TECHNICAL REPORT NO. 274

Using the Digital Design Derivation System:
Case study of a VLSI garbage collector implementation

by

C. David Boyer and Steven D. Johnson

April, 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

TECHNICAL REPORT NO. 274

Using the Digital Design Derivation System:
Case study of a VLSI garbage collector implementation

by
C. David Boyer and Steven D. Johnson

April, 1989

COMPUTER SCIENCE DEPARTMENT

INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Using the Digital Design Derivation System:
Case study of a VLSI garbage collector implementation”

C. David Boyer and Steven D. Johnson
Computer Science Department

Indiana University

Bloomington, Indiana

The DDD transformation system, under development at Indiana University, re-
flects an approach to digital design synthesis based on a purely functional alge-
bra. The system has been used to derive several working designs realized in
PLD (programmable logic device) technologies. This paper reports on the reim-
plementation of one of these designs, a garbage collector, in VLSI. The design
example provides a context for discussing the method of synthesis and its
mechanization. A generic system of control transformations was developed to
aid in meeting the architectural constraints of the VLSI target. The exercise also
illustrates the role of the algebra in managing the translation from conceptual
architecture to physical organization.

1. Introduction

A stop-and-copy garbage collector is implemented in VLSI using a Digital Design Deriva-
tion (DDD) system currently under development at Indiana University. DDD reflects a for-
mal approach to digital design synthesis based on the algebraic manipulation of purely
functional expressions. It is the mechanized part of a design method whose benefits include
the support of abstraction, provisions for animation, and a unified foundation for design
automation. The project described here is part of a continuing effort to exercise the ap-
proach at practical levels of engineering.

DDD implements basic algebra for the interactive synthesis of synchronous systems. At this
stage of its development, it is essentially an editor for making correctness preserving trans-
formations on certain applicative specifications. These transformations may be applied at
various levels to synthesize hardware system descriptions. A design derivation is that se-
quence of transformations used to produce an implementation. DDD is integrated with ex-
isting logic synthesis tools, currently PLD programmers and PLA layout assemblers. Thus,
the derivation goal in DDD is to produce a realizable boolean system description. Section 2

*Research reported herein was supported, in part, by the National Science Foundation under
grants numbered MIP 87-07067 and DCR 85-21497.

Paper to appear in: IFIP WG 10.2 Ninth International Symposium on Computer Hardware De-
scription Languages, June, 1989.

2

is a brief review of formal research leading to the implementation of DDD and previous
experimentation with the system.

Earlier, a PLD prototype garbage collector was derived with these tools [6]. This paper de-
scribes adaptations of DDD to reimplement the same design in VLSL One of the require-
ments of the project was to use the same initial description for both implementations. Sec-
tion 3 is a discussion of this behavioral specification which is shown in Appendix A. The
original specification held implications for architecture that could not be attained in the
VLSI target. For instance, the PLD implementation drove two parallel memories and in-
cluded three adder circuits. Due to pin and area limitations, memory accesses and arithme-
tic had to be serialized. New transformations were developed for this kind of refinement.
These are discussed in Section 4.

The underlying purpose of this project was to expose issues for formal and practical devel-
opment. An emerging thesis of this research is that a flexible low level algebra is needed
to manage the physical reorganization of digital descriptions. The data path of the VLSI
collector is realized in three chips. The latter stages of derivation are concerned with sus-
taining correctness through the massive restructurings involved. Section S is a discussion of
this aspect.

DDD transforms executable expressions. Section 6 explains how animation of the design
notation was used in testing and simulation. The conclusion surveys directions for future
research and experimentation.

2. The Approach to Synthesis

The DDD system embodies a general approach to system synthesis as applied to digital de-
sign. A functional algebra is employed to manipulate formulas modeling the structure and
behavior of hardware systems. An implementation is derived by applying a sequence of
correctness preserving transformations to a higher level description. The syntactic medium
is a dialect of lambda calculus augmented with forms for recursive definition. This lan-
guage enjoys a simple algebra. A goal of formal research is to study the algebra of synthe-
sis by distilling it to a collection of basic laws. The same strategy is followed by Sheeran,
who applies her work to a different class of design problems [15].

