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Abstract

We utilize the unifying framework of families of convexity spaces
for the treatment of various notions of planar convexity and the as-
sociated convex hulls. Our major goal is to prove the refinement and
decomposition theorems for families of convexity spaces. These gen-
eral theorems are then applied to two examples: restricted-oriented
convex sets and NESW-convex sets. The applications demonstrate
the usefulness of these general theorems, since they give rise to sim-
ple algorithms for the computation of the associated convex hulls of
polygons.

1 Introduction

Convexity spaces provide one algebraic abstraction of convexity in terms
of the closure of convex sets under intersection. They have been called
convezity spaces [11], convezity structures [20], alignments [8], or algebraic
closure systems [2]. They capture the lattice-theoretic or algebraic properties
of convex sets rather than their topological ones. We use them to provide
a unifying framework for different notions of convexity that have a risen in
recent computational studies of polygons and regions in the plane; that is, in
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2 Rawlins and Wood

the relatively new area of computational geometry. Some examples of non-
traditional convexity are: orthogonal convexity, see [13] for example; finitely-
oriented convexity, see [15,25]; restricted-oriented convexity (17]; NESW.-
closure [12,21]; and link convexity, see [1,24], for example. However, if a
unifying framework was all that convexity spaces provided, they would be
interesting but have little import. Fortunately, they provide more, as we
hope to demonstrate in this paper, the first of a series.

One similarity underlying many of the non-traditional notions of convex-
ity is that we can compute the “convex” hull of a polygon, say, by decompos-
ing the computation into the computation of “simpler” hulls and combining
their results. For example, we can compute the orthogonal hull of a polygon
by first computing its z-hull and y-hull and taking their union [18]. We
could also compute the y-hull of the z-hull and be assured that we again
obtain the correct result. A similar result obtains for N ESW -closure [21].
In this paper, we consider the decomposition issue in the setting of families
of convexity spaces over a common groundset. This study is practically mo-
tivated since the convex hull of an ob Ject has, typically, less complexity than
the object itself and so it is much used in testing for intersections among ob-
Jects [14,22]. The same reason suffices to explain the great popularity of the
“bounding box” of an ob ject in computer graphics and computer vision. In-
deed, the convex hull was one of the first concepts studied in computational
geometry [19] and so deserves especial attention.

In Section 2 we introduce convexity spaces and a useful technique for
constructing them. In Section 3 we prove our main theorems, the refine-
ment and decomposition theorems for families of convexity spaces over the
same groundset. In the remaining three sections we consider three specific
convexity spaces induced by restricted-oriented convex sets, NESW -convex
sets, and N EE D-convex sets. For restricted-oriented convex sets we prove
a new result, the Orientation Decomposition Theorem, this generalizes the
result of [18] for orthogonal convex sets; for N ESW -convex sets we reprove,
in a completely different way, an earlier result, the N ESW Decomposition
Theorem, see [21]; and for N EED-convex sets we show that there is no de-
composition theorem. This latter result demonstrates that convexity spaces

over R2 need not be decomposable, a conjecture that the previous two results
had led us to make.

2 Convexity Spaces and Theijr Construction

Abstract convexity theory is concerned with collections of subsets of a set
which obey two weak axioms. A convexity space, in the sense we use it here,
is intended to be an abstraction of the more essential properties of convex
sets in R,
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A Decomposition Theorem 3

Definition 2.1 Given a set § and a family C of subsets of § the structure
(S, C) is said to be a convexity space if

1. 0,S€C; and

2 forall CCC, NCeC, where NC =xec X.-

S is called the groundset of the convexity space and any element of the
family C is said to be C-convez. The interpretation of the family C is that
it is the set of all convex sets over some space, where we have deferred
the operational question of what we mean by convexity. The dominant
characteristic of convex sets is taken to be closure under intersection.

Definition 2.2 Given a convezity space (S, C), we define the associated hull
operator C-hull as follows:

Forall PCS, C-hullP)=[|Q|PCQ A QE€C(}

We define the intersection to be the empty set, if there are no sets Q satis-
fying the conditions.

It is straightforward to show that C-hull(P) exists, is unique, and is the
smallest C-convex set which contains P.
Two examples of convexity spaces that are worth noting are:

1. The trivial convezity space (S,{0, S}). In this convexity space there
are only two convex sets—§ and $—thus the hull of any non-empty
subset of § is § itself.

