TECHNICAL REPORT NO. 270

Backtracking and Random Constraint Satisfaction

by

Paul W. Purdom

Revised: November 1990

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Backtracking and Random Constraint Satisfactiont

Paul Walton Purdom
Computer Science
Indiana University
Bloomington, IN 47405
U.S. A.

Abstract: The average running time used by backtracking on random constraint satisfaction
problems is studied. This time is polynomial when the ratio of constraints to variables is large, and
it is exponential when the ratio is small. When the number of variables goes to infinity, whether
the average time is exponential or polynomial depends on the number of variables per constraint,
the number of values per variable, and the probability that a random setting of variables satisfies
a constraint. A method for computing the curve that separates polynomial from exponential time
and several methods for approximating the curve are given. The version of backtracking studied
finds all solutions to a problem, so the running time is exponential when the number of solutions per
problem is exponential. For small values of the probability, the curve that separates exponential and
polynomial average running time coincides with the curve that separates an exponential average
number of solutions from the a polynomial number. For larger probabilities the two curves diverge.
Random problems similar to those that arise in understanding line drawings with shadows require
a time that is mildly exponential when they are solved by simple backtracking. Slightly more
sophisticated algorithms (such as the constraint satisfaction algorithm that is used in practice)
should be able to solve these rapidly.

tThis work was supported by Indiana University and FAW (Research Institute for Applied Knowl-
edge Processing at the University of Ulm).

A constraint satisfaction problem instance consists of a set of relations defined over a set of
discrete variables. The goal is to find a value of each variable such that every relation evaluates
to true. There are many applications of this type of problem. One famous application is that of
understanding line drawings [6].

This class of problems includes the classical problem of satisfiability of a Boolean expression. It
is NP-complete even when restricted to include only problems where the relations are functions of
three variables with two values per variable or when restricted to include only problems where the
relations are functions of two variables with three values per variable [5]. All known algorithms have
exponential worst-case running time. There are, however, simple algorithms that are sometimes
fast in practice.

Many people have measured the speed of algorithms for the constraint satisfaction problem and
their work is summarized by Nudel [2]. Several people have also calculated the speed of constraint
satisfaction algorithms for random problems. Haralick and Elliot [1] computed the average speed
for backtracking and forward checking algorithms to solve simple random sets of problems. Nudel
[2] analyzed the speed of these algorithms for more complex random problem sets.

The algorithms that have been analyzed are simpler (and almost certainly slower) than those
used in practice. Waltz [6] used constraint propagation for understanding line drawings. Constraint
propagation is a sophisticated form of backtracking. There are many problems for which it is fast
but the simple form of backtracking considered in this paper is slow. There are very few problems
where the reverse is true.

This paper finds the ratio of the number constraints to the number of variables that results in
random problems being on the borderline between exponential and polynomial average time. This
is the first asymptotic analysis of the average speed of backtracking for solving random constraint
satisfaction problems. These results were present in preliminary form at the 1988 workshop on
Mathematical and Artificial Intelligence at Ulm.

Backtracking

The backtracking algorithm consists of first checking whether there is any relation that can not
be satisfied. If so, the problem has no solution. Otherwise, a variable is selected, and each value
for that variable is tried. Trying a value conmsists of simplifying each relation to reflect the value
of the variable. The simplified problem is solved by recursive application of the algorithm. The
algorithm returns “Unsatisfiable” if the initial problem contains an unsatisfiable relation or if all
the subproblems are unsatisfiable. It returns “Satisfiable” if any subproblem is satisfiable or if the
problem contains no variables. Although a constraint satisfaction algorithm could stop as soon as
one way is found to satisfy the relations, this paper analyzes a version that finds all solutions. As
a result, those random problem sets where the average number of solutions is exponential require
exponential average time even if the algorithm finds each solution quickly.

Backtracking. Input: A set of variables z,, z,, ..., z,, sets X3, X5, ..., X, of possible values
for variables z1, z,, ..., &, respectively, and a set of relations Ry, R, ..., R of relations defined
on the variables. Output: Satisfiable or Unsatisfiable.