Johnson established a formal connection between the use of recursive function definitions
to model control and the use of recursive sequence (or ‘stream’) definitions to model syn-
chronous systems [9]. The theoretical foundation provides a framework for dealing with
abstraction in design. DDD implements algebra that is independent of the basis—or ground
vocabulary of constants, operations, and tests—to which it is applied. Although there is
some back-end specialization for boolean terms, knowledge of particular bases (e.g. binary
arithmetic) must be developed orthogonally.

In segregating the algebra of the metalanguage, the aim is to assure that the methodology
and its design tools are adaptable to higher levels of description and disparate implementa-
tion targets. This quality distinguishes DDD from silicon compilers (as found in [5]), which

3

employ a substantial built-in expertise about representations and problem classes. DDD is
more like a mechanized logic, oriented to synthesis rather than proof. It is conceived as an
interactive editing vehicle, providing basic algebra for securing correct implementations
relative to the level of description. It also provides programming tactics for moving be-
tween levels.

Techniques for manipulating complex bases are developed in [7, 8], where higher order
constructs are used to gain representation independence and user-defined data types are
used for modularity. The conceptual organization of a design—it’s structural description—is
manipulated by system factorizations [6], which decompose designs into communicating
subsystems. These transformations encapsulate external processes, such as memories and
I/O ports, and develop the architecture of the data path (See Section 5).

DDD is implemented in the Lisp dialect Scheme [13]. It operates on purely functional
forms represented by Lisp s-expressions. In this sense it is a program transformation sys-
tem. Given definitions of the base operations, a description at any stage of derivation exe-
cutes directly as a Scheme program (with syntax extensions for streams). One major benefit
of this automation strategy is that the symbolic processing capabilities of Scheme are avail-
able to model the design. Good animation techniques reduce the need to develop interpret-
ers and extractors around the design language. Two examples are presented in Section 6.
The same text that was input to the DDD system for digital synthesis was run in a produc-
tion environment to test the design, and the resulting execution traces were used as test
vectors for a switch level simulation of the derived circuit. All this was done directly in
Scheme.

By convention, we refer to the source design description as a specification, the derived
target description as an implementation, and the physical product as a realization. The ter-
minology is misleading in the sense that a source description is only one component of the
complete specification. The complete specification also includes the sequence of DDD com-
mands that, when applied to the initial description, composes the implementation. These
transformations impose a conceptual architecture for the design, incorporate boolean repre-
sentations for the basis, and manipulate the physical organization of the realization. The
last of these aspects is the least developed, but perhaps the most important for practical
applications. Exploration of the algebra for physical decomposition was a primary motive
for this exercise.

3. Stop-and-copy: Specification and Algorithm

Heap processing languages make memory available to the processor through allocation op-
erations. These instructions invoke a storage manager which returns fresh cells of memory.
There are no deallocation instructions. A cell becomes free when it is inaccessible through
the processor’s registers. When memory is exhausted, the allocator calls a garbage collector
to reclaim any free cells.

A stop-and-copy collector [3, 4] divides memory into two semispaces, only one of which is
used at any time. The collector copies and compresses the heap image to the inactive

4

(new) space. The roles of the semispaces are then exchanged and the allocator resumes
control. This collector is considerably faster than mark-sweep varieties because it visits
each cell fewer times and never visits free cells. The disadvantage of stop-and-copy is the
space overhead; only half of memory is usable. Originally, this algorithm was chosen for
hardware implementation for the speed improvements possible with parallel semispaces. A
PLD prototype was implemented which drove two memory units. The implementation ran
at sixty times the estimated rate of an M68000 based software benchmark.

The specification used for stop-and-copy is shown in Appendix A. The twelve function
definitions form an iterative system called GC. The function definitions are parameterized
conditionals, composed of if expressions and case expressions. Each of the conditional
branches is tail recursive. The translation of more general recursion schemes to this form
has been widely studied; basic results are outlined in [9]. DDD synthesis currently begins
with iterative specifications.