2. The complete convezity space (S, P(S)) where P(S) is the powerset of
S. In this convexity space every set is its own hull, or to put it another
way, all subsets of S are convex since forall PC §, P € P(S) and
so

P(S)-hullP)=(NQIPCSQ A Qe P(S)}=P.

The results stated in the following theorem are well-known in abstract
convexity theory (see Kay and Womble [9]).

Theorem 2.1 Given a convezity space (S,C); then, for all P,Q C S,

1. C-hull(P) € C;

2. P C C-hull(P);

3. C-hull(P)=P < Pe(;

4. P C Q = C-hull(P) C C-hull(Q);
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5. C-hull(C-hull(P)) = C-hull(P).

In topology any operator which has properties (2), (4) and (5) is known
as a closure operator [3]. Although we do not do it here, it is possible to
show that a closure operator induces a convexity space. That is, given a set
S and a closure operator C, § together with the set of all C-closed sets over
S is a convexity space.

We need to establish that specific structures (R?,C), where C is a col-
lection of subsets of R%, do indeed form convexity spaces. Rather than
providing many different but similar proofs, we prefer to provide a general
result that is straightforward to particularize.

To this end, we begin with the following definition which is reminiscent
of the definitions above for convexity spaces and hulls.

Definition 2.3 Let L be a collection of subsets of a groundset S such that
0 is not in L—we call (S, L) a line space. Intuitively, we think of elements
of L as line segments. For allP C S, let L(P)=N{L |P CLAL € L},
and define L-hull(P) by

_J L(P), if L(P)isin L
L-hl(F) = { undefined, otherwise
Intuitively, the L-hull of a set P is the smallest line segment in L that
contains P. Note that, because (S, L) is not necessarily a convezity space,
L(P) is not necessarily in L.

Based on this notion, we now define convexity by way of line segments
in a manner reminiscent of one definition of convex sets, namely, a set is
convex if, for every two points in the set, the line segment joining them is
also in the set.

Definition 2.4 We say that P C S is L-convex if, for all X C P such that
L-hull(X) is defined, L-hull(X) C P.

We are now in a position to prove that line spaces induce convexity
spaces.

Theorem 2.2 Let (S, L) be a line space and C be the collection of all L-
convez sets together with @. Then, (S,C) is a convezity space.

Proof: We have to prove that (§,C) satisfies the two axioms of a convexity
space. Clearly, C contains @. That it contains § follows directly, because
whenever L£-hull(X) is defined for any X C §, £-hull(X) C § is immediate.

This leaves the second axiom. Let P = NC' = N{C | C € C'}, for some
C'CC.If0e ', thenP =0 € C. Therefore, assume @ ¢ ¢'. Now, X C P if
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and only if X C C, for all C € C'. Whenever L-hull(X) is defined, we have
L-hull(X) C C, for all C € (', since each C is L-convez. In other words,
L-hull(X) C P, P is L-convez, and P € C by definition. O

Based on this theorem we can now establish that some well known no-
tions of convexity do indeed form convexity spaces.

1. L is the set of all line segments and singleton point sets in the plane.
Clearly the £-hull of a set P in the plane is in £ if and only if P is
a singleton set or it consists of collinear points. In other words, the
induced convexity space consists of all planar convex sets.

2. [ is the set of all horizontal and vertical line segments and all singleton
point sets in the plane. This induces the convexity space consisting of
all orthogonal convex sets in the plane; see [13], for example.

3 The Refinement and Decomposition Theorems

Our aim is to elucidate the geometry of families of convex sets each convex
with respect to similar, but different notions. Each notion gives rise to a dif-
ferent collection of convex sets. Thus, it is natural for us to consider families
of convexity spaces over a fixed groundset S. In the Refinement Theorem
(Theorem 3.3) we show that the union of several hulls of a set, where each
hull is formed in a distinct convexity space, is a subset of a “composed” hull
formed from the separate hulls, and the composed hull is, in turn, a subset
of the hull with respect to the intersection of the different convexity spaces.
In the Decomposition Theorem (Theorem 3.4) we specialize the refinement
theorem to convexity spaces which act as if they were independent of each
other (so called invariant convexity spaces).

Definition 3.1 Let (S,C;) and (§,C2) be two convezity spaces defined on
the groundset S. Then, the space (§,Cz) is said to be a refinement of the
space (S,C1) if C1 C Ca. Alternatively, (S,C1) is said to be coarser than
(S,C2). Intuitively, any Cy-convez set is Co-convez.

