TECHNICAL REPORT NO. 271

Inference Supercomputers
by
J. W. Mills, M. Burroughs, R. Wehrmeister, and D. Winkel

February 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

Inference Supercomputers

by

J. Mills, M. Burroughs, R. Wehrmeister, and D. Winkel

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 271

Inference Supercomputers
by

J. Mills, M. Burroughs,
R. Wehrmeister, and D. Winkel

February 1989

Inference Supercomputers

J. Mills, M. Burroughs, R. Wehrmeister, and D. Winkel
Computer Science Department
Indiana University
Bloomington, Indiana 47405-4101

Abstract

Inference supercomputers have received less attention from
computer architects recently because relatively few supercomputer
users require Lisp and Prolog, interest has grown in artificial neural
networks, and the Japanese Fifth Generation project has
encountered difficulties attaining its goals. Yet several important
classes of problems can be solved using non-numeric algorithms
such as unification, and would benefit from the development of
powerful inference architectures. We suggest that attaching simple
inference coprocessors to nodes of existing parallel computers is the
most effective way to construct an inference supercomputer. The
LIBRA processor being built at Indiana University is proposed as
the prototype for such a node.

1. INTRODUCTION

The need for numeric computing which drove the development of ‘early computers, and the
increasing demands which led to their successors, spawned a class of supercomputers that are not
well-suited as inference engines. The current problems with inference supercomputing are typified
by automated theorem provers: at least one small class of problems (geometry theorems) is
solvable both numerically and by using resolution, but the solutions are found approximately four
orders of magnitude more slowly using resolution. The problem instances are identical,
demonstrating the performance inequality between inference and numeric computing. Trainable
architectures for pattern recognition (neural networks) offer one solution to certain types of
inference, particularly when the problem may not be formulated precisely, but whether neural
networks can be evolved as high performance symbolic computers is yet unknown. Just as there

Mills et. al. . INFERENCE SUPERCOMPUTERS Page 1

exist problems that can be well-stated numerically, and which no one would initially attempt to
solve with a neural network (weather prediction, weapons simulations), so there exist well-formed
classes of problems that can be solved algorithmically — but the algorithms are not numeric. Real-
time expert systems, symbolic mathematics, theorem proving, logic programming, and scheduling
problems that are not amenable to linear programming (job shop scheduling) all fit into this
category. We suggest that the numeric supercomputer, the inference supercomputer, and the
neural network represent architectures that are best suited for specific problem classes: as such,
each architecture merits independent study.

2. WHAT IS INFERENCE SUPERCOMPUTING?

Although no inference supercomputers have yet been built, architectures comparable to one node in
the proposed inference supercomputer have been or are being built in Europe, Japan and the United
States. Although the inference supercomputer is just as much a von Neumann machine as a
numeric supercomputer, the uses to which they are put place different demands on the hardware.

At a very basic level two computing paradigms exist:
Numeric computing performs arithmetic on numbers to calculate a result.
Inference computing defines relationships between objects to reach a conclusion.

Numeric computing is more constrained than inference computing, in the sense that the objects
manipulated are less abstract (although their meaning may be as abstract as the problem requires, it
does not affect the fact that the calculations are limited to numbers or vectors and arrays of
numbers). The constraints necessary for numeric processing are relatively well-understood, and
their study has produced algorithms and architectures for numeric, vector, and array processing.
However, the algorithms and architectures for inference processing have only recently begun to
emerge.