1. If some relation is false for all combination of values for the variables that it depends on then
return Unsatisfiable.

2. If the set of variables is empty, then return Satisfiable.

3. Remove z; from the set of variables and X; from the set of possible values. For each value in
X1 generate a new problem by simplying each R; that depends on z;. Solve each new problem

2

by a recursive call to this procedure. If the result of any new problem is Satisfiable, then return
Satisfiable, otherwise return Unsatisfiable.

With some froms of problem representation and with constraints that depend on a large number
of variables, Step 1 can require a large amount of time. A more primitive form of backtracking uses
the following step in place of Step 1:

1'. If some relation is false for the current setting of the variables then return Unsatisfiable.

When Step 1’ is used, there is no need to simplify relations in Step 3. It is clear that the
primitive version of the algorithm never generates a smaller backtrack tree, but in some cases it
may be faster due to spending less time per node. The paper concentrates on the more sophisticated
form of the algorithm, but it is easy to adapt the results to obtain an analysis of the more primitive
form.

Random Problems

To evaluate the speed of backtracking, the following random problem set is used. Each problem
in the set is formed from v variables, where each variable has u > 2 possible values. Each problem
contains ¢ relations, and each relation depends on k > 1 of the v variables. A random problem is
formed by selecting with repetition ¢ random relations. A random relation is formed by

1. selecting without repetition k of v variables and

2. for each of the uF assignments of values of the k variables define the relation to be true with
probability p.

Call each setting of the variables of a relation a cell. Thus, a random relation depends on k distinct
variables, and for each cell the relation has the value ¢rue with probability p independent of the
value for other cells.

Exact analysis

The probability that all the cells of a relation are false is (1 — p)“h. The probability that some

cell is trueis 1 — (1 —p)*". The probability that every relation has some true cell is [1—(1—=p)**]t.
The probability that some relation has no true cell is

1-[1-(1-p)*], (1)

Which is also the probability that the algorithm terminates without generating any subproblems.

Suppose i of the v variables are set (have been assigned values). In a single random relation,
each variable has probability i/v of being set. The probability that the first 7 variables in a random
relation are set is 4(i — 1)---(¢ — j + 1)/[v(v — 1)---(v — j + 1)]. The probability that the first j
are set and the remaining k — j are unset is (¢ — 1) - - (i —j+ 1) (v —i)(v—i-1)---(v—k+ 5+
1)/[v(v—1)---(v—k+1)]. Thus, the probability that j of the k variables of a random relation are

66

If a random relation on k variables has j of its variables set then the simplified relation is a random
relation on k — j variables, where a random relation on zero variables is true with probability p and
false with probability 1 — p.

After 7 variables are set, the probability that a random relation has at least one true cell is

=3 (5) (275 -a-n /(0). ©)

J

(The function g also depends on v, p, u and k, but dependence on these parameters is not displayed.)
The probability that ¢ random relations all have at least one true cell (after i variables have been
set) is [g(%)]*. This is also the probability that a particular branch of the search tree will extend to
level ¢ + 1.

The search tree has one root node. Each extension of a node in the search tree results in u
additional nodes. On level 7 of the search tree, there are u® settings of the variables to consider.
The average number of nodes in the entire search tree for a random problem is

1+u Y v [g(a)]. (4)

0<i<vy

The average number of solutions for a random problem is the number of variable settings times
the probability that a setting makes all the relations true:

u’[g(v)]* = u’p". (5)

The average number of nodes generated by the primitive form of backtracking is given by
eq. 4 with the definition of g (eq. 3) modified by retaining only the j = k term in the sum. It
is straightforward to modify the following analysis for this change in definition of g, so it will not
be considered further. We now continue with the analysis of the more sophisticated version of
backtracking.

Simple approximations
From the general form of egs. 3 and 4, it is evident that the average number of nodes increases
with v and p and it decreases with u and t.