Notice that in the example convexity spaces defined above the complete
convexity space is a refinement of the trivial convexity space. Indeed, the
complete convexity space is a refinement of all convexity spaces over S and
the trivial convexity space is coarser than any other convexity space over 5

Definition 3.2 Let (S,C1) and (S,C2) be two convezity spaces defined on
the groundset S. We use the notation C1 A Cy to represent the subset of Cy
produced by composing the two hull operators. That is,

CeNlr= {C1-hu”(c2-hu”(P)) | g S}
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Observe that we may simplify this definition to
C1ACz = {C1-hull(P) |P € C5}

The following example shows that the composition of two convexity
spaces is not necessarily a convexity space. Let § = {a,d,¢c}; C; = {0, S, {a,
e}, {8, ¢}, {c}};,.C2 = {0, 5, {a}, {8}}; then C1 A C; = {8, S, {a,c}, {b,c}}.
But C; A C3 is not a convexity space since {a,c} N {b,c} = {c¢} € C1 ACa.

Although the composition of two convexity spaces is not necessarily a
convexity space we can extend the notion of a hull operator to such families
of sets as follows:

Given a family of subsets C of § and a set P C §, the C-hull of
P is the intersection of all sets in C which contain P.

Note that if (§,C) is not a convexity space, the hull of a set may not be in
C. Furthermore, the C-hull of P is undefined if P is not contained in some
set in C.

Definition 3.3 Let (§,C;1) and (S§,C2) be two convezity spaces defined on
the groundset S. We use the notation (Cy A C2)-hull to represent the com-
position of the two C-hull operators; that is,

(C1 A Ca)-hull(P) = C1-hull(C-hull(P))
Note that, for allP C S, (Cy1 A C2)-hull(P) is well-defined.

The following example shows that hull operators do not commute under
composition. Let § = {a,b,¢}; C1 = {0, S,{a}}; C2 = {9, S,{a,b}}. Then
(C1 A C2)-hull({a}) = S, but (Cz A C1)-hull({a}) = {a, b}.

We now establish a weak form of commutativity of composed hull op-
erators. We show that two hull operators commute if one of the convexity
spaces is a subset of the other. In fact, in this case the composed hulls are
both equal to the hull formed by the coarser of the two convexity spaces.

Theorem 3.1 Let (S,C1) and (§,C2) be two convezity spaces defined on
the groundset S; then

C1CCy <= (1) forall PCS, Cy-hull(P)C Cy-hull(P)
<> (2) forall PCS, (Cz2AC1)-hull(P)=Cy1-hull(P)
<= (3) forall PC S, (C1ACy)-hull(P)=Cy1-hull(P)

Proof:
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1. If C; C Cy, then, forall P C §, C1-hull(P) € C,. Hence, for all P C
S, Co-hull(P) C C,-hull(P).

Conversely, suppose that, forall P C §, Ca-hull(P) C C;-hull(P).
IfP € Ci, then P C Ca-hull(P) C Ci-hull(P) = P. Therefore,
P = (:2-hu”(P) and P € C,. Hence, C; C C,.

2. If C; C C3, then, for all P C S, C;-hull(P) € C,. Hence, for all P C
S, Co-hull(C1=hull(P)) = C1-hull(P).

Conversely, suppose that, for all P C §, (C2ACy)-hull(P) = C;-hull(P).
IfP € Cy, then C1-hull(P) = P, C3-hull(P) = P, and P € C,. Hence,
C1 C Cs.

3. If C; C C2, then from (1) we have that, for all P C §, C,-hull(P) C
C1-hull(P). This implies that, for all P C §, Cy-hull(Co-hull(P)) C
C1-hull(C1-hull(P)) = Cy-hull(P). But, C1-hull(P) C C1-hull(C2-hull(P)).
Therefore, C1-hull(C2-hull(P)) = C1-hull(P).

We prove the converse by proving its contrapositive. Suppose that,
forall P C S, (C1 A Co)-hull(P) = C1-hull(P). If P & C,, then
P C Cz-hull(P). But, this implies that P C C;-hull(C2-hull(P)) =
C1-hull(P). Therefore, P & C; and, hence, C; C C,.

Result (1) has been previously proved by Sierksma [20].