GC can be viewed as an Algorithmic State Machine (ASM) description [16]. Each function
represents a point of control. The parameter lists declare the ‘registers’ at this level of de-
scription. Each function invocation can be thought of as a parallel assignment to the regis-
ters and a transfer of control. The function IDLE from GC and an equivalent ASM flow
diagram are shown below. An oval to the left of the box contains the name of the state.
Statements within boxes with square corners denote unconditional actions for that state. A
diamond contains a control choice, leading to boxes with rounded corners containing condi-
tional actions for that state. Actions in a given state are performed in parallel. In state
IDLE, if GO is true, then registers M, D, C, and GO remain unchanged and registers H,

(IDLE (lambda M HD C U A R GO)
(if GO (NEXT M *H* D C 0 0false GO)
(IDLEM H D C U Atrue GO))))

U, A, and R are updated with values *H*, 0, 0, and false, respectively, and NEXT be-
comes the new control-point. If GO is false, then R is loaded with true and the control-
point does not change. ASM diagrams are used to illustrate the effect of control transfor-
mations discussed later.

The basis for the GC specification is an aggregate of several complex types. Parameter M
has type memory, which in turn is parameterized by address and content entities. M is

5

subject to ‘read’ operations, R, and Ry, and ‘store’ operations, W,, and Wy, for the old
and new semispaces. In addition there is an operation My which toggles the status of the
semispaces. Registers H and D each hold a content, subject to field manipulation operations
ptr, tag, and cell. C, U, and A are of type address with arithmetic operations inc, dcr, add,
addinc, and btow (the last of these rounds string lengths to word boundaries). Parameters
GO and R represent boolean communication ports, used for hand shaking between the col-
lector and the allocator.

The basis is not interpreted by the DDD system; the names used for operations and tests
are arbitrary. There is no built in understanding of arithmetic and its laws, or any other
primitive type structures. DDD currently operates on an untyped notation, which means that
it lacks facilities to check for consistent use of the basis. The system relies on the correct
use of operations; one reason for executing the behavioral description is to determine if
there are type errors.

GC is the designer’s initial estimate of architecture. The register transfers define the inner
connectivity of the machine. Operations such as add abstractly refer to physical circuitry.
However, distinct operations are not necessarily implemented by distinct subcircuits; one
ALU may implement several arithmetic operations. Ideally, the specification is a description
of the algorithm, in a compact, natural style, free of presumptions about devices and archi-
tecture. It is the job of the transformation system to compose an architecture.

4. Serialization of the Specification

Each function call in the GC description represents a set of actions to be accomplished in
a clock cycle. However, in some cases the actions cannot be parallel because of implemen-
tation constraints. For example, in the function PAIR2, shown to the left below, there are
four parallel operations: Wy, Ry, and two occurrences of inc. Implementing the collector in
PLDs gave enough connectivity to build a two-memory, multiple ALU system. This was a
design decision that traded printed circuit area for speed. The VLSI implementation is more
restricted with respect to silicon area and pins; hence, additional restrictions on architecture
are necessary.

A serialization algebra was added to DDD in order to automate the imposition of such re-
strictions. In the DDD framework, transformations are applied to the iterative system, gen-
erating a new control specification according to the designer’s intent. This process is highly
interactive. An estimate of the physical characteristics of the design is based on feedback
from the transformation system. If certain operations cannot be supported in parallel, the
transformations serialize them.

Architectural modifications are reflected in control. In PAIR2 there are two memory opera-
tions, a write to new memory and a read from old memory. PAIR2 is expanded by the
serialization program, as shown on the right, by specifying that one memory operation is
allowed per state. An extra state, PAIR2.2, is introduced in which the second memory op-
eration is performed. A similar serialization is applied to the inc, add, and addinc opera-
tions, although in PAIR2 the inc operations happen to be ordered as a byproduct of the

M «— (WnMU (cell H A))
D «— (Ro M (inc (ptr H)))
A +—(inc A)

s

D «— (Ro M (inc (ptr H)))

M «—— (WnMU (cell H A))

e A <—(inc A)

Before After

memory serialization.

