
languages”, in Proc. ACM Annual Confer-
ence, 1972, 717-740.

[Ungar87] David Ungar and Randall B.
Smith, “Self: the power of simplicity”, in
QOOPSLA ’87 Proceedings, ACM, 1987, 227-
242.

Appendices

A The Hash Example
A.1 Ungar’s code

Below is the hash program in Ungar’s nota-
tion.

[l
nil = (]
clone = { <primitive> }.
SetTraits = [|
emptySet = [|
size =0
contents = #(nil) |].
size: .
contents: «.
clone = {
super clone
contents: contents clone }.
includes: obj = {
indexFor: obj
ifPresent: [true]
ifAbsent: [|:unused| false] }.
add: obj = {
indexFor: obj
ifPresent: []
ifAbsent: [
]
contents at: i put: obj.
size: size + 1.] }.

indexFor: obj
ifPresent: presentBlock
ifAbsent: absentblock
={|
hashIndex.
testBlock = [5. ¢
c: (contents at: i).

c isNil ifTrue:
[absentBlock value: i].
¢ = obj ifTrue:

[presentBlock value]].

Lashlndex: (obj hash bitAnd:
contents lastIndex).
hashIndex
to: contents lastIndex
do: testBlock.
contents firstIndex
to: hashIndex - 1
do: testBlock.
grow indexFor: obj }

1.

AnEmptySet = {SetTraits emptySet clone}.

1.

A.2 Our Notation

Below is the same program in our notation.
The procedures in Figure 1 should be added
to this code.

AnEmptySet is ready to receive messages us-
ing send. The message add adds a new ele-
ment to the hash table. Its argument is the
value to be added. The message show re-
turns the current hash table. Includes tests
whether its argument is in the hash table.
Each element of the hash table must be a num-
ber.

; the methods for an array object

(define at
(icdynamic
(make-object (where) () () O
([code
(make-code
(vector-ref (vsend ego ’'me)
(vsend ego ’where)))1))))

11

(define atput

(icdynamic

(make-object (where what) () O O
([code
(make-code
(vector-set!
(vsend ego ’me)
(vsend ego ’where)
(vsend ego ’what)))1))))

(define array

(dynamic

(make-object (lastIndex) ()
([me (make-code
(make-vector

(vsend ego ’lastIndex) ’*()))1)

([at at] [atput atput]) ())))

the methods for SetTraits

(define includes

(icdynamic

(make-object (obj) () O O
([code
(make-code
(send ego ’ifipia
(vsend ego ’obj)
(icstatic ego
(make-object () ()) O
([code (make-code t)1)))
(icstatic ego
(make-object (i) () OO O

([code (make-code #£)1)))))1))))

(define add

(icdynamic

(make=-object (obj) (O O O
([code
(make-code

(send ego ’ifipia (vsend ego ’obj)

(icstatic ego
(make-object () O O O
([code (make-code t)1)))
(icstatic ego
(make-object (i) O O O
([code
(make-code

(send (vsend ego ’contents)

‘atput (vsend ego ’i)
(vsend ego ’obj))
(send ego ’size:

(+ 1 (vsend ego

?’8i2e)))131)))))1))))

(define retry
(lambda (ego)
(icstatic ego
(make-object () O O O
([code
(make-code
((send (vsend (vsend ego ’parent)
’parent)
'code)
self
(+ 1 (vsend ego ’cur))))1)))))

(define found
(lambda (ego)
(icstatic ego
(make-object (x) O O O
([code
(make-code (vsend ego ’x))1)))))

(define ifipiacode
(lambda (ego)
(make-code
(send ego ’hashIndex:
(mod (hash (vsend ego ’obj))
(vsend (vsend ego ’contents)
’lastIndex)))
((send ego ’loop
(icstatic ego
(make-object (cur) () O O
([code (make-code
(< (vsend ego ’cur)

(vsend
(vsend ego ’contents)
’lastIndex)))1)))

(icstatic ego
(make-object () () O O
([code
(make-code
((send ego ’loop
(icstatic ego
(make-object (cur)) OO O
([code
(make-code
(< (vsend ego ’cur)
(vsend ego
*hashIndex)))])))
(icstatic ego
(make-object O OO O O
([code
(make-code
(error () "full"))1))))
self 0))1))))
self (vsend ego ’hashIndex)))))

12

(define hash
(lambda (x)
(modulo x 10)))

(define loop
(lambda (ego)
(icstatic ego
(make-object (tst else) O O O
([code
(make-code
(icstatic ego
(make-object (cur) () OO O

(Lcode
(make-code
(if ((vsend ego ’tst)

self

(vsend ego ’cur))
(send ego ’testBlock
(vsend ego ’cur)
(found ego)

(retry ego))
((vsend ego ’else)

self)))1))))1))))

(define testBlock
(lambda (ego)
(icstatic ego
(make-object (i found retry) ([c: cl)
([c (make-code 7(})1) O
([code
(make-code
(send ego ’c:
(send (vsend ego ’contents)
at (vsend ego ’i)))
(cond [(null? (vsend ego ’c))
((vsend ego ’found) self
((vsend ego ’absentBlock)
self (vsend ego ’i)))]
[(equal? (vsend ego ’c)
(vsend ego ’obj))
((vsend ego ’found) self
((vsend ego ’presentBlock)
self))]
[else ((vsend ego ’retry)

self)1))1)))))

(define ifipia
(icdynamic
(make-object
(obj presentBlock absentBlock)
([hashIndex: hashIndex])
([hashIndex (make-code ’())])
O
([testBlock (testBlock ego)]
[loop (loop ego)]
[code (ifipiacode ego)]))))

(define SetTraits
(dynamic
(make-object ()
([size: size]
[contents: contents])
QO
([includes includes]
[add add]
[ifipia ifipial)
oMn

B Other Procedures

All the code in this paper was written in Chez
Scheme [Dybvig87]. Except for the use of
extend-syntax, error, and square brackets,
it is compatible with the Scheme standard
[Rees86]. The definitions in Figure 13 com-
bined with Figure 2, Figure 3, and the defini-
tions in section 5 form a complete Self system.
Syntax should be defined first. Next the other
syntactic extensions can be defined. Then the
other definitions can be loaded in any order.
The example in Appendix A must be loaded
last. The square brackets are used to make the
code easier to read. They can be converted to
round parentheses if desired.

13

(extend-syntax (syntax)
[(syntax (a b ...) c)
(extend-syntax (a)
[éa b: vai}€]¥T)

(define ref
(lambda (v)
(cons v #f)))

(define deref
(lambda (r)
(car 1)))

(define set-ref!
(lambda (r v)
(set-car! r v)))

(define make-variable
(lambda (box)
(dynamic
(make-object () () O O
([code (make-code box)])))))

(define make-assign
(lambda (name)
(dynamic
(make-object (new) (3 O O
([code
(make-code
(set-ref! (send ego name)
(vsend ego ’new)))1)))))

(define rlookup
(lambda (thing in values)
(if (eq? thing (car in))
(car values)
(rlookup thing
(cdr in) (cdr values)))))

(define vsend
(lambda x
(deref (apply send x))))

(define notfound
(lambda (method)
(error ’search
"method “s not found"
method)))

Figure 13: syntax, ref, deref, set-ref!, make-
variable, make-assign, rlookup, vsend, not-
found