We now prove that convexity spaces over the same groundset are closed
under intersection, but not under union. This is used in the proof of the
refinement theorem below.

Lemma 3.2 Let {(S,C;) |1 € I} be a non-empty family of convezity spaces
defined on §; then, the structure (S, | C;) is @ convezity space on S.
i€l

Proof: §,S € C;, forall teI=>0,5¢€ ﬂC,-.
i€l

CC)Ci=CCC, forall ieI=>()C€C(; foral icl=>
i€l

ﬂCeﬂC,- O
i€l

The following example shows that a similar result does not hold for the union
of convexity spaces. Let § = {a,b,c};C1 = {0, S,{a,bd}};C2 = {0, S, {a,c}};
and C = C1UC; = {0, S, {a, b}, {a,c}}. Now, (§,C) is not a convexity space
since {a,b} N {a,c} = {a} & C.
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Theorem 3.3 (The Refinement Theorem) Givenn > 1 convezity spaces
($,Ci), 1<i<n; then, for all P C §,

| O(c,--huu(P)) £ i ;\ C:)-hull(P) C (ﬁ C:)-hull(P)

i=1 i=1 i=1

Proof: The proof is by induction on n.

Basis:” The theorem is vacuously true for n = 1. Consider the case n = 2,
From Theorem 2.1(2) we have P C C2-hull(P) and from Theorem 2.1(4)
we have Cy1-hull(P) C C1-hull(Ca-hull(P)). Also, from Theorem 2.1(2) we
have C,-hull(P) C Cl-hull(Cz-huH(P)]. Hence, (Cl-huII(P)ch-huH(P)) c
C1-hull(Co-hull(P)).

Since 61062 C Cz, Theorem 3.1(1) implies Cz-hu”(P) g_ (61002)-h‘uu(P).
Hence, C1-hull(Cy-hull(P)) C Cl-hull((Clncz)-huH(P)) = (C1NC2)-hull(P).
Thus, (Cl-huII(P)Ucz-huH(P)) C Cl-hull(Cz-hull(P)) € (C1NCy)-hull(P).
Therefore, the theorem holds for n = 2.

Induction Hypothesis: Assume the theorem holds for all k < n, for some
=3

Induction Step: Given a composition of n hulls, consider the two inner-
most operators:

(A c: )-hull(P) = C1-hull(....Cp_y-hull(Cp-hull(P)).. )

=1

From the theorem for n = 2 we know that
Cn_1-hull(C,,-hull(P)) € (Cu-an C,,)-hull(P)

Since there are only n — 2 operators surrounding these inner operators we
can apply the induction hypothesis to conclude that

( /'i Ci)-hull(P) = (n/_\zC,-)-hull(C,,_l-hull(cn-hull(P)))
C (ﬁz Ci)-hull(Cp—y-hull(C,-hull(P)))

But both (N272 C;)-hull and (Cn-1 0 Cp)-hull are hull operators (Lemma

1
3.2); therefore, from the basis we have

(nr_]zC,-)-hull(C,,,_l-hull(cn-hull(P))) c (ﬁzc;)—hull((cn_lncn)-hull(P))

i=1
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n—2

() €:) N (Cn=1 N Cr))-hull(P)

=1

() C:)-hull(P)
i=1

N

Thus,
(A C)-hull(®) S ([ Ca)-hull(P)

and all that remains is to show that

O(Cg-hull(P)) c (/"'\ C;)-hull(P)

i=1 i=1

Consider the j** hull operator in the composition:

(/n\ Ci)-hull(P) = C1-hull(...(Ci-hull(.. [P Y v} viso)

=1

and consider the set on which Cj-hull acts; that is, the set (...(P). .)
produced by the hull operators inside the inner pair of brackets. This set

must contain P since each hull operator is expansive (Theorem 2.1(2)).
Thus, from Theorem 2.1(4), we have, for each 5,1 <3< n,

C;-hull(P) € ...(Ci-hull(...(P)...)...

and, hence,

O(C;-huﬂ(P)) = (/n\ C:)-hull(P)

i=1 =1

O

Note that this result holds independently of the order in which the hulls are
composed in the middle term. The following example shows that, in general,
we cannot replace any of the containments by equality. Let $ = {a,b, c,d};
C1 = {0,3,{0},{&,5,6}}; Cz = {@,S,{a,b}}; and C = C1 M Cz = {@,3}
Then C;-hull({a}) U Co-hull({a}) = {a,b}; (C1 A C2)-hull({a}) = {a,b,c};
and C-hull({a}) = S. '

However, as a special case, if two hull operators are invariant in the sense
defined below, then the second two terms are equal (that is, the composition
hull equals the intersection hull).