The serialization transformation takes a list of the operations that cannot occur in parallel.
The specification is searched for states which violate the condition. If found, permutations
of the set of actions are searched until an ordering is found that allows the actions to be
correctly executed in two states. In some instances, no ordering can be found. For example,
a state containing the actions

D « (inc H)
H « (add D H)

prohibits a simple expansion. In cases such as this, a register must be added or a dead
variable analysis performed to find an available register of the correct type. The analysis is
not currently automatic.

In addition to the limitation of one memory operation per state, the specification is trans-
formed so that memory operations execute in two states instead of one. This simplifies tim-
ing of memory operations. In a term like

(Rx M Address)

Address may be a combinational expression, as it is in VEC.2 (below left), where the oper-
and for R, is (add (ptr H) C). From the designer’s perspective this is a good abstraction
for memory; compact and easy to understand. Building hardware to conform to this ab-
straction is difficult. Implementing memory access in this way imposes delays to allow for
setup times. A conventional solution is to latch the memory address (MA) and data (MD).
These values are computed in one clock cycle and used in the next. Serialization is used to
expand memory operations. One difference is that the term itself is split.

Registers MA and MD, are added to the specification. During the first state of a memory
operation, MA and MD are loaded with the corresponding argument from the original
memory operation. In the second state, memory operations are modified to use MA and
MD as parameters in place of the combinational signals. These transformations are auto-
matic.

D «— (Ro M (add (ptr H) C)) MA «— (add (ptr H) C)
C+—(dcr ©) C «——(dcr C)
I !
s T
1
Before After

As a result of serialization the architecture is implementable in VLSIL. The expanded GC is
37 states, three times longer than the original. From the designer’s perspective, Appendix A
is a better description of the collector because it is shorter and more abstract. From the
implementation standpoint, the new description more concretely describes the architecture.
Two kinds of serialization were used to transform the iterative specification into a suitable
form. No attempt was made to generalize or characterize the serialization process. An ad-
hoc approach was taken, the tools necessary to implement this design were developed with-
in the framework of DDD. Although the transformations have proved useful in several
other designs, there are cases where they are inadequate.

5. Synthesizing Control and Manipulating Architecture

The serializations in the previous section are presented as local transformations on flow
diagrams, but they are implemented by symbolic transformations on applicative expressions.
In essence, they are source-to-source program transformations. The next stage of derivation
decomposes the algorithmic description into an abstract structural description governed by a
synthesized control device. Details of control synthesis are given in [6] with formal justi-
fications in [9]. Briefly, control is synthesized by building a finite state machine with one
state for each defined function. The conditional expressions within the function definitions
are abstracted to a selection combination for the design. Selection is distributed to each of
the design’s registers.

The byproduct of control synthesis is a structural description composed of register entities
and functional components. This conceptual architecture is then interactively manipulated
toward a physical organization. The automation provided by DDD sustains correctness
through the sometimes pervasive transformations involved at this stage of engineering.
Equally important, the system supports hierarchic decomposition associated with physical
reorganization.

Though this particular design is probably subject to direct silicon compilation, its derivation
illustrates the kinds of manipulations needed for the realization of abstract specifications.
The DDD algebra ‘scales’ to higher levels of system description because there is no built-
in expertise about representation techniques or targeting tactics. Such knowledge must be
programmed in the DDD algebra.

The diagram below sketches the logical organization that results when control is extracted
from the original GC specification. A number of register-like objects communicate with
various combinational components. The key detail is the number of communication paths.
Each path in the diagram stands for the selection combination for an individual register.
The derivation reported in [6] directly implements the multiple paths, resulting in a highly
parallel design.

The serialization transformations discussed in the previous section have the effect of reduc-
ing the number of physical paths needed. The degree of serialization is a matter of choice.
In this instance, it is carried to the point of a conventional organization, centered about a
single memory channel.

-

The description of the architecture is still abstract, still expressed in terms of the complex
and symbolic entities of the original basis. Also, it remains executable as a simultaneous
system of streams. While the description is still at a high level, it is useful to model its
behavior in this way. Techniques for modeling with streams are discussed by O’Donnell
[11] and Johnson [8].