The function g(i) is particularly important in determining whether the average running time
is exponential or polynomial. Let

pi=1-(1-p)¥, (6)

which is a increasing function of j. Note that po = p. Since g(i) is an average of the p; (where the
weights are nonnegative functions of 7),

po < g(2) < k. (7)

Plugging these bounds into (4) gives an average number of nodes of

v

u_
14+a— !
+uu_lm (8)

for some z in the range p < & < pi. The time is polynomial (less than v™ for some constant n < 00)
when u’p} < v™, which is the same as

t > 1 (lﬁnlnv)‘ 9)

vlnu = —Inps vinwu

4

The time is exponential (greater than e* for some constant e > 0) when u"pl > e, which is the

same as
t e (1 :) 10
vlnu = —lnpg Inu/" (10)

Applying Taylor’s theorem with a remainder to eq. 6 (using p as the variable) gives

pj = wp(l—)1, (11)

for some c in the range 0 < ¢ < p. Setting ¢ = 0 gives an upper limit of uIp for p;jand po=pis a
lower limit, so _
p < p; < vp. (12)
Applying the upper limit for p; shows that the simple boundaries for polynomial and exponential
time (9 and 10) are close together when the logarithm of p is much less than the logarithm of u—.
Basic asymptotics
Assume that that ¢ is functions of v, and that k, p, and u are constant. (Letting these

parameters vary slowly with v would not change the analysis much, but it would mean that more
care would be needed with eq. 16, for example.)

The binomials containing ¢ from eq. 3 can be written as

(25)/()= I, (-9 I (=))

0<z<k—j 0<z<
Since ; .
1_.z_m=1_i_o(f) (14)
B —an v v
and) -
1—T 1 brid
v-k+j—z‘5_o(5)’ 8

0-5() (- (@m0 ()

He)=Y" (;‘7)(1 — 2 Iaip_;. (17)

7

Define f(z) by

Then, the size of the search tree is given by

1+u Y o {f (:—;)rO(ew”). (18)

0<i<y

The rest of the paper considers the conditions where the average time is a polynomial or exponential
function of v. This is done by studying eq. 18 with the big O term dropped. Thus, we are assuming
that kt/v is bounded by a constant times In v as v goes to infinity. (When k, p, and u are fixed the
boundary between polynomial and exponential time always occurs at a finite value of t/v, so the
assumption of a bound on kt/v is not actually used.)

5

Numerical bounds

If M is the maximum term in the sum from eq. 18, then the number of nodes is at most
1+wuvM. The number of nodes is at least 1 + uM. The maximum term can be found by setting to
zero the derivative (with respect to z = i/v) of the logarithm of the summand. If the derivative is
negative for all z between 0 and 1—1/v, then ¢ = 1—1/v maximizes the summand. (The derivative
is never positive for the entire range.) Let z be the value of /v that maximizes the summand. The
summand is maximized by the root of

iy L@ _
In +vf@)_0, (19)

when the root is in the range 0 < z < 1—-1/v,and by z = 1 — 1/v when the root is greater than
1-1/v.

The terms in the summand require i to be an integer while the value of z that is the root
of eq. 19 may be noninteger. This never causes a problem in determining where the boundary
between polynomial and exponential time is, because no level of the backtrack tree has more than
u times as many nodes as the previous level. Thus, reducing z slightly from the root value never
has an exponential effect on the number of node. Also, we can increase the upper limit on z to 1
(instead of 1 — 1/v) without affecting our final conclusion. The average time is polynomial when
vuH [f(z)]f < v™, which gives

- e
-w-lnu+£1nf(:.c)§ (1’3)111’U]nu‘ (20)
]]
In the limit as v goes to infinity, the right side is zero. The average time is exponential when
T t ev —Inu
=] -1 > —_ 21
“hnu+ “lnf(e) > o (21)

The right side can be as close to zero as we like by choosing € be small. The boundary between
polynomial and exponential time is given by

mhu+%hf@):& (22)

As v goes to infinity, if the limit of the left side is less than zero, then the time is polynomial; if it
is greater than zero, then the time is exponential; and if it is zero, then the rate at which the limit
approaches zero determines the asymptotic running time.