Current architectures for inference computing are derived from seminal work done by David Moon
(the Symbolics 3600), and David H.D. Warren (the Warren abstract Prolog machine). Yet even
these architectures have not been the result of rigorous evaluation of the needs of complex and
powerful inference engines, but rather the demands of specific programming languages: Lisp for
the Symbolics 3600, and Prolog for the Warren abstract machine (WAM). The architectural
requirements of resolution, reduction, term-rewriting systems are more global than the

Mills et. al. INFERENCE SUPERCOMPUTERS Page 2

requirements of a language. Consider this analogy: FORTRAN programs can be compiled 1o a
single Motorola 68030 processor, but FORTRAN programs to solve weather prediction, ray
tracing, and large systems of partial differential equations have requirements of scale that prevent
their solution on the 68030. Having a hardware multiplier built into a single arithmetic logic unit is
a far different thing than having an attached array processor. Similar requirements of scale turn
inference computing into inference supercomputing: they must be isolated, identified and
understood before an inference supercomputer can be built.

2.1 INFERENCE SUPERCOMPUTING IS MORE FUNDAMENTAL THAN KNOWLEDGE INFORMATION
PROCESSING

Inference supercomputing is much less ambitious than knowledge information processing as
defined in the Japanese Fifth Generation Computing effort (Moto-oka 1982). Inference
supercomputing does not purport to give a solution to difficult problems in natural language
recognition, VLSI design and machine intelligence. These problems may benefit from the
availability of an inference supercomputer, but will require a much better understanding of the
problem domain before solution is possible: for example, Prolog implementations today run at
from 50,000 to 200,000 LIPS, yet computers still do not understand language, VLSI design has
not been totally automated, and computers are not intelligent.

A faster inference engine cannot reduce the worst-case complexity of any NP-hard problem, but it
can improve the ability to find solutions to those problems that are computationally feasible (as
many such instances of NP-hard problems are). To use an automated theorem prover as an
example, an increase in execution speed of 105 could reduce the time neceLIBRAry to find a proof
from 2 hours 45 minutes to less than 1 second. This suggests the true importance of fast inference
processing: the improvement of existing applications which can be expected if faster inference
engines are available. '

2.2 DESIGNING A PARALLEL INFERENCE SUPERCOMPUTER

No matter how well a programming system is understood, designing an architecture for that
system will highlight incorrect design assumptions and less well-understood interactions within the
system. Our proposed inference supercomputer is based on the design of two RISC architectures

Mills et. al. INFERENCE SUPERCOMPUTERS Page 3

for logic programming which have influenced researchers in this area in the United States and
Europe.

The LOW RISC and the LIBRA architectures are seminal designs that have taken the highly
successful RISC methodology, applied it to logic programming, and identified principles that allow
them to execute Prolog faster than any other architecture. The LOW RISC is being modified by
Prasenjit Biswas of Southern Methodist University for use as a processor node in a parallel Prolog
machine. The DLM, designed by Frank McCabe of Imperial College and built by British
Aerospace, has many features derived from the LOW RISC and some similar to the LIBRA. The
performance of the DLM is at the lower range of the estimated LIBRA performance, indicating that
the higher estimates for performance of the LIBRA design (which includes architectural support for
logic programming not present in the DLM) are reasonable.

3. POTENTIAL PERFORMANCE OF INFERENCE SUPERCOMPUTERS

The performance of symbolic supercomputers varies with the architecture of the machine, its
degree of parallelism, and the implementation technology. In Figure 1 the estimated performance
of five approaches to a symbolic supercomputer are compared. From this comparison, the
approach most likely to produce an inference supercomputer is to extend the LIBRA architecture as
a loosely coupled multiprocessor, implementing it in ECL or GaAs that have a short switching
time, and from which a cache and at least the first level of main memory can be constructed.

1E12 /
1E11 /
1E10 /
. 7
Inferences
(Logio) /
1E7 _.-—-""’"."
—
- —1
< 3/ 1
Pipelined Multiple Shared Message
(1FE) Function Units Memory Passing
(1EE) (8o 10 PEs) (100 to 32000 PEs)
4 ECLSSA { CMOS LIBRA B ICOTPIM-D O DM A PLM A Symbolics 3600

Figure 1. Estimated performance of various inference supercomputers

Mills et. al. INFERENCE SUPERCOMPUTERS Page 4

4. LIBRA: THE BASIC INFERENCE ARCHITECTURE

4.1 DESCRIPTION
A brief list of the LIBRA's features follows:

a. Multiple individual memories. Code, heap/stack, cache, and trail memories are
described in [3].

b. 40-bit tagged architecture, with 3-bit inference type, 2-bit mark & reverse garbage
collect flags, and a 35-bit value which can be further typed for use with 32-bit
coprocessors [1, 2].