A collection of transformations called system factorizations refine the view of the organiza-
tion by combining occurrences of similar terms into modules [6]. For example, the C regis-
ter, which is only loaded and decremented, is encapsulated as a counter (compare the two
figures above). Similarly, various arithmetic combinations are factored into an ALU compo-
nent. Thus, the factorization commands entered in DDD comprise the structural description

9

of the design. Declaring the module decomposition at this stage of derivation follows the
principle of deferring decisions on architecture until after control is developed [16, page
166]. The factorization algebra is sufficiently general to allow the engineer to experiment
with the organization, assigning components to specific operations.

The derivation is now directed toward a physical realization, the goal being to reduce the
description to a boolean system for logic synthesis. The first step is to define binary repre-
sentations for the abstract registers and provide boolean implementations for the combina-
tional functions. With this information, DDD expands the design description to a system of
digital signal definitions.

In general, the development of a physical realization entails a reorganization of the design
into physical partitions. The partitioning occurs at several levels, and the resulting hierarchy
can be quite distinct from that of the conceptual architecture. An MSI implementation
might associate a device with each register. On the other hand, the high degree of connec-
tivity in PLD and PLA targets can be exploited by a bit-slice partitioning. Busing the data
path is also a method of bit slice reorganization.

The next diagram indicates the bit slice reorganization used for the garbage collector. The
registers—as well as their selection combinations and certain arithmetic operations, not
shown—are assembled in one-bit projections. It is a task of the derivation system to cor-
rectly sustain the connectivity of this new decomposition. The algebraic character of physi-
cal reorganization is a matter of current research and further experimentation. However,
there is support in DDD along this particular implementation path.

COUNT

The DDD system formats boolean system descriptions for available optimizers and device
programmers. Except for logical simulation, discussed in the next section, facilities of the
UCB/CSD VLSI tools (namely, Espresso, Mpla, Mquilt, and Magic) [14] were used for
logic synthesis. In the earlier PLD wire-wrap prototype, each package contains one bit
slice. In other PLD synthesis exercises, different partitionings have been used. For this
VLSI prototype, the same boolean systems are retargeted to PLAs. Reorganization strategies
for alternative technologies are now being pursued.

The VLSI realization packages sixteen bit slices on a small chip frame. A single instance
of the chip contains a full tag field and eight bits of addressing. The next diagram gives an
idea of the partitioning.

10

EEEEER]
EEEEEIREREET =

% FEEEEREEEEE)

o | (68 B 8
FEEEEEEEET]
EEETE]

FEEEENEEEET)

EREEE BEEEE

EEEEE EEEEE

e
pu]s

A collector for a 24-bit address space requires three identical chips, only one of whose tag
fields is used, and an external PLD controller. The three-chip decomposition was done to
save prototyping costs by using the smallest appropriate chip frame. It does not result in a
viable realization. A distribution of arithmetic propagates carries across chip boundaries;
hence, the speed of the circuit is below what is needed to drive a conventional memory at
reasonable rates.

- _ﬁ@ﬁ@ _EE%%

|E|
|

N

It would be difficult to characterize, much less automate, a partitioning task such as this.
Finding a reasonable physical organization involved disparate design considerations. Some
of these, such as reducing prototyping expenses, are decidedly mundane and bear little rela-
tionship to the design problem. The view reflected in DDD is that such considerations are
explained by the derivation, that is, the sequence of transformations applied to the initial
description. The goal is to provide a highly flexible algebra for tactical design management.

6. Simulation

The garbage collector’s bit slices and other combinational functions were synthesized by a
PLA generator. Routing between the PLAs was done by hand using the Magic drafting aids
[14]. Since there was manual intervention in the design process, switch level simulation
was employed to confirm the realization. The COSMOS simulator [1] was used for this
purpose. Generation of good test vectors for simulation is crucial. By using the serialized
specification to generate test vectors, we were able to develop a good test and, at the same
time, an exact correspondence between source and target behavior.