Using eq. 22 to eliminate ¢/v in eq. 19 gives

__2fi®) _
)btz " (23)

as the equation for , provided it has a root with 0 < z < 1. Otherwise the value of z is 1. Once
the value of z is known, the value of /v is given by eq. 22, which can be written as

t: zlnu (24)

v —Inf(z)

Since f(z) < 1, eq. 24 always gives a positive limit for ¢/v.

6

The function f'(z) is

fi(z) = kla*'po — (1 - 2)F ']+ Y (f) e 1-) 9 — ke)pp_y. (25)

1<5<k-1

The function f'(z) is negative, and it becomes more negative as z increases (the constraints become
more effective as more variables are set). The extreme values are f'(0) = —k(pr — pr_y) and

f'(1) = —k(p1 — po).
The condition for £ = 1 to be a root of eq. 23 is

k(p1 — po) il

14
plnp

(26)

Using p. as the value of p that satisfies eq. 26 and p; —po =1 —p— (1 — P)*, eq. 26 can be written
as

pu(k —Inpy) = k[1 - (1 - p,)"]. (27)

The left side is a decreasing function of p, and the right side is an increasing function, so there is
one solution for 0 < p, < 1. Expanding the right side of eq. 27 in a power series gives

e > e—ku-1). (28)

This bound results in the left side of eq. 27 being kup, while the right side is smaller than this.
When the right side of eq. 28 is small, it is a good approximation to the actual value. The solution
and bound (eq. 28) for selected values of k and u are given in Table 1.

u D lower bound kE u P lower bound
2 538x1071 1.35x 1071 3 2 7.73x1072 4.97x10°?
3
3

3 223x107% 1.83x 102 3 256x107% 248x 1073
11 2.06x10™° 2.06 x 10~° 11 9.36x 107'* 9.36x 1014

[T T O

Table 1. The largest probability that results in the boundary for exponential average time being the same as the
boundary for an exponential average number of solutions

When p < p., the average running time is polynomial if and only if the average number of
solutions per problem is polynomial, and eq. 5 implies that the boundary is

i Inu

= 2
v —lnp (0}

Power series approximation

Taylor’s theorem shows that p; can be bounded by a function of the form Ba?, but it does not
provide the best approximation of this form. The best such approximation depends on the fact
that p;1/p; is a decreasing function of . To prove this start with

Pit1 Piy2

>0 ifand only if p?,; — pipiys > 0. (30)
P Pi+1

Let r = (1 - p)’“‘i. For 0 < p< 1, the range of 7is 0 < r < 1. In terms of o pf+1 — PiDita I8

(1= = (1 =)A=) = 7[(1 = r%1)2 = p2e=1)(1 = p)(1 = p(&-1P]
> r[(1— 7%t — (1= r)(1 — pu-1P), (31)

Thus eq. 30 is true for u provided it is true for u — 1. Direction calculation shows that it is true
for u = 0 (if 7 > 0) and for v = 1. By induction, it is true for all positive integer u.

Since p;11/p; is an decreasing function of 4, an upper limit on p; of the form Ba* can be found
by setting the error to zero at two consecutive points, pj and pjyy. Thus, if a; and f; are chosen
so that _ '

pi =Pjog Pt = BalT, (32)

then .
pi < B0 (33)
for all i in the range 0 < i < k. Solving eq. 32 for a; and B; gives

o=t g = piad, (34)
P

Approximating p; with ﬁjcxj results in no error at ¢ = j and at ¢ = j + 1. If a is chosen between
a;_1 and «aj, and B is determined by eq. 34, then the error at pj—1 is reduced while the error at
Pj+1 is increased.