Definition 3.4 Given two convezity spaces (S,C1) and (§,C2), C2 s said
to be Cq-invariant if, for all P € Ca, C1-hull(P) € Ca.
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The idea is that C, is Cy-invariant if the Ci-hull of any Cs-convex set
does not destroy its Cs-convexity.

Theorem 3.4 (The Decomposition Theorem) Let (§,C1) and (S,C,)
be two convezity spaces defined on the groundset S. If C, is Cq-invariant,
then for all P C S, (C1 A C2)-hull(P) = (C1 N Cz)-hull(P).

Proof: Let P be a subset of S. By definition, Cy-hull(P) € C,. If C; is
Ci-invariant, thén Ci-hull(Co-hull(P)) € C;. But C1-hull(Co-hull(P)) € C,
and, therefore, C1-hull(Cs-hull(P)) € C1 N Ca. But (C; N C2)-hull(P) is
a subset of all (C; N Cz)-convex sets which contain P. Therefore, (C; N
Cz2)-hull(P) C (Cy A C2)-hull(P). Now, from the refinement theorem, we
know that, for all P C §, (C; A C2)-hull(P) C (C, N C2)-hull(P). Hence
the result follows. 0O

The following example shows that the union of two hulls is not necessarily
equal to their composition (and their intersection) even if the convexity
spaces are invariant.

Let § = {a:b:c,d}; G = {@, S, {a')b}}; Cz = {0:,5: {G,C}}; and C =
CinCz = {0, S}. Then C; is C;-invariant but Cy-hull({a})UCs-hull({a}) =
{a,b,¢c}; (C1 A C2)-hull({a}) = S; and C-hull({a}) = S.

4 Example I: Restricted-Orientation Convexity

The orientation of a directed lineis the counterclockwise angle made with the
horizontal in a directed plane (in the goniometric sense). The orientation
of an undirected line is the smaller of the two possible orientations. We
only discuss undirected lines in this section. We use the symbol O, with or
without subscripts, to refer to a set (possibly empty) of orientations. We
normally assume that the set O is symmetric about the horizontal, although
our results hold even if this is not the case.

A collection of lines, segments and rays is said to be O-oriented if the
set of orientations of the elements of the collection is a subset of 0. Thus,
we speak of O-lines, O-segments, and O-rays to mean O-oriented lines,
segments and rays. By extension, we call a polygon an O -polygon if its
edges are O-segments.

The notion of O-orientation has been previously defined, but only for
finite 0, in [6,16,26,25] and, in a slightly related form, in [4]. There is
a vast literature concerning the special case of 0 = {0°,90°,180°,270°}.
{0°,90°,180°, 270°}-objects are more usually called orthogonal (also; recti-
linear, isothetic, iso-oriented, x-y or aligned) objects; see [14,27] for further
references.
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Definition 4.1 We say that a set P C R? is O-convex if the intersection
of P and any O-line is either empty or connected.

This is a natural generalization of orthogonal convexity and normal convex-
ity. Figure 1 contains some example figures which are O-convex for various
O. Figure 1 (a) is not O-convex for any non-empty O, but is O-convex if
O = 0, as are all the other figures. Figures (b) and (c) are convex with re-
spect to any horizontal line, as are (d), (e) and (f), so they are all 0°-convex
besides being @-convex. Note that (b) and (c) are not convex for any other
orientation. Figures (d), (e) and (f) are convex with respect to any vertical
line as well and so they are also {0°,90°,180°,270°}-convex. Note that (d)
is not convex for any other orientation. Figures (e) and (f) are convex with
respect to any line with orientation in the ranges [90°,180°] and [270°, 360°],
and so they are also {# | 0° < 8 < 90°0r180° < # < 270°}-convex. Note that
(e) is not convex for any other orientation. Figure (f) is O-convex for any

0.

(2) ®) ©

() (e) | (£)

Figure 1: Some Examples of O-convex Sets

We have the following immediate relation between convexity and O-
convexity.

Lemma 4.1 For any set O of orientations, if P is convez then P is O-
convez.