¢. Independent next address calculation. The instruction address

d. Partial unification

€. Tag-controlled caching

f. Bounds check for trail checking.

"Sticky overflow" detection: bounds checking before stacks collide.

e

a "fail-trail" ALU to off load the burden of backtracking and trailing, moving this
outside the cache to increase the cache hit rate.

Important Features of the LIBRA Architecture

Because a RISC represents the essence of the operational semantics of a source language, its
performance will depend on the distillation of those semantics into the architecture. For example,
the RISC I1 is not adequate for Smalltalk and Lisp: instead, the SOAR was designed for Smalltalk-
80 (Ungar 1986) and the SPUR for Lisp (Taylor et. al. 1986). The development of two language
specific architectures confirms Tick and Warren's objections to a general purpose RISC for Prolog:
the RISC I architecture cannot efficiently perform some operations that Prolog requires. But these
objections do not hold for a language specific RISC. Much of this research consisted of creating a
RISC architecture tailored to Prolog. In one sense this dissertation describes "just another RISC",
but in another sense it does not: to solve the problems of branch frequency and code density five
concepts from computer architecture were extended to tagged architectures, introducing design
techniques that could be used to improve the symbolic processing capability of general purpose
computer architectures:

Mills et. al. INFERENCE SUPERCOMPUTERS Page 5

1. Generic instructions, such as a single add for integer, long integer and floating point data, are
generalized to replaceable instructions, instructions whose operation consists of any non-
replaceable instruction from the architecture's instruction set as determined by the type of its
operands. The LIBRA architecture includes a single-cycle partial .unify replaceable instruction that
may perform either a nop, a store, a call or a branch, thus condensing three to five tag checking
instructions into one. The partial unify instruction can eliminate as many as 30% of the subroutine
calls performed by a general purpose RISC running Prolog.

2. Microcode addressing is typically provided or modified by flags, fields in the
microinstruction, and a microprogram counter. A new technique is introduced in the LIBRA:
concatenated-tag microcode addressing. Using this technique, the microcode is viewed as a two-
dimensional array of control words. The two tags saved from the previous instruction's operands
are used to index the microcode array, and select the control word for a replaceable instruction.

3. Cache data management typically deals with what is removed from a cache. But some data,
particularly pointer chains, can cause a cache to be flushed unneceLIBRArily. Tag-controlled
caching is a technique that prevents transient data, such as intermediate elements in a pointer chain,
from entering a cache, increasing the stability of other data in the cache.

4. Scoreboarding allows the efficient use of a machine resource after all neceLIBRAry
conditions are met. Generalized scoreboarding manages the previous use of a resource as well,
avoiding the later use of a resource at an inconvenient time. If an operation can be divided so that a
resource can be used in advance, then the scoreboard can mark pre-processed data as well as data
waiting to be processed. The LIBRA architecture uses generalized scoreboarding by performing
bounds checks during a load on unbound variables. If the bounds checks show that the unbound
variable needs to be trailed if it is instantiated later, the register loaded is marked by setting a trail-
check flag.

5. Conditional instruction execution is used to implement preferred branches and is also used
with numeric conditions to control the execution of every instruction in the Acorn RISC Machine
(Acorn Computers Limited 1986, 1987). The LIBRA architecture extends this concept by adding
the symbolic conditions used in Prolog, allowing operations which formerly needed several test-
and-branch instructions to be coded instead as a sequence of instructions, all of which are
conditionally nops. This reduces the branch frequency of the LIBRA, and improves its ability to
use interleaved memory.