A lower limit on p; of the form Sa* can be found by setting the error to zero at pg and py. This

gives ,
1/k
a:(%) R (35)

Thus, we have both upper and lower bound approximations on p; of the form Ba.

Approximating p; with fao® gives

7

Fz)=Y_ (f) 27(1 - 2)* 7Bl = fo*[1 - (1 — o V)a]*. (36)

This upper bound can be written in the form a(1 — bz)* with
a = Ba*, b=1-a"L. (37)
With this approximation to f(z), eq. 19 becomes

bkt /v 1 t
Inu— = =t !
nu 0, Ty - (38)

If the resulting z is negative, it is replaced with zero, if it is greater than 1 it is replaced by 1. It
is useful to define

y = bk—"

vinu’

(39)

The average running time is polynomial in three cases. The best bound comes from setting t/v
(and thus y) as small as possible. Therefore, the last case that applies gives the best bound.

8

Case l: z =0,y > 1.

The number of nodes is no more than 1 + wvat, which is polynomial when

bk[(n — 1)Inv — lnu]

vinwu

ylna < (40)

(The algebraic details of the derivation of eq. 40 have been omitted. They are similar to those given
for eq. 42.) Eq. 40 has a solution with y > 1 for large v only if

a<l. (41)

Since n can be chosen so that the right side is positive for large v, if @ < 1, then any y > 1 satisfies
eq. 40. The next case always gives results at least as good as this case.

Case2: 0<z<1,1-b<y< 1.

The number of nodes is no more than 1 + vul*v/b=k¢/Inufpps /41y u)]*at, which is polynomial
when

vinu

k
alby\" _ et
e — e(u;"b-l-l]lnu

(alﬂcy)y p(n=1)b/(vInu)

kt
e(v,"b-f—l}lnu—kt (bktalfk) < o1

e el-}-‘u,"b
Ina (n—1)blnv b
— Gad e g &
y(lny—i— k 1) . vinu L v
Ina (n—1)blnv b
- s PR SER IR S 4
y(l lny k)_l vinu —*'v (42)

For large v the right side of eq. 42 approaches 1 and there are solutions with y > 0 only if the part
of the left side in parentheses is positive. The smallest value of y results when the greater than or
equal in eq. 42 is equal. The point ¥ = 1 is a solution to the resulting equation when @ = 1, and
y = 1—bis a solution for a = e~#/(1=%) /(1 — b). Intermediate values of a lead to intermediate
values of y, so case 2 gives the best value for y when

o—kb/(1-b)

<a<].
S <a<l (43)

Eq. 42 provides a good approximation to the boundary when a is small, but the error becomes very
large when a is near 1.

Case3: z=1,y<1-b.

The number of nodes is no more than 1 + vu!*¥(1 — b)**a?, which is polynomial when

- kb+ k[(n —1)Inv —lnu]/(vinu)

= . (44)

9

For large v eq. 44 has solutions with y < 1 — b when

o —kb/(1-b)
< _— =4
“=2T1% (48)
Eq. 44 gives the same boundary as eq. 29, but eq. 27 shows that it actually applies for a larger
range than that indicated by eq. 45.

When using eq. 42 for an upper bound to the boundary between polynomial and exponential
time, a choice must be made for the value of a to use. Choosing o near ag results in a good
approximation for small p, but the error becomes large when p is large enough for Sa* to be near
1, and the approximation does not apply when it is larger than 1. Smaller values of « give larger
errors for small p but postpone the occurrence of large errors. Choosing a = a_; results in Bo*
being below 1 for all values of p. The sample calculations given below shows that this choice gives
small error for all p when wu is large.

The accuracy of the polynomial approximation can be improved by increasing the number of
terms in the approximation, but the resulting formulas do not have simple solutions.