The following sets are convex, and hence O-convex for any O: the empty
set, R2, and, any point, line, line segment, ray or halfplane in R2,

We first note that, for any set of orientations O, the set of all O-convex
sets over the groundset R? forms a convexity space. This follows because
we can equally well define O-convex sets by:
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A set P C R? is O-convex if, for all points p,q € P, if the line
through p and ¢ is an O-line, then the line segment joining them
is wholly in P.

Immediately, letting £ be the set of all O-line segments, (R?, Lp)isaline
space and, therefore, we obtain:

Theorem 4.2 For any set O of orientations, let C o be the set of all O-
convez sets in R2.
Then (R?, Co) is a convezity space.

O-convexity is a generalization of both normal convexity and orthogonal
convexity. We show that the O-convex hull obeys a strong decomposition
theorem (Theorem 4.8) when restricted to connected sets.

Definition 4.2 The intersection of all O-convez sets containing P is the

O-hull of P and is denoted by O-hull(P) (cf. the definition of the C-hull in
Section 3).

Observe that if O or P is empty, then O-hull(P) = P. When O = 4, for
some orientation 8, and P is a polygon, the O-hull of P has been called the
f-visibility hull of P in [18,23]. As examples of hulls observe that in Figure
1, (f) is the O-hull of (a), for any non-empty O, and (d) and (e) are the
90°-hulls of (b) and (c), respectively.

Theorem 4.2 establishes that every choice of O gives rise to a convexity
space; thus, we may employ the results of Section 3. Immediately, from
Theorem 2.1 we have:

Corollary 4.3 For all 0,P,Q,
P C 0-hull(P)

O-hull(P) =P <= P is O-conver
P C Q => 0-hull(P) C 0-hull(Q)

Observe that if 0; C Oy, then, for all P, O1-hull(P) C 0,-hull(P) as was
proved in Theorem 3.1. The reader should note, however, that the inclusion
is reversed since if 01 C O,, then the set of O,-convex sets is a refinement
of the set of O;-convex sets. That is, if 0, C O3, then every 0,-convex set
is O;-convex.

Note that, as a set O of orientations “grows” to include all possible
orientations, O-hull(P) “grows” to be the convex hull of P. Indeed we have
the following theorem.

Theorem 4.4 The set of all O -convez sets over R2, for all O, form a lattice
under refinement. The set of [0°,360°)-convez sets is the supremum of this
lattice and the set of B-convez sets is the infimum.
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Proof: Gratzer ([7] Exercise 9.(i), page 7) shows that the set of all subsets
of a set form a lattice under inclusion. We need merely observe that refine-
ment is equivalent to inclusion for O-convex sets. O

We now state the Separation Theorem proved in [16], which we use to
prove the Orientation Decomposition Theorem.

Theorem 4.5 (The Separation Theorem) Let P be connected and p ¢
P. Then, p € O-hull(P) if and only if there exists a § € O such that the
0-line through p intersects P in, at least, two points on either side of p.

This theorem is false if P is not connected; see [16].
As an interesting aside this theorem yields:

Corollary 4.6 Let P be connected. If p & O-hull(P), then there exists an
O -stairline separating p and P.

When O = [0°,180°), all O-stairlines are lines and this corollary is the usual
separability property.

Intuitively, we may think of forming the O-hull of a set P by sweeping
a line of each orientation in O across P and adding suitable line segments
to the hull formed so far so that it is convex in each orientation in O (if
O is empty, then we do not add anything to P). Thinking of it this way,
it appears reasonable that the hull we eventually produce is unchanged if
we choose a different sweeping order. As we prove in Theorem 4.8 this is,
in fact, the case but only for connected sets. In general, Lemma 4.7 is the
strongest possible result.

As a by-product of the following theorems we establish the validity of two
assumptions made in the literature for orthogonal hulls. Sack [18] showed,
in the orthogonal case, that the horizontal hull of the vertical hull of an
orthogonal polygon (or alternately the vertical hull of the horizontal hull) is
equivalent to the union of both hulls. It was taken as self-evident that their
union is the smallest horizontally and vertically convex polygon enclosing
the orthogonal polygon. Theorem 4.8 validates this assumption. Toussaint
and Sack [23] made the observation that the convex hull is the union of the
“visibility hulls” over all directions of visibility. Theorem 4.8 supplies the
proof for this observation.