Mills et. al. INFERENCE SUPERCOMPUTERS Page 6

4.2 INSTRUCTION SET

Prolog implementations quite often spend more time checking to see if a basic operation such as
unification or trailing must be done than they take to do it. A unification may not be recursive; a
variable may not need to be trailed; an argument may already be dereferenced; but the checks to
determine that the operation is not needed appear to be unavoidable. However, in the Logical
Inference Balanced RISC Architecture (LIBRA), designed to execute Prolog, two features were
included to avoid recursive unification, and hide the time spent doing trail checking. When the
LIBRA executes a load instruction, it checks unbound variables against internal bounds registers,
and stores the result of the check in a status bit associated with each register. Later, if the unbound
variable is bound, the status bit is used to conditionally execute a trailing instruction [Mills 88a].
The LIBRA also has a single-cycle partial unification instruction which uses the tags of the two
operands being unified to select microcode to perform the correct unification operation: do nothing,
bind, branch to fail, or call a recursive unification subroutine [Mills 88b].

Class Instruction Operands
0.1 if cond3: IMM {sc} Hilmm18
| 1] If cond3: ADD {sc} ri, 12, r3 ,
Arithmetic| 2 | if cond3: ADD {sc} ri, Lolmmi1, 13: r3
.8 | if cond3: SUB {sc} , ri, r2, r3
4 | if cond3: SUB Isc) ri, Lolmmi1, t3: r3
.5.] If cond3: LD {sc} ri, Lolmm11, r3
.8.| if cond3: ST {sc} ri, Loimmi1. r3
.7.] Jf cond3: ST {5} ri, Lolmmii, t3: r3
Memory I's"[it cond3: pop ool [RO - R3 1,13
9 if COI"I,d3! PUSH {sc} [RO - R3], {t2:} r2, {t3:} r3
A | if cond3: PUSH {sc} [RO - R3], t2: Lolmm11, t3: r3
B | if cond3: SWITCH [rl] src2] fail: b7, fail: b7, fail: b7
C | if cond3: |F {not} cond5, b19
Control | D | if cond3: UNIEY {sc} r1, r2, b3, b7, b7
E | if cond3: CALL {sc} [R28 - R31], b22
F | if cond3: RETURN {sc} - [R28 - R31]

Figure 2. Instruction set for minimal balanced RISC architecture

4.3 PERFORMANCE

Although the LIBRA was originally designed for logic programming, it is also an efficient Lisp
architecture. Lisp and Prolog execute similar basic operations but Lisp is faster due to

Mills et. al. INFERENCE SUPERCOMPUTERS Page 7

inefficiencies in the abstract machine used to implement Prolog (Tick, Lisp and Prolog Memory
Performance, Stanford Tech. Report 86-291). Because the LIBRA provides single-cycle tag
handling, function call, stack access and unification instructions using a MIPS-like approach to the
datapath and only 6.8K bits of microcode, it provides better support for Common Lisp than the
MIPS without the disadvantages of the Symbolics 3600 or the TI Explorer (Steenkiste and
Hennessy, Lisp on a RISC: Characterization and Optimization, IEEE Computer, July 1988). An
ECL LIBRA operating at 1.6 GHz with an 8 word instruction prefetch buffer and 32 word stack
buffer could execute TAK in 0.000069 seconds, more than 600 times faster than any other Lisp
implementation (Gabriel, Performance and Evaluation of Lisp Systems). Its Prolog performance is
similar: measured in megaLIPS, a single ECL LIBRA could attain 174 megaLIPS. The LIBRA's
performance was verified at Motorola by simulating an extended 88000 based on the LIBRA, and
concepts introduced in the LIBRA have been validated by the success of the British Aerospace
DLM (a Lisp/Prolog machine resembling the LIBRA, influenced by Mills' earlier LOW RISC
design).