Refined simple approximations.
One disadvantage of eq. 42 is that y is defined by implicit equation of the form

y(l-lny+2) =1, (46)
where z = (—Ina)/k > 0. Since
1
_ 4
l—-Iny+ 2z (47)

Is an increasing function of y, replacing the y in eq. 47 with a lower bound on Y gives (an improved)
lower bound on y and replacing it with an upper bound gives an upper bound. When eq. 42 applies,
y must be in the range 1 — b < y < 1. Using 1 as the upper limit on Y, ok for a, and B_, for 3,
gives polynomial average time (in the limit of large v) for

Inu
” W(i- Pe-1/pk)[1 — (In pg)/ k]

for p > p,. Using 1 — b as lower limit on y, and « and g from eq. 35 gives exponential average time
(in the limit of large v) for

: (48)

E(Inu
v k[l = (po/pr)Y/*][1 4 (1 — 1/k)Inpg]

(49)

These last two results are obtained by approximating approximations. Sample calculations
show that eq. 48 often gives a bound that is about twice the bound from the polynomial approx-
imation, while eq. 49 usually gives a bound close to the polynomial approximation. However, the
polynomial approximation associated with eq. 48 often has a small error while the one associated
with eq. 49 often has a large error. Thus eq. 48 and eq. 49 gives bounds that are close together
only for small p.

Calculations

For k = 2 and 3, and for v = 2, 3 and 11, Figures 1-6 show the boundaries computed from
the previous formulas. The horizontal axis is used for t/v to facilitate comparisons with previously

10

published analyses of backtracking for conjunctive normal form satisfiability problems [3, 4]. When
t/v is greater than (to the right of) the leftmost curve (marked with an ‘S’), the average number of
solutions is polynomial; when it is less than (to the left of), the average is exponential. When t/v
is less than the second leftmost curve, the polynomial approximation (eqs. 42 and 44) shows that
the running time is exponential. This curve is only slightly to the right of the first curve for & = 2,
u = 2, but it is well to the right of it for the other values of & and u. The third leftmost curve
(marked with an ‘N’) gives the true dividing line between polynomial and exponential average time.
When t/v is to the right of the this curve the average running time is polynomial; when it is to the
left, the average is exponential. These curves show that the polynomial approximation does not
give a good lower bound for ¢/v except when p is small. The remaining curves are upper bounds
on t/v obtained from the polynomial approximation, using @ = o; for different values of i. The
upper bound for ¢ = k — 1 applies for all p giving the rightmost most curve that goes across the
entire figure. The upper bounds for smaller i only apply for small P, giving curves that hook to the
right and terminate. The larger the value of i the larger the value of p where the curve terminates.

These curves show that the choice o = az_ gives a rather good approximation to the true
boundary when wu is large. The figures for u = 11 show the approximate boundary almost on top
of the true boundary. When variables can have a large number of values, the boundary between
exponential and polynomial time is determined primarily by Pk, the probability that a relation is
true after all the variables are set, and by pr_q, the probability that a relation is true after all but
one of the variables are set. Using a = aj_; approximates these two probabilities with no error.
The lower bound approximation is not so accurate. It approximates py with no error, but, when p
is not small, it does not give a good approximation to Phk—1-

It is interesting to compare Waltz’s figure recognition problem with these random problems.
The constraints in his problem depend on between 2 and 4 variables; the case k = 3 is particularly
common. Each variable occurs in two constraints, so t/v = 3/2 is appropriate for k = 3. The
variables have 11 values, so u = 11. The constraints for 3 variables have a probability p = 0.0027
[7]. In Figure 6, the point with these parameters is in the region where the average number of
solutions is small but the average running time is slightly exponential. Although machine vision
problems are definitely not random constraint satisfaction problems (for example each problem has
at least one solution), the analysis of random problems suggests that large problems usually have a
single solution, that simple backtracking can not find the solution rapidly, and that algorithms only
slightly more powerful can find the solution rapidly. The constraint propagation algorithm that
Waltz used is similar to backtracking, but it is more powerful, and he was able to find solutions
rapidly.

Summary of results

This section approximations to the boundary between polynomial and exponential time that
are easy to state. Consult the preceding sections for methods that give greater accuracy.