The following lemma follows from the Refinement Theorem (Theorem
3.3). Observe that the hull with respect to the intersection of the family of
convexity spaces has been replaced by the hull with respect to the union of
the sets of orientations. This is because when we form the union of two sets
of orientations the hull with respect to their union is convex with respect to
both sets of orientations.
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Lemma 4.7 Givenn > 1 sets O; of orientations, 1 < i < n; then, for all P,

O(o.--huzz(P)) = (f\ 0:)-hull(P) C (CJ 0;)-hull(P)

=1 i=1 i=1

Simple counterexamples show that this result is the best possible, in that
there exist sets for which the respective converses are false. However, we can
strengthen Lemma 4.7 considerably by restricting P to be connected. As
we prove below, when P is connected the containment relations in Lemma
4.7 become equalities. Thus, in the language of Section 3, with respect to
connected subsets of ®?, any two orientation convexity spaces are mutually
invariant.

Theorem 4.8 (The Orientation Decomposition Theorem)
Given n > 1 sets O; of orientations, 1 < 1 < n; if P is connected, then

LﬂJ(O.--huH(P)) = (/n\ 0;)-hull(P) = (0 0;)-hull(P)

=1 t=1 - i=1

Proof: Because of Lemma 4.7 we need establish only that if P is connected,
then (UL, O:)-hull(P) C UL,(0i-hull(P)). If P or (U%, 0;) is empty,
then this holds, so assume that both are non-empty.

Let p € (U,..1 Os ) hull(P). If p € P, then p € UL,(0:-hull(P)). So
suppose that p € (UL; O:)-hull(P)\ P. From Theorem 4.5, we know that
there must exist a § € (UL, O;) such that the §-line through p cuts P on
both sides of p. This implies that p must be in O;-hull(P), for some ¢ such
that 0 € O;. Hence, p € UL, (0:-hull(P)) and the result follows. O

This decomposition result immediately yields an algorithm to find the
hull of any connected set given that we can find the hull in one orientation
and that we can find the union of two or more hulls. As it turns out, however,
connected O-convex sets have considerably more structure than this which
we can exploit to obtain optimal algorithms to find the hull of any connected
set; see [15].

5 Example II: N ESW-Coﬁvexity

As an illustration of the generality of our framework we discuss how they
apply to a problem arising from locked transactions in databases.

In attempting to solve a database concurrency problem, Yannakakis et
al. [28] found a correspondence between the safety of a locked transac-
tion system and what was later called the NESW-closure of a collection
of orthogonal rectangles but is, in reality, their N £SW-hull. Lipski and
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Papadimitriou [12] found an O(nlgnlglgn) time and O(nlgn) space al-
gorithm to find the N ESW-hull of a set of orthogonal rectangles. Later,
Soisalon-Soininen and Wood [21] proved that the N ESW-hull can be de-
composed into two simpler hulls. With this decomposition result in hand
they were able to derive a simple—and optimal—O(nlgn) time and O(n)
space algorithm to find the N ESW-hull. We re-prove their decomposition
result for connected sets, using a completely different technique.

¥
Definition 5.1 A horizontal ray is an E-ray if it lies to the east of some

vertical line. Similarly, we can define N-, S-, and W-rays.

The SW -line at a point p consists of a N -ray and a W -ray that have their
endpoints at point p. The point p is said to be the vertex of the SW -line.
The notions of NE-, SE-, and NW-lines are defined similarly.

Given two points p and ¢ in the plane, they determine a unique N E-line
if either p is to the left of ¢ and above g or vice versa. Therefore, it makes
sense to say that p, ¢ define a N E-line in these cases.

Definition 5.2 We say that P is N E-convex if, for all p,q € P that define
a N E-line, the vertez of this line is in P. We define SW -convez, S E -convez,
and NW -convez similarly.

We say that a set P is N ESW-convex if it is both N E- and SW -convez.

Let £y be the collection of all sets {p, g, v} such that p, q define a N E-
line with vertex v. Then, (R?, L) is a line space and each set P C S,
P # 0, is £ y-convex if and only if it is N E-convex. In a similar manner
we define Lg, the collection of all triples that define a SW-line. We define
L /g to be the union of these two sets.

By Theorem 2.2, we have:

Theorem 5.1 For X the collection of all N E-convex sets, SW -convez sets,
and N ESW -convez sets, (R?, X') is a convezity space.