Given definitions for the base operations, GC is a working Scheme program. With output
statements added, the serialized version issues an execution trace; it is unnecessary to de-
velop an interpreter to extract such a trace. The collector was executed against sample
heaps, generated by a production list processing system which was modified to allow off-
line garbage collection. A variety of programs were run until storage was exhausted, at

11

which time the heap and registers are written to a file. With appropriate base definitions
installed, the serialized GC collected the heaps, which were then returned to the running
system. In this way, it was established that the collector algorithm worked in a production
setting.

With tracing enabled, test vectors were accumulated against actual heap images. A pair of
vectors was issued at each function-call (clock cycle). The first contained inputs to the chip
and the second contained expected outputs. COSMOS was configured to compare the simu-
lation results with the expected values. These simulations exposed several errors in the
manual routing. No errors were found in the derived circuitry. After the errors were cor-
rected, the switch level simulation conformed exactly to the observed behavior of GC.

7. Conclusions

In this design exercise, the DDD system is used as a vehicle for exploring digital design in
a functional calculus. Serialization is explored using source-to-source transformations on
behavioral specifications to impose architectural restrictions on the design. Parallel arithme-
tic operations are serialized to conserve layout area and I/O pins. The dual-memory abstrac-
tion of the PLD prototype was transformed to a more standard model. Thus, the behavioral
source description, GC, could be retargeted to significantly different logical architectures,
exhibiting various degrees of parallelism. The method of serialization is ad-hoc and explor-
atory. The goal is to characterize these kinds of design tactics formally. Of course, the
analysis for serialization is also of interest, but there is also a need for effective human
interaction. The character of the interaction is a central topic in this experimentation.

One of the advantages of the DDD approach is the ability to manage both logical and
physical hierarchies throughout the design process. The ability to manipulate the physical
composition was essential for implementing the design on a three-chip set. Though this
particular implementation is not realistic—the design could probably be compiled to a sin-
gle chip from its derived boolean description using modemn logic synthesis tools—the exer-
cise reveals the types of manipulations needed for implementing high level systems. The
DDD algebra ‘scales’ to higher levels of system description because there is no built-in
expertise about representation techniques or targeting tactics. Such knowledge must be pro-
grammed in the DDD algebra.

The executable nature of specifications to the DDD system allowed the design to be thor-
oughly tested. GC was run in a production heap processing environment. Executability of
intermediate forms of the transformations allowed us to establish a high level testing envi-
ronment for the layout. The same test data used to establish the correctness of GC was
used to generate test vectors for a switch level simulation. An exact correspondence be-
tween the source and target descriptions was maintained.

12

Acknowledgments

Robert Wehrmeister provided essential support in the integration of design and fabrication
tools, and helped establish a test environment for software testing of the garbage collector.
Bhaskar Bose is the main implementer of the DDD system [2] and also assisted with the
derivation process.

References

(1]

[2]

[3]

[4]

(5]
(6]

(7]

(8]

[9]

Beatty, Derek, Brace, Karl, Bryant, Randal E., Cho, Kyeongsoon and Huang, Law-
rence, User’s Guide to COSMOS a COmpiled Simulator for MOS Circuits, Comput-
er Science Department, Carnegie Melon University (November, 1987)

Bose, Bhaskar, DDD - A Transformation System for Deriving Digital Design, In-
diana University Department of Computer Science Technical Report (in progress)

Cheney, C. J., A Nonrecursive List Compacting Algorithm, Comm. ACM 13, 11
(November 1970) pp. 677-678.

Fenichel, Robert R., and Jerome C. Yochelson, A LISP Garbage-Collector for Virtu-
al-Memory Computer Systems, Comm. ACM 12, 11 (Nov. 1969) 611-612.

Gajski, Daniel D., (ed.) Silicon Compilation (Addison-Wesley, Reading, 1988)

Johnson, Steven D., Bose, Bhaskar and Boyer, C. David, A Tactical Framework for
Digital Design, in: Birtwistle, G. and Subrahmanyam, P.A., (eds.), VLSI Specifica-
tion, Verification and Synthesis (Kluwer Academic Publishers, Boston, 1988) pp.
349-383.