The average number of solutions is polynomial for

t Inu

> Thp (50)
and exponential for

L= (51)

v —lnp

For p < p. where p, is the root of the equation
P;(k‘ e ll'l p*) = k[l = (1 e p*)u], (52)

11

eqs. 50 and 51 also give the conditions for the average running time being polynomial or exponential.
A bound on p, is
Py e Me-1) (53)

When this bound is small, the actual value of P« 1s close to the bound.

For p > p. the average running time is polynomial when

t [1-(1-p)* " |nu

v < (1- p)u"—l 1—(1- p.)(u—l)u*-l]{k —In[1 — (1— P)uk]}' (54)
It is exponential when

t - (1-p)*[/*Inu .

v S L= (1=)] — R}k — (k= DI = (1 =)=}

Acknowledgements. I wish to thank Bernard Nudel and Cynthia Brown for discussing this
problem. I wish to thank Andrew Leonard for discussing the approximation of p; and an anonymous
referee for correcting an error in a former version of eq. (2).

References
1 R. M. Haralick and G. L. Elliot, Increasing Tree Search Efficiency for Constraint Satisfaction
Problem, Artificial Intelligence 14 (1980), pp. 263-313.

2 Bernard Nudel, Consistent-Labeling Problems and their Algorithms: Ezpected-Complezities and
Theory-Based Heuristics, Artificial Intelligence 21 (1983), pp. 135-178. Also in Search and
Heuristics, edited by J. Pearl, North Holland, New York (1983), pp. 135-178.

3 Paul Walton Purdom Jr., Search Rearrangement Backtracking and Polynomial Average Time,
Artificial Intelligence 21 (1983), pp. 117-133.

4 Paul Walton Purdom Jr. and Cynthia A. Brown, Polynomial-Average- Time Satisfiability Prob-
lems, Information Sciences, 41 (1987), pp. 23-42.

5 Paul Walton Purdom Jr., Cynthia A. Brown, and Edward L. Robertson, Backtracking with
Multi-Level Dynamic Search Rearrangement, Acta Informatica 15 (1981), pp. 99-113.

6. David L. Waltz, Understanding Line Drawings of Scenes with Shadows, in The Psychology of
Computer Vision, edited by P. H. Winston, McGraw-Hill, New York (1975), pp. 19-91.

7. Patrick Henry Winston, Machine Vision , in The Psychology of Computer Vision, edited by P.
H. Winston, McGraw-Hill, New York (1975), pp. 1-17.

12

0.8

- Exponential

0.6

Polynomial
0.4

0.2+

0.0 | I | [|

2
t/v

Fig. 1. Constraint satisfaction for ¥ = 2 and u = 2. The curve marked with S shows the dividing
line between an exponential and polynomial number of solutions. The curve marked with N shows
the dividing line for the number of nodes. The remaining curves are the dividing lines given by

upper and lower bound approximations to the N curve.

13

§ 1

e
Exponential N

0.4| .

p

0.3]-

Polynomial

0.2
B o

0.1

0.0 | | | l | |
0 1 2 3

Fig. 2. Constraint satisfaction for k = 2 and u = 3.

14

o.10——p——

0.08

.)
0.06

0.04 :
Polynomial
0.02}
0.00~—=A4 | | | |
0 1 2 3

Fig. 3. Constraint satisfaction for k = 2 and v = 11.

15

0.5 —

Exp.
0.4
p
0.3
Polynomial

0.2
0.1F .
0.0 | | | l

0 1 2 3 4

Fig. 4. Constraint satisfaction for £ = 3 and v = 2.

16

S

Exponential

0.4

0.3

0.2 e

0

0'0 [| | l | l

Fig. 5. Constraint satisfaction for k = 3 and u = 3.

17

0.01— o —op

-
Exp.|
0.008 .
p
0.006|
Polynomial
0.004
0.002]-
0.000 . | | ' '
0 1 2 3

Fig. 6. Constraint satisfaction for ¥ = 3 and u = 11.

18