Soisalon-Soininen and Wood proved a decomposition theorem for N ESW-
convex sets by examining the boundaries of the NE- and SW-hulls. We
re-prove their results, for the special case of connected sets, by proving a de-
composition theorem that is similar in spirit to Theorem 4.8. We approach
the proof along similar lines to the proof of the Orientation Decomposition
Theorem in the previous section.

Lemma 5.2 Let P be a connected set. If a point p e NESW -hull(P)\ P,
then either the N E-line or the SW-line at p intersect P on both sides of p.

Proof: Assume that p € NESW-hull(P)\ P and neither the N E-line nor
the SW-line at p cut P on each side of p. Then, we can remove all the



16 Rawlins and Wood

points in either the NW-quadrant at p or the S E-quadrant at p. We argue
as follows.

Assume the vertical line through p cuts P on each side of p. Because P
is connected and p ¢ P, the E-ray at p or the W-ray at p must cut P. But
this implies that either the N E-line or the SW-line at p cuts P on each side
of p — a contradiction. A similar argument holds for the horizontal line
through p.

Now assumne, without loss of generality, that the S-ray at p does not cut
P. Then, either the E-ray or the W-ray at p do. If the W-ray does, remove
from N ESW-hull(P), all points in the closed quadrant containing p and
formed by the E-ray and the S-ray at p. If the E-ray cuts p, then neither
the W-ray nor the N-ray cut P. In this case, remove all points in the closed
quadrant containing p and formed by the N-ray and the W-ray at p.

In both cases, since no points in P were deleted this set still contains
P and is NESW-convex. But NESW-hull(P) is the smallest set which
both contains P and is N ESW -convex, a contradiction. Thus the lemma is
proved. O

Theorem 5.3 For all connected sets P,

NE-hull(P)U SW-hull(P) = NE-hull(SW -hull(P))
= SW-hull(N E-hull(P))
= NESW -hull(P)

Proof: We only need prove that NESW-hull(P) C NE-hull(P) U SW-
hull(P), since the other containments follow from Theorem 3.3.

If P = 0, this holds vacuously, so assume that P # @. Consider
p € NESW-hull(P). If p € P, the p € NE-hull(P) U SW-hull(P). There-
fore, assume p € NESW-hull(P) \ P. From Lemma 5.1 either the N E-line
or the SW-line at p cuts P on each side of p. Hence, p is in either the N E-
hull(P) or the SW-hull(P), respectively; that is, p € N E-hull(P) U SW-
hull(P). The result follows. O

6 Example III: NEED-Convexity

We now provide a final example to demonstrate that connectedness does not
imply decomposability. Using the notions of the previous section, a NW-
line rotated counterclockwise by 45° gives what we call an ED-line or an
eastern diamond line. Clearly, if two points p and ¢ do not both lie on the
same ray of an E D-line, then they determine at most one ED-line. Hence,
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for ED-lines, we say that p,q define a an ED-line, if they determine an
E D-line and this line is unique.

Definition 6.1 A set P C R2? is ED-convex if for all points p,q € P that
define an E D-line,its vertez is in P.
A set P C R? is N EE D-convex if it is both N E-convez and E D-convez.

Let Lg be the collection of all sets {p,g,r} such that p,¢ define an ED-
line with vertex v. “Then, (R?, Lg) is a line space and each set P C R2,
P # 0, is £g-convex if and only if it is ED-convex. Now, let L ¢ be the
union of L j and Lg; again it induces a line space. Hence, we obtain:

Theorem 6.1 For X the collection of all ED-convez sets and NEED-
convez sets, (R%, X) is a convezity space.

However, as we now show there is no decomposition theorem for N EED-
convex sets. Consider an orthogonal unit square in the plane. Its N E-hull
is itself; its ED-hull is, after a little thought, a pentagon with the same
bottom, top, and left edges, but with two additional edges given by the
ED-line defined by the topmost and bottommost righmost corner points.
The N E-hull of the ED-hull is the pentagon with its top edge extended
a half unit to the right and from this terminating point a line segment is
dropped a half unit downwards. But, its N EE D-hull is a quadrilateral with
the same bottom and left edges, its top edge extended again by a half unit
(so it is two units long), and the right edge joins the two rightmost corner
points.

Therefore, there is no decomposition theorem, since we do not have
invariance.
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