Johnson, Steven D., Digital Design in a Functional Calculus, in: Milne, G. and
Subrahmanyam, PA. (eds.) Formal Aspects of VLSI Design (North-Holland, Amster-
dam, 1986) pp. 153-178.

Johnson, Steven D., Applicative Programming and Digital Design, Proc. Eleventh
Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

-guages (1984), pp. 218-227.

Johnson, Steven D., Synthesis of Digital Designs from Recursion Equations (The
MIT Press, Cambridge, 1984)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

13

Keutzer, Kurt, and Wayne Wolf, Anatomy of a Hardware Compiler, Proc. SIGPLAN
’88 Conference on Programming Language Design and Implementation (1988) pp.
95-104.

O’Donnell, John T. Hardware description with recursion equations, in: Barbacci,
M.R. and Koomen. C.J., (eds.), Computer Hardware Description Languages and
their Applications (North-Holland, Amsterdam, 1987) pp. 363-382.

Peyton-Jones, Simon L., The Implementation of Functional Programming Languages
(Prentice Hall, Englewood Cliffs, 1987)

Rees, Jonathan and Clinger, William, The Revised’ Report on the Algorithmic Lan-
guage Scheme, ACM SIGPLAN Notices 21(12), (December 1986)

Scott, Walter S., Mayo, Robert N., Hamachi, Gordon and Ousterhout, John K,
(eds.), 1986 VLSI Tools, Report No. UCB/CSD 86/272, Computer Science Division
(EECS), University of California at Berkeley, (1985)

Sheeran, Mary, Retiming and Slowdown in Ruby, in G.J. Milne(ed.) The Fusion of
Hardware Design and Verification (North-Holland, Amsterdam, 1988) pp. 289-308.

Prosser, Franklin P. and Winkel, David, The Art of Digital Design, second ed. (Pren-
tice-Hall, Englewood Cliffs, 1987)

14

Appendix A. Garbage Collector Specification, GC

(letrec
(Ide A\(MHDCU AR GO)
(if GO (NextM *H* D C 0 0 false GO)
(Idle M H D C U A true GO))))

(Driver A M HD C U A R GO)
(if (= U A) (Show-avl (Mg M) H D C U A true GO)
(Next M (Ry M U) D C U A R GO))))

(Show-avl A (M HD C U A R GO)
(if GO (Show-avl M H D C U A R GO)
(Idle M H D C U A R GO))))

Next .MM HDC U AR GO)
(if (pointer? H)
(Type MH (R, M H) C U A R GO)
(if (bvec-head? H)
(Driver M H D C (addinc U (btow (ptr H))) A R GO)
(Driver M H D C (inc U) A R GO)))))

(Type A(MHD C U AR GO)
(if (eq? fwd (tag D))

(Driver (Wy M U (cell H D)) H D C (inc U) A R GO)

(case (tag H)
(pair (Pairl (W, M H (cell fwd A)) HD C U A R GO))
(vec (Vec (Wy M U (cell H A)) H D (ptr D) (inc U) A R GO))
(bvec (Bvec (Wy M A D) H (cell D (btow (ptr D))) (btow (ptr D)) U A R GO))
(fbvec (Driver M H D C (inc U) A R GO))))))

(Pairl A M HD C U AR GO)

(Pair2 (Wy M AD)H D CU A R GO)))
(Pair2 A M HD C U A R GO)

(Pair3 (Wy M U (cell H A)) H (R, M (inc (ptr H))) C U (inc A) R GO)))
Pair3 AMHDC U AR GO)

(Driver (Wy M A D) H D C (inc U) (inc A) R GO)))

(Vec A(MHDC U ARGO)
(Vloop (Wy M A D) H (R; M (add (ptr H) C)) (der C) U A R GO)))

(Vloop A M H D C U A R GO)
(if (= C-1)
(Driver (Wo M H (cell fwd A)) H D C U (addinc A (ptr D)) R GO)
(Vloop (Wy M (addinc C A) D) H (R, M (add (ptr H) C)) (der C) U A R GO))))

(Bvec A(MHDCU AR GO)
(Bloop (Wy M U (cell H A)) H (R, M (add (ptr H) (ptr D))) (dcr C) (inc U) A R GO)))