S. EXTENDING THE LIBRA TO A CRAY-LIKE ARCHITECTURE

Very similar to the LIBRA, but uses additional functional units to perform head unification in
parallel. Pre-fetching of multiple instruction streams on a branch (may have one stream for each
different type of object, and it is possible that more than one stream may be similar. Example:
unification that succeeds only with a defined constant or a variable may prefetch streams for the
constant unification code, the variable unification code, and the failure (or backtracking) code.

6. ATTACHING THE LIBRA TO A MESSAGE-PASSING ARCHITECTURE

The LIBRA attached to a message passing host may have varying degrees of complexity, as
different host architectures may require different approaches to add symbolic processing capability.

Varying the basic architecture yields the following possibilities:
* standard cell that can be included in host VLSI design as functional unit
* tightly coupled accelerator retrofitted to host node

* loosely coupled accelerator retrofitted to host node

Mills et. al. INFERENCE SUPERCOMPUTERS Page 8

° separate processing element communicating to host via thin wire connection

7. THE LIBRA IMPLEMENTATION PROJECT AT INDIANA UNIVERSITY

The LIBRA has been described, and earlier versions simulated (88000e, LOW RISC II), but the
design must be implemented to verify its performance. We are undertaking that implementation at
Indiana University, approaching it from three directions.

7.1 BIPOLAR MICROPROGRAMMED VERSION

We are building a LIBRA prototype out of AMD 29000 horizontal function slices. This single
node will provide information about the extensibility of LIBRA functions at the microcode level.

7.2 CMOS VLSI

A CMOS VLSI version of the LIBRA is planned. Initially the LIBRA and MIPS architecture and
instruction set will be compared, then those instructions not available in the MIPS extracted. The
combined LIBRA and MIPS instruction set will be simulated, and the LIBRA tuned by modifying
its datapath. This will result in a basic architecture which can be translated into an equational
specification according to techniques developed by Steve Johnson.

The architectural requirements of Common Lisp and Prolog on tightly coupled (shared memory)
and distributed (message passing) parallel architectures will be analyzed. Preliminary research
indicates that compiling Lisp to a tightly coupled multiprocessor results in numerous small
functions per node (W. L. Harrison, Compiling Lisp for Evaluation on a Tightly Coupled
Multiprocessor, CSRD Rpt. No. 565, University of Illinois Center for Supercomputing Research
& Development). Small functions linked by conditional branches are optimally executed by the
LIBRA due to its orthogonal conditional instruction execution. Experiments with a message
passing architecture (the Connection Machine, R. Stevens, Argonne National Laboratory) suggest
that a massively paralle]l architecture could be improved by addition of a unification operation.
Simulations of the LIBRA will be performed on the BBN Butterfly at Indiana University to
determine the dynamic frequency of LIBRA instructions. Using this information a variety of
reduced LIBRA's will be extracted. A reduced LIBRA that unifies two 32-bit words and emits an
instruction to the host node based on the result of the unification is one possibility for an LIBRA
standard cell.

Mills et. al. INFERENCE SUPERCOMPUTERS Page 9

7.3 ECL HETEROGENEOUS GATE ARRAY

Motorola is interested in building the ECL LIBRA, and this effort is most likely to result in a
powerful, single-node Cray-like processor.

REFERENCES

(1]
[2]

(3]

[4]
(3]

Mills, J. 1987. Coming to grips with a RISC.

Mills, J. 1988. LIBRA: A High-Performance Balanced RISC Architecture for Prolog, Ph.D. dissertation,
ASU, August 1988.

Mills, J. 1986,1987,1988. Technical description and patent claims for the LOW RISC and LIBRA
computers.

Short, B. 1987. Extending a reduced instruction set computer to support Prolog.

Short B. 1987. Use of instruction set simulators to evaluate the LOW RISC.

Mills et. al. INFERENCE SUPERCOMPUTERS Page 10

Z7TTTTIIIES
ET VERITAS